Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость возрастания свободной энерги

При медленном, постепенном возрастании нагрузки скорость перемещения свободного конца стержня будет весьма мала. Поэтому силами инерции перемещающихся масс можно пренебречь, и, значит, можно считать, что деформация стержня не будет сопровождаться изменением кинетической энергии системы.  [c.119]

Уменьшение устойчивости аустенита и роста скорости его превращения V с увеличением степени переохлаждения объясняется возрастанием разности свободных энергий аустенита и перлита АР (рис. 114). При этом уменьшается размер критического зародыша и возрастает количество объемов в исходном аустените, в котором могут возникнуть зародыши перлита. Повышение устойчивости аустенита и уменьшение скорости его превращения V при больших степенях переохлаждения вызывается снижением скорости образования и роста новых фаз в результате торможения процесса диффузии О.  [c.174]


Существенным отличием процесса перехода газа через скачок уплотнения, сопровождаемого скачкообразным увеличением давления, плотности и температуры, от течения с плавным, постепенным возрастанием указанных параметров является значительная величина работы сил внутреннего трения в газе. В скачке уплотнения на расстоянии, не превышающем нескольких длин свободного пробега молекул, вследствие больших градиентов скорости силы внутреннего трения настолько велики, что необратимо переводят в теплоту значительную часть механических видов энергии газа. Это вызывает заметное возрастание энтропии. В случае течения газа с постепенным возрастанием параметров работа сил внутреннего трения оказывается пренебрежимо малой и процесс считается изэнтропическим.  [c.108]

Вынужденная конвекция происходит под действием внешней движущей силы, здесь жидкость обтекает поверхность, имеющую более высокую или более низкую температуру, чем температура самой жидкости. Скорость движения жидкости при вынужденной конвекции больше, чем при свободной, поэтому в этом случае при заданном перепаде температур может быть передано больше теплоты. Возрастание теплового потока связано с необходимостью расхода энергии, затрачиваемой для приведения жидкости в движение.  [c.260]

Выявленная последовательность сигналов АЭ в цикле нагружения, а также учет эффекта ротационной пластической деформации приводят к рассмотрению формирования усталостных бороздок не в полуцикле восходящей ветви нагрузки, а в полуцикле нисходящей ветви нагрузки. Накопленная энергия упругой деформации в большей части объема материала при максимальном раскрытии берегов трещины стремится закрыть трещину после перехода к полуциклу снижения нагрузки. Этому препятствует зона пластической деформации, размеры которой существенно возрастают в полуцикле растяжения (восходящая ветвь нагружения). Действие сжимающих сил при разгрузке образца стремится нарушить устойчивость слоя материала перед вершиной трещины в районе зоны пластической деформации, и это приводит к возникновению дислокационной трещины (см. рис. 3.26), а далее и к созданию свободной поверхности. Происходит отслаивание пластически деформированной зоны с наиболее интенсивным наклепом материала от остальной части зоны. При этом в случае существенного возрастания объема зоны в связи с возрастанием скорости роста усталостной трещины отслаивание характеризуется разрушением материала не по одной, а по нескольким дислокационным трещинам, что характеризуется формированием более мелких бороздок на фоне крупной усталостной бороздки.  [c.168]


Фракционный состав пыли показан на рис. 24, а. Крутой спад кривой при возрастании размера йч частиц обусловлен быстрым их оседанием. Расчетные данные по скорости аач оседания частиц пыли шарообразной формы приведены в [85]. Расчеты выполнялись по формуле Стокса для свободного падения тел в совершенно спокойном воздухе (Яч 1 мкм Удч 3,5-10 см/с). Пылинки диаметром более 10 мкм оседают достаточно быстро, иач > 0,3 см/с. При уменьшении размеров пылевых частиц их концентрация в воздухе увеличивается (рис. 24,6). Однако с увеличением концентрации Мач пылевых частиц возрастает вероятность их взаимных столкновений и коагуляции — слипания под действием сил притяжения (сил Ван-дер-Ваальса и электрических). Силы зависят от размера частиц. Энергия связи двух шарообразных частиц с радиусом 1 мкм оценивается 10- Дж. Такая энергия связи намного превосходит энергию связи атомов в химических соединениях. Следовав  [c.94]

Более сложно выявить характер носителей тепла в случае, когда нет свободных электронов. Так как атомы в твердом теле сильно связаны друг с другом, увеличение энергии колебаний в одной части кристалла (проявляемое в возрастании температуры) передается в другие его части. Дебай [56] обратил внимание на то, что при передаче тепла колебаниями решетки образуются волны, и определил эффективную длину свободного пробега как расстояние, на котором интенсивность волны ослабляется в 1/е раз вследствие рассеяния. В современной теории предполагается, что тепло переносится фононами, которые являются квантами энергии каждой моды колебаний длина свободного пробега определяет скорость обмена энергией между фононами различных мод. Для теплопроводности можно опять воспользоваться выражением  [c.27]

Наличие такого скачкообразного изменения параметров газа — в действительности очень резкого их изменения на участке длины, равной по порядку пути свободного пробега молекулы,— показывает, что здесь имеет место внутренний молекулярный процесс, связанный с переходом кинетической энергии упорядоченного течения газа в кинетическую энергию беспорядочного теплового движения молекул. Этим объясняется разогрев газа при прохождении его из невозмущенной области перед фронтом ударной волны в область возмущенного движения за фронтом ударной волны. Повышение средней квадратичной скорости пробега молекул вызывает также возрастание давления и плотности газа при прохождении его сквозь фронт ударной волны.  [c.124]

Однако, факторы, определяющие, будет ли трещина расти медленно и равномерно или она будет развиваться быстро и неравномерно, лучше всего анализировать на основе энергетических концепций. Если, например, скорость (с учетом длины трещины), с которой освобождается энергия деформации в процессе роста трещины, выше потребной для этого, то ее избыток приведет к неравномерному развитию трещины, т. е. к ее самопроизвольному и быстрому распространению, характеризующемуся незначительной зависимостью от последующего изменения действующей внешней нагрузки. Но когда скорость освобождения энергии после возникновения трещины и некоторого развития не достаточна для продолжения ее роста, дальнейшее развитие не будет спонтанным, хотя оно может возобновиться в случае возрастания действующей нагрузки. При этом рост трещины будет происходить в условиях квазистатического равновесия. С конструктивной точки зрения неравномерное развитие трещины является более опасным. В этом случае трещина обычно быстро пересекает конструкцию, приводя к катастрофическому разрушению без его предупреждения и возможности сбросить нагрузку. Тем не менее возможны случаи, когда можно остановить быстрое распространение трещин до того, как возникнет серьезное повреждение. Предотвращение разрушения, как назван процесс остановки распространения трещины, не является явлением необычным. Остановленные трещины, т. е. трещины, которым не удалось достигнуть свободных границ конструкции, часто можно видеть даже в таких хрупких материалах, как стекло, бетон, керамика или чугун.  [c.13]


Замедление нейтронов с энергиями ниже 1 эв, т. е. в тепловой области, называется термализацией, потому что энергии нейтрона сравнимы с тепловой энергией рассеивающих ядер, которые уже не могут рассматриваться как покоящиеся. Если рассеивающее ядро находится в движении, то нейтроны могут как получать энергию за счет рассеяния, приводящего к возрастанию скорости, так и терять ее прп столкновениях. Следовательно, рассеяние, приводящее к возрастанию энергии нейтронов, которым можно было пренебречь в области замедления, необходимо теперь принимать во внимание. Кроме того, следует учитывать связи атомов в молекулах или в кристаллической решетке. Если атом находится в связанном состоянии, то он не может свободно испытывать отдачу при столкновении, так как существует взаимодействие между рассеивающим атомом и его соседями в молекуле или твердом теле. Наконец, нельзя не учитывать возможности эффектов интерференции в тепловой области энергий. Так как длина волны де Бройля для нейтрона с очень низкой энергией становится сравнимой с межатомным расстоянием в молекуле или кристалле, то может иметь место интерференция нейтронов, рассеянных на различных атомах.  [c.249]

Поступление энергии в систему должно вызывать возрастание абсолютной величины скорости жидкости в конце фазы контакта (в начале фазы свободного движения). Свяжем это прираш ение скорости с величиной АЕ. Запишем с этой целью скорость в начале фазы свободного движения в виде  [c.281]

Из условия симметрии за скачками СВ и СВ скорость должна стать параллельной оси потока, т. е. линии тока должны повернуться в обратно м направлении на угол б. В этой области устанавливается давление, повышенное по сравнению с давлением среды. Следовательно, в точках В и В1 со стороны -струи давление более высокое и из этих точек распространяются волны разрежения. При переходе через волны разрежения давление падает до давления окружающей среды и линии тока отклоняются от оси — струя расширяется. После пересечения волн разрежения давление равно р. В точках выхода волн разрежения на свободную границу струя имеет ширину, равную ААх. Рассматриваемая группа режимов характеризуется. потерями энергии в струе, обусловленными возрастанием энтропии в системе косых скачков уплотнения. Поле давлений по оси и в поперечных сечениях приобретает значительную неравномерность.  [c.351]

Движение Д. с. может быть как замедленным, или затухающим, так и ускоренным. Напр., колебания груза т, подвешенного к пружине (рис., а), будут затухать вследствие сопротивления среды и внутреннего (вязкого) сопротивления, возникающего в материале самой пружины при её деформациях. Движение же груза т вдоль шероховатой наклонной плоскости, происходящее, когда скатывающая сила больше силы трения (рис., б), будет ускоренным. При этом его скорость V, а следовательно, и кинетич. энергия Т= ту 2 (где т — масса груза) всё время возрастают, но это возрастание происходит медленнее, чем убывание потенц. энергии U=mgh g — ускорение свободного падения, к — высота положения груза). В результате полная механич.  [c.168]

Слияние частиц и пузырьков газа при их столкновении определяется наличием условий, необходимых для нарушения барьерного действия гидратных слоев, находящихся между пузырьком и частицей, что требует затрат энергии. До соприкосновения гидратных оболочек, расположенных на поверхности частицы и пузырька, при приближении пузырька к твердой поверхности вода прослойки удаляется относительно легко. При контакте гидратных оболочек сопротивление воды при их удалении резко возрастает, а свободная энергия прослойки увеличивается. При достижении определенной толщины прослойка становится термодинамически неустойчивой и ее свободная энергия по мере утончения понижается. Дальнейшее слипание происходит самопроизвольно с большой скоростью. Пузырек скачком прилипает к поверхности частицы, образуя с ней определенную площадь контакта. Под пузырьком сохраняется тонкий молекулярный слой воды, который устойчиво связан с твердой поверхностью. Удаление воды с поверхности частицы приводит к значительному возрастанию свободной энергии, что связанв с затратой большого количества внешней энергии.  [c.220]

При температуре наименьшей устойчивости аустенита скорость превращения очень велика. В некоторых низкоуглеродистых сталях длительность инкубационного периода при этой температуре не превышает 1,0 1,5 с. Уменьшение устойчивости аустенита и роста скорости его превращения с увеличением степени переохлаждения объясняется возрастанием разности свободных энергий аустенита и феррита, При этом уменьпшется размер критического зародыша, способного к росту, и возрастает количество объемов в исходном аусте-ните, в которых могут 1юзникнуть зародыши новых фаз — феррита и цементита. Повышение устойчивости аустенита и уменьшение скорости его превращения при больших степенях переохлаждения определяется снижением скорости образования и роста новых фаз вследствие замедления процесса диффузии.  [c.163]

Рассмотрим плоскую задачу и замкутый контур С, охватывающий вершину трещины и проходящий по любому пути. Контур может быть незамкнут, но тох да его концы должны лежать на свободной поверхности трещины или же на свободной границе тела. Пусть квазистатическое решение задачи а , е , ы,- в функции X, у, Z, t известно. Сформулируем критерий развития трещины на основе закона сохранения энергии [399]. В связи с приращением длины трещины, скорость работы внешних сил, действующих на контур С, равна скорости возрастания энергии деформации, запасенной в объеме внутри контура С, плюс скорость, с которой энергия поглощается в связи с расширением трещины  [c.48]


При использовании закона свободного вихря возрастание давления воздуха от основания лопатки к периферии обеспечивалось только за счет уменьшения , а осевая скорость и подводимая энергия оставались постоянными. Если же выполнить ступень таким образом, чтобы Си возрастала по радиусу, то вызванное центробежными силами возрастание давления от втулки к периферии должно обеспечиваться согласно уравнению Бернулли за счет уменьшения осевой составляющей скорости или же вследствие увеличения к периферии сообщаемой воздуху работы. В последнем случае перераспределение энергии между отдельными струйками воздуха в потоке за рабочим колесом может быть связано с дополнительными потерями, поэтому в каждой ступени осевого компрессора обычно стремятся на расчетном режиме на всех радиусах сообщить воздуху одну и ту же энергию, т. е. иметь L = onst. Но тогда увеличение с по радиусу будет неизбежно сопровождаться уменьшением Са от втулки к периферии.  [c.73]

Уменьшение устойчивости аустенита и роста скорости его превращения с увеличением степени переохлаждения объясняется возрастанием разности свободных энергий (энергии Гиббса) аустенита и образующимися фазами (структурой). При этом, как уже указывалось выше, уменьшается размер критического зародыша, способного к росту, и возрастает количество объемов в исходном аустен1гте, в которых могут возникнуть зародыши  [c.166]

Если выигрыш в поверхностной энергии существенно перекроет проигрыш в объемной свободной энергии, то тогда, согласно формуле (25), работа образования критического зародыша Д кр метастабильной фазы будет ниже, чем у стабильной, и скорость зарождения метастабильной фазы в соответствии с выражением (24) будет выше. В случае когерентной или полукогерентной границ ме-тастабилвных фаз для уменьшения Д/ кр выигрыш в поверхностной энергии должен также перекрывать возрастание упругой энергии, связанной с такими границами.  [c.143]

Приближение к указанной критической частоте со нагружения по мере ее возрастания сопровождается противоположными процессами по своему влиянию на рост трещин. С возрастанием частоты материал не успевает в полной мере релакси-ровать поступающую энергию к кончику трещины за счет процессов пластической деформации в связи с приближением к скорости движения дислокаций и избыток поступающей энергии будет релак-сирован за счет создания свободной поверхности квазихрупко. Движение трещины в момент ее скачкообразного подрастания в цикле нагружения не будет заторможено за счет пластической релаксации, и поэтому ее скорость будет близка к скорости распространения статической, хрупкой трещины при монотонном растяжении материала. Следует ожидать влияние на скорость роста трещины охрупчивания материала из-за резкого снижения возможности пластической релаксации поступающей энергии по мере нарастания частоты нафуже-ния в две стадии. Первоначально возрастание частоты нагружения приводит к снижению размера зоны пластической деформации при прочих равных условиях, что и объясняет основной эффект ее влияния на снижение скорости роста трещины [1]. Результаты выполненных испытаний жаропрочного сплава In 718 на образцах толщиной И мм при нафе-ве до температуры 923 К и асимметрии цикла 0,1 приведены на рис. 7.1. Чередование частот приложения нафузки приводит к тому, что взаимное влияние условий роста трещины при плоской деформации и плосконапряженном состоянии снижает скорость роста трещины при низкой частоте нафуже-ния по сравнению с монотонным процессом неизменно низкочастотного нафужения.  [c.341]

Если размеры помещения достаточно велики по сравнению с длинами волн в области частот, занимаемой речью и музыкой, то в этой области собств. частоты возд. объема располагаются настолько близко друг к другу, что их спектр допустимо считать непрерывным. При этом воспринимаемый слушателем акустич. процесс можно представить как результат сложения прямого звука и ряда постепенно запаздывающих его повторений, обусловленных отражением от ограничивающих поверхностей. Интенсивность отраженного звука в среднем убывает с возрастанием запаздывания вследствие потерь энергии. Расчет относит, интенсивности и времени запаздыва51ия каждого из этих повторений практически невыполним но если число отражений достаточно велико, то средний ход убывания интенсивности отраженного звука можно рассчитать статистически. В 1-м приближении процесс Р. рассматривается как последовательность дискретных актов ноглощения, происходящих через интервалы, равные среднему времени свободного пробега звуковой волны между двумя отражениями. Предположение, что нри каждом отражении теряется всегда одиа и та же доля наличного запаса звуковой энергии, определяющая т. н. средний коэфф. поглощения, приводит к экспоненциальному закону затухания. В качестве меры длительности Р. выбирается время, в течение к-рого интенсивность звука уменьшается в 10 раз, а его уровень — на во дб (время Р.). Согласно статистич. теории, время Р. Т — 13,8 т/[—1п (1 — а)], где а — средний коэфф. поглощения, т = 47/сЛ — среднее время свободного пробега звука V — объем помещения, У — общая ограничивающая поверхность, с — скорость звука в воздухе).  [c.384]

Предположим теперь, что колеблюш,ийся вал вращается. В таком случае получается колебательная система, коэффициент жесткости которой меняется со временем, совершая один полный цикл изменения за половину оборота вала. Используя соображения того же рода, что и в предыдущем случае, можно показать, что при определенном отношении между угловой скоростью й) вала и средним значением р угловой частоты его свободных поперечных колебаний систаиа будет получать энергию, что приведет к постепенному возрастанию амплитугш поперечных колебаний. В этом можно убедиться рассматривая две кривые, показанные на рис, 120. Верхняя кривая представляет зависимость перемещение — время при поперечных колебаниях вала со средней частотой р. Нижняя кривая представляет переменную изгибную жесткость вала, если вал совершает один оборот за один цикл поперечных колебаний, так что й)=р. Внизу рисунка показаны соответствующие положения вращающегося поперечного сечения вала и нейтральная ось п. Мы видим, что за первую четверть цикла, когда диск движется от крайнего положения к среднему и приложенная к диску реакция вала совершает положительную работу, изгибная жесткость больше, чем ее среднее значение во второй четверти цикла реакций вала противоположна направлению движения диска и изгибная жесткость меньше ее среднего значения. Замечая, что в любой момент реакция пропорциональна соответствующей изгибной жесткости, можно заключить, что положительная работа, совершаемая за первую четверть цикла, численно больше отрицательной работы, совершаемой за вторую четверть цикла. Это приводит к избытку положительной работы за один оборот вала и создает постепенное возрастание амплитуды поперечных колебаний вала.  [c.169]


В качестве примера рассмотрим случай,представленный на рис. 124, где в функции времени даны угловая скорость d ldi маятника и скорость dljdt изменения длины маятника. Период изменения длины маятникг взят равным половине периода свободных колебание маятника и кривая 0/ii/ так расположена относительно кривой dl dt что наибольший эффект отрицательного затухания совпадает с наибольшей скоростью. Btu означает, что длина / уменьшается при больших скоростях dd dt и увеличивается при сравнительно малыя скоростях. Вспоминая, что сила натяжения S совершает работу, преодолевая радиальную составляюп ,ую веса и центробежную силу, легко видеть, что в представленном на рис. 124 случае работа, совершаемая силой 5 за время уменьшения длины I, будет больше, чем при последующем увеличении длины I. Избыток этой работы вызовет возрастание энергии колебаний маятника.  [c.172]


Смотреть страницы где упоминается термин Скорость возрастания свободной энерги : [c.152]    [c.16]    [c.167]    [c.660]    [c.673]    [c.93]    [c.265]    [c.311]    [c.117]    [c.38]    [c.64]    [c.722]   
Основы гидромеханики неньютоновских жидкостей (1978) -- [ c.152 ]



ПОИСК



Свободная энергия

Энергия скоростей



© 2025 Mash-xxl.info Реклама на сайте