Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ХРОМОМ Механические свойства при повышенных температурах

Широко применяются стали на основе 11—13% хрома, дополнительно легированные никелем, молибденом, ванадием, вольфрамом, ниобием, что обеспечивает получение более высоких механических свойств при повышенных температурах. Стали этого типа отличаются достаточно высокими значениями ударной вязкости.  [c.25]

Кроме хрома, в стали вводят никель, марганец, углерод, молибден, вольфрам, ниобий и другие элементы для придания им специальных свойств (повышенной коррозионной стойкости в агрессивных средах, более высоких механических свойств при высоких температурах, определенных физических свойств) и структуры.  [c.10]


Прочность при высоких температурах сплавов на основе кобальта зависит от упрочнения твердого раствора и часто от дисперсности стабильных карбидов. Кроме никеля и хрома, наиболее часто используемыми легирующими элементами в этих сплавах являются молибден, ниобий, тантал и особенно вольфрам. Добавки бора применены для придания сплаву повышенных механических свойств при высоких температурах. В некоторых сплавах используют также титан. В табл. 42 перечислены номинальные составы и приведены данные о длительной прочности типичных сплавов на основе кобальта, использующихся в настоящее время.  [c.184]

Влияние различных факторов на механические свойства материалов. Экспериментами установлено, что при повышении скорости нагружения и скорости деформирования повышаются предел текучести и предел прочности. При повышении температуры особенно ощутимой является ползучесть (см. 3.9). При высоких температурах более явственными становятся вязкие (пластические) свойства, тогда как при пониженных температурах наблюдается охрупчивание. Существенно влияние на механические свойства металлов химического состава. Например, малые легирующие добавки (хром, никель, молибден и др.) изменяют механические свойства сталей, дают возможность создавать материалы с высокой проч-  [c.142]

Эти сплавы (табл. 50) отличаются повышенной тепло- и электропроводностью в сочетании с хорошими механическими свойствами при нормальной и повышенной температурах (табл. 51). Эти бронзы, кроме сплава Мц-2, в составе имеют, как правило, хром, а также добавки магния или циркония, алюминия и других элементов, положительно влияющих на механические свойства, особенно на теплостойкость меди, и незначительно снижающих ее электро- и теплопроводность.  [c.141]

Низко- и среднелегированные, хромомолибденовые и хромомолибденованадиевые стали способны сохранять повышенные механические свойства при температуре до 570 °С. Теплоустойчивость этих сталей обусловлена легированием хромом и молибденом в количествах выше критического отношения Ме/С. Эго приводит к тому, что значительная доля легирующих элементов находится в твердом растворе. При этом он упрочняется и затрудняются процессы диффузии и самодиффузии химических элементов при повышенных температурах. С другой стороны, при легировании хромом, а особенно молибденом и ванадием, образуются специальные карбиды этих элементов или комплексные карбиды на основе этих элементов. Такие карбиды имеют повышенную устойчивость к коагуляции при нагреве. Этот фактор также положительно влияет на сохранение свойств низкоуглеродистых хромомолибденовых и хромомолибденованадиевых сталей при повышенных рабочих температурах.  [c.204]


Ni и его сплавы. Хорошая окалиностойкость никеля еще более повышается при добавлении хрома. Сплав 20% Сг—Ni стоек в воздухе до температуры порядка 1150°С. Этот сплав — один из лучших жаростойких сплавов и имеет высокую окалиностойкость и хорошие механические свойства при низких и при повышенных температурах. Стойкость к окислению у этого сплава промышленных марок значительно повышается, если при его выплавке в качестве раскислителя используют металлический кальций. У таких сплавов не происходит окисления по границам зерен. Небольшие количества циркония, тория и редкоземельных металлов, например церия, также повышает окалиностойкость сплава, возможно, вследствие уменьшения отслаивания защитных  [c.161]

Механические свойства хромо-марганцевых сталей, особенно при повышенных температурах, приближаются к таковым для ферритных сталей. Прочность их при повышенных температурах относительно низкая .  [c.519]

В промышленности также находят применение сплавы на основе карбида хрома [3] с никелевой связкой (10—40%). Эти сплавы не окисляются на воздухе до 1000° С, обладают высокой коррозионной устойчивостью в различных агрессивных средах, а также высокой эрозионной стойкостью и сопротивлением износу при комнатной и повышенных температурах, в несколько раз превышаюш,их стойкость нержавеющей стали. Ниже приведен пример высоких физических и механических свойств одного из подобных сплавов  [c.423]

Хромо марганцовая сталь. Эта сталь широко распространена в СССР и Западной Европе (особенно в Германии) как заменитель хромоникелевой стали. Улучшаемая хромомарганцовая сталь при правильном выборе соотношения хрома и марганца даёт после термообработки механические свойства, близкие к свойствам улучшаемой хромоникелевой стали [9], и характеризуется высокой износоустойчивостью. Пластические свойства мелкозернистой хромомарганцовой стали выше, чем крупнозернистой это особо выявляется на стали с более высоким содержанием углерода. Сталь имеет повышенную склонность к росту зерна при высоких температурах и подвержена отпускной хрупкости, устраняемой ускоренным  [c.381]

Хром является наиболее сильным замедлителем процесса графитизации ковкого чугуна. Его содержание обычно ограничивают 0,06—0,08%. Повышение количества хрома до 0,1—0,12% приводит к необходимости прибегать к специальным мерам для получения ферритного ковкого чугуна (удлинять отжиг, производить предварительную закалку отливок и др.). Трудности получения ферритного ковкого чугуна при повышенном содержании хрома связаны с образованием сложных карбидов, устойчивых при высоких температурах, и замедлением диффузионных процессов в металлической основе [39). Широкое использование металлолома, содержащего легированную сталь, при производстве ковкого чугуна приводит к увеличению концентрации хрома в шихте и требует изыскания методов нейтрализации его влияния на процесс графитизации. Так, совместное модифицирование ковкого чугуна алюминием, бором и сурьмой [24, 28] или ферротитаном [Й] позволяет получать феррит-ный и перлитный ковкий чугун, содержащий до 0,2% хрома, с высокими механическими свойствами без удлинения цикла отжига.  [c.117]

Химико-термическая обработка является одним из способов изменения химического состава стали и предназначена для придания поверхностным слоям деталей машин требуемых физико-механических свойств повышенных износостойкости, коррозионной стойкости, окалино- и жаростойкости. Производится химико-термическая обработка путем нагрева детали в специальной среде (карбюризаторе) до определенной температуры, выдержки при этой температуре и охлаждения. При этом происходит насыщение поверхностного слоя активным элементом (хромом, азотом, углеродом, алюминием и т. п.), в результате чего изменяются физико-механические свойства материала обрабатываемой детали износостойкость, жаростойкость, коррозионная устойчивость и т. п.  [c.398]


Сопротивляемость окислению придают стали элементы, имеющие большее сродство к кислороду, чем железо, такие, как хром, кремний и, в особых случаях, алюминий, а сопротивляемость ползучести — карбидообразующие элементы, такие, как хром, молибден и ванадий. Для изделий, работающих при относительно низкой температуре, наибольшую практическую ценность представляют добавки до 30% Сг, который придает стали очень высокое сопротивление коррозии, однако 12% является предельной добавкой хрома, которая делает ферритную матрицу пригодной для эксплуатации при высокой температуре, так как стали с более высоким содержанием хрома становятся хрупкими при 455° С. Если добавка хрома необходима для повышения стойкости против окисления при высокой температуре, то ее необходимо сочетать с добавкой никеля и, возможно, марганца, которые вместе с углеродом и азотом стабилизируют аустенит. Более высокое содержание хрома увеличивает сопротивление окислению и позволяет еще повысить рабочую температуру, однако в то же время способствует образованию а-фазы, появление которой приводит к хрупкости стали после длительных выдержек при температуре >600° С. Увеличение содержания никеля подавляет образование а-фазы. Когда требуются исключительная стойкость к коррозии и специальные механические свойства, прибегают к использованию сплавов на основе никеля. Так, например, сплав 800 имеет наилучшее сочетание механических свойств, а сплав 50% Сг и 50% Ni обладает наивысшей стойкостью против окисления.  [c.176]

Рабочие температуры продолжали расти, и стало яснее, что изменения в сплавах, направленные на одновременное повышение стойкости против окисления и против горячей коррозии, нередко противодействуют упрочняющему влиянию легирования. Повысив содержание хрома и снизив содержание алюминия, понижали температуру растворения у -фазы, и, следовательно, понижали прочность. Чтобы обеспечить необходимую защиту поверхности без существенного ухудшения механических свойств основного материала лопаток турбин авиадвигателей или промышленных турбин, инженеры обратились к поверхностному покрытию суперсплавов (см. гл.13). Со своей стороны это породило современный период "улучшенного оксида алюминия" т.е. тщательно сбалансированных покрывающих сплавов (на основе Ni, Fe, Со с добавлением Сг, А1 и других активных элементов), образующих чрезвычайно стойкую против окисления и/или коррозии защитную оболочку из легированного оксида алюминия. В соответствии с сегодняшней технологией защитные покрытия наносят практически на все несущие детали, изготовленные из суперсплавов и работающие в динамическом режиме при очень высоких температурах. Стоит заметить, однако, что моно-кристаллические (тип SX) сплавы, по природе своей лишенные границ зерен, и при отсутствии покрытия нередко проявляют новый, ранее неизвестный и необычайно высокий уровень поверхностной стойкости.  [c.37]

Тугоплавкие металлы имеют прочные межатомные связи, что и обеспечивает им высокую температуру плавления. Они отличаются малым тепловым расширением, небольшой теплопроводностью, повышенной жесткостью. Механические свойства таких металлов зависят от способа производства и содержания примесей, которые увеличивают их хрупкость. Молибден, хром и вольфрам особенно склонны к хрупкому разрушению из-за высокой температуры порога хладноломкости, которую особенно сильно повышают примеси внедрения С, N, Н и О. Наклеп понижает температуру перехода в хрупкое состояние. Жаропрочность тугоплавких металлов может быть повышена как легированием, так и азотированием при 1100...1200°С в азоте.  [c.198]

Повышение температуры, увеличивая скорость диффузии хрома, уменьшает местное обеднение границ зерен хромом и склонность швов к МКК. Выдержка стали в рассматриваемом интервале температур в течение и более, приводя к диффузионному выравниванию содержания хрома по объему зерна, способствует приобретению металлом повторной стойкости к МКК (кривая 2). Уменьшение в стали содержания углерода, легирование ее более сильными, чем хром, карбидообразователями (титан, ниобий и др.) сдвигает вправо кривую / начала появления склонности металла к МКК. Процессы, протекающие при образовании карбидов, влияют не только на появление такой склонности, но и сильно изменяют механические свойства сталей при комнатных и высоких температурах.  [c.352]

Увеличение в силуминах содержания цинка до 30—35%, меди до 10—20% при содержании кремния 0,3—10% обеспечивает температуру плавления припоев в интервале 400—460 С. Эти припои также отличаются высокими коррозионной стойкостью, механическими свойствами, хорошей смачиваемостью и электропроводностью. Подобные свойства имеют также припои, содержащие 0,5—22% Си, 0,5—14% Si, 0,5—55% Zn и 0,05— 1% Сг. Температура плавления их находится в пределах 400— 540 С. Введение хрома, по-видимому, способствует повышению их коррозионной стойкости.  [c.106]

Хромоникелевая сталь марки 5ХНМ считается ТИПИЧНОЙ штамповой сталью. Наличие в ней хрома и никеля обеспечивает высокую прокаливаемость, наличие молибдена снижает хрупкость при отпуске. Благодаря содержанию всех трёх указанных элементов сталь 5ХНМ обладает высокими механическими свойствами при повышенных температурах.  [c.477]

Вольфрам. Вольфрам образует устойчивые сложные карбиды, которые, находясь в аустенитной основе стали, сообщают ей высокие механические свойства при повышенных температурах. Поэтому вольфрам вводится в аустенитные стали, работающие в условиях высоких температур, давлений и нагрузок. Эти стали обладают также высокой ползучеустойчивостью. Вольфрам несколько повышает коррозийную стойкость аустенитных сталей, а также сопротивляемость межкристаллитной коррозии. Вольфрам способствует образованию б-фазы в хромоникелевых сталях как ферритизатор, он почти в 2 раза сильнее хрома. Однако вольфрам придает стали некоторую хрупкость. Для предотвращения образования трещин в процессе резки нержавеющих сталей мартенситного класса, содержащих вольфрам, необходимо перед резкой металл подогревать до 300—420°, а после резки подвергать отпуску при 650—760°.  [c.27]


Монокристаллические отливки получают как из традиционных, так и специально разработанных для данного процесса сплавов. При создании новых сплавов для монокристаллического литья нет необходимости вводить в них элементы, упрочняющие границы зерен (С, В, Hf, Zr, РЗМ), поскольку не существует большеугловых границ. Поэтому в безуглеродистых сплавах отсутствуют карбиды и остаются только у- и у -фазы. Дальнейшее повышение стабильности сплава (т. е. повышение температур солидуса и полного растворения у -фазы) может быть достигнуто оптимальным его легированием тугоплавкими металлами (W, Та, Re, Мо) и у -стабилизаторами (Ti, Та). Это приводит к существенному торможению контролируемых диффузией высокотемпературных процессов, в том числе коагуляции у -фазы. Важная роль при легировании уделяется рению (до 3%), в основном располагающемуся в у-твердом растворе. Содержащие рений сплавы (например, ЖС36) отличаются более узким интервалом кристаллизации. Так, температуры ликвидуса, солидуса и полного растворения у -фазы в сплаве ЖС36 равны соответственно 1409, 1337 и 1295 °С. Снижение содержания хрома (а следовательно, и жаростойкости) компенсируют добавками Hf и Y, образующими на поверхности плотные жаростойкие оксидные пленки. В связи с применением направленной кристаллизации значительно расширились возможности использования экономно легированных жаропрочных сплавов на основе интерметаллида №зА1. Так, например, установлено, что отливки из этих сплавов с монокристаллической структурой и кристаллографической ориентацией [111] обладают оптимальным сочетанием физико-механических свойств при температурах до 1200 °С высокими показателями жаропрочности, термоусталостной прочности и жаростойкости.  [c.367]

Добавка хрома к железу способствует образованию мар-тенситной (игольчатой) структуры (о. ц. к.-решетка) при сравнительно медленном охлаждении стали вследствие распада аустенитной структуры (г. ц. к.-решетка), устойчивой при повышенных температурах. Малая критическая скорость закалки позволяет осуществлять ее и получать мар-тенситную структуру при охлаждении на воздухе. В закаленном состоянии эти стали имеют высокую прочность и относительно низкую ударную вязкость. Для получения оптимальных механических свойств стали подвергают термообработке. Для мартенситных сталей, как правило, применяют нормализацию и отпуск (воздушное охлаждение от температуры аустенизации и затем повторный нагрев до определенной температуры нилсе температуры аустенизации). При отпуске в интервале температур 200—370 °С происходит снятие внутренних напряжений без изменения структуры и прочностных свойств 550—650 °С — распад мартенсита на феррит и карбиды типа СггзСе, при этом прочность стали снижается, а ударная вязкость повышается. Например, у стали 0,3 С 13 Сг при отпуске до 450 С Ob=1600 МПа, ударная вязкость (по Изоду) составляет 22 Дж до 800 °С 0в = 85О МПа, ударная вязкость равна 100 Дж [51, с. 26].  [c.154]

Оптимальные механические свойства при нормальной и повышенных температурах новые бронзы приобретают после закалки и отпуска (табл. 51, 52). Закалка состоит в фиксировании при 20° С пересыщенного твердого раствора, а отпуск — в распаде этого раствора, сопровождающемся дисперсионным твердением. После закалки эти бронзы очень пластичны, что обусловлено у хромоциркониевых и других хромовых бронз переводом в раствор твердых и хрупких фаз хрома и Сгг2г. Твердость бронз после полной термической обработки может быть заметно повышена нагартовкой на 40—60% закаленного сплава перед отпуском. Чем выше степень деформации при нагартовке закаленных бронз, тем выше их твердость после отпуска.  [c.144]

Мнкротвердость ннкельфосфорных осадков (после термообработки), полученных из кислых растворов, составляет 850—950 кГ/мм-, а из щелочных растворов 350—400 кГ/мм . Никельфосфорные осадки имеют низкий коэффициент трения, обладают высокой износостойкостью и жаростойкостью (механические свойства не меняются нрп нагреве до 700° С), практически бсспорпсты. Такие покрытия достаточно хорошо смачиваются маслами и поэтому лучше противостоят пзносу, чем электрический хром в условиях полусухого трения при повышенных температурах и давлениях.  [c.87]

Механические свойства сплавов йодидного хрома с 0,3 и % Y (номинальный состав) прн комнатной и повышенной температурах приведены в табл. 311 [15]. Испытаниям подвергали образцы, изготовленуые прессованием при 1204° с последующей ковкой при 871° (HV = 150—152 кПмм ). Заметное падение твердости сплава с 1 % Y наблюдается при повышении температуры выше 900°.  [c.791]

Так, сплавы типа иллиум (66% N1 18% Сг 8—9% Си 3% У 2% А1 1% Мп, 0,2% Т1) благодаря присутствию в них значительного количества хрома по поведению в окислительных средах аналогичны нерлсавеющим сталям, например устойчивы в НПОз. Эти сплавы имеют также повышенную устойчивость в неокислительных кислотах невысоких концентраций и при не очень высоких температурах. Для улучшения механических и технологических свойств в эти сплавы иногда вводят значительное количество (до 25%) железа, что приводит к небольшому понижению их коррозионной устойчивости. Сплавы N1 — Сг при обычных температурах не обладают особыми преимуществами по сравнению с ннкельмолибдсповыыи сплавами.  [c.260]

Было установлено, что основной металл разрушенной трубы по химическому составу соответствовал техническим условиям, однако имел пониженную ударную вязкость (при 0°С — 4,05 кгм/см , а при минус 40°С — 3,3 кгм/см , тогда как техническими условиями регламентируются значения не менее 8 и 3,5 кгм/см соответственно). Металл продольных заводских швов по химическому составу также соответствовал требованиям технических условий, а по механическим свойствам (особенно металл ремонтных швов) имел недопустимо высокое временное сопротивление разрыву (до 750 МПа при максимально допустимых по техническим условиям 690 МПа) и низкую пластичность (относительное удлинение для ремонтных швов составляло 2,9% при минимально допустимых 18%, а ударная вязкость при температурах 0 и минус 40°С — 1,45 и 0,69 кгм/см соответственно. В заводских продольных швах имелось много микропор и мелких шлаковых включений, являющихся источниками зарождения микротрещин, величина которых, однако, соответствовала техническим условиям. Металл поперечного монтажного шва содержал хрома на 0,18% больше верхнего допустимого предела и имел неудовлетворительные характеристики пластичности (ударная вязкость при температуре 0°С — 4,96 кгм/см а при минус 40 С — 1,36 кгм/см ). В связи с повышенной чувствительностью стали 14Г2САФ к перегреву в заводских продольных ремонтных швах и поперечных автоматических монтажных швах присутствовали участки металла с крупными ферритными зернами, а в зоне термического влияния — участки с мартенситной структурой. Эти участки металла имели низкую стойкость к коррозионному растрескиванию.  [c.59]

М. Е. Гарбер исследовал карбиды легированием базисного чу-гуна (2,7—3,1% С) хромом в пределах 5,07—31,1% [22]. Количест но карбидов во всех чугунах было примерно одинаковым и состав ляло 26,6—32,0%, и только в сплавах с 29—31% Сг оно достигалс 35% по массе. Механические свойства изучали на литых образца после отпуска их при температуре 200° С в течение 2 ч. Повышение содержания хрома с 5,1 до 7,1% мало изменяет прочность чугунов Начиная с содержания 8,85% Сг механические показатели (вре менное сопротивление, предел прочности при изгибе) резко повыша ются. Дальнейшее повышение содержания хрома (до 20%) улучшает эти свойства. Для чугунов с содержанием хрома свыше 25%  [c.58]


Одним из этапов процесса обезуглероживания является диффузия углерода в феррите. Известно, что легирование феррита хромом резко замедляет процессы диффузии в нем элементов внедрения, в частности, углерода. Поэтому можно предположить, что повышение водородостойкости хромистых сталей происходит не только за счет наличия в них стабильных карбидов, но и вследствие влияния хрома, растворенного в феррите, на скорость диффузии углерода. Для проверки этого предооложения были поставлены специальные исследования и определено влияние отдельных легирующих элементов (вольфрама, ванадия, ниобия и титана) на длительную водородную стойкость стали с 0,16 -0,18% С и связь между фазовым составом, механическими свойствами и водородостойкостью сталей под давлением водорода 800 атм при температуре 600.  [c.157]

Так же как в случае электролитических покрытий, включение АЬОз в сплаве Ni—Р существенно повышает износостойкость покрытия (см. рис. 89 и 90). Еще лучшими механическими свойствами обладают покрытия, содержащие Si . Испытывались осадки Ni—Si из суль-фаматного электролита и Ni—Р—С из фосфатного (I) раствора, содержащего комплексообразователь (буфер), активатор и стабилизатор осаждение проводилось при pH 4,3—4,7 и температуре 92 °С. Карбид кремния (размеры частиц 3—6 мкм) предварительно до добавления в электролит обрабатывался раствором НС1. Скорость осаждения сплава Ni—Р—Si была несколько ниже (4,2 нм/с), чем сплава Ni—Р (70 нм/с). Испытания на износ проводились на машине трения с контртелом — роликами, изготовленными на керамической или каучуковой связке. Относительный износ бестоковых покрытий, содержащих Si , составлял соответственно 120 или 17,5 мг, а электроосажденных покрытий Ni—SI в этих же условиях соответственно 520 и 54 мг. Покрытие Ni—Р—Si устойчивее к износу и при испытании с твердым хромом. Корунд в качестве второй фазы меньше способствует повышению износостойкости, чем Si .  [c.241]

Низколегированные стали также можно паять всеми известными способами. Затруднения в процессе пайки встречаются только в тех случаях, когда легирующие элементы, например алюминий или хром, образуют на поверхности стали хи.мически устойчивые окислы. В этом случае применяют более активные флюсы, а магнитные стали, содержащие алюминий, перед пайкой предварительно обрабатывают в растворе NaOH для удаления плотной пленки окислов алюминия, В качестве газовой среды при пайке используют азот или аргон в смеси с трехфтористым бором. При этом следует иметь в виду возможность поверхностного азотирования стали в процессе пайки, что при небольших толщинах (менее 1 мм) может привести к повышению прочности и снижению пластичности стали. При пайке закаленных низколегированных сталей следует иметь в виду возможность огжнга в процессе пайки и, следовательно, снижения их механических свойств. Во избежание этого пайку ведут при температуре высо-  [c.234]

Чугун находит широкое применение в промышленности в качестве конструкционного материала, так как имеет невысокую стоимость, хорошие литейные свойства, износостойкость, стойкость при знакопеременных нагрузках и повышенных температурах. Чугун содержит свыше 2 % углерода, до 5 % кремния и некоторое количество марганца. Используются легированные чугуны с добавками хрома, никеля, молибдена. В зависимости от состава, условий кристаллизации и скорости охлаждения углерод в чугуне может находиться в химически связанном или свободном состоянии в виде графита. В первом случае чугун называется белым, так как на изломе он более светлый. Такой чугун имеет высокую твердость, изностойкость, чрезвычайно трудно обрабатывается, имеет ограниченное использование в конструкциях. Во втором случае чугун называется серым, он на изломе имеет серый цвет. Этот чугун имеет удовлетворительную прочность, достаточную твердость, хорошо обрабатывается на механическом оборудовании. Серый чугун более распространен в промышленности в качестве конструкционного материала.  [c.127]

Для деталей, у1 зрниых для предыдущих марок, но с повышенными механическими свойствами и термостойкостью при температуре эксплуатации до 500 С Для деталей с высокой коррозионной и.эрозионной стойкостью в щёлочах, слабых растворах кислот, серных кислотах любой концентрации до 50° С, в морской воде, в среде перегретых водяных паров (чугу-ны виеют высокий коэ и-диент термического расширения, немагнитны при низком содержании хрома)  [c.383]

Механические свойства и эрозионная стойкость полуферрит-ных сталей зависят от количества в их структуре у-фазы. С увеличением количества выделяющейся при высоких температурах 7-фазы возрастает чувствительность сталей к термической обработке и, следовательно, увеличиваются их механические свойства и сопротивляемость микроударному разрушению. Роль термической обработки в этом случае сводится в основном к получению более мелкого зерна в стали и выравниванию концентрации хрома в твердом растворе, что приводит к повышению корозионной и эрозионной стойкости стали.  [c.200]


Смотреть страницы где упоминается термин ХРОМОМ Механические свойства при повышенных температурах : [c.482]    [c.1410]    [c.185]    [c.117]    [c.881]    [c.150]    [c.26]    [c.215]    [c.653]    [c.159]    [c.572]    [c.19]    [c.95]    [c.425]    [c.132]    [c.284]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.342 ]



ПОИСК



Механические Механические свойства при повышенных температурах

Механические свойства при температуре

Температура повышенная

ХРОМОМ Механические свойства

Хром Свойства

Хрома

Хромали

Хромиты

Хромой Механические свойства

см Механические свойства при повышенных температурах



© 2025 Mash-xxl.info Реклама на сайте