Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аналитические решения для упругого стержня

Аналитические решения для упругого стержня. В слоях рассматриваемого стержня используются соотношения закона Гука в девиаторно-шаровой форме (4.13)  [c.199]

В редких случаях, как, например, для стержня, поперечное сечение которого имеет форму круга или очень вытянутого прямоугольника, прп некоторых законах упрочнения достаточно просто можно получить аналитическое решение поставленной задачи. Во всех других случаях может быть найдено только приближенное решение, что, в частности, можно сделать с помощью метода упругих решений.  [c.320]


Опыты, в которых в качестве направляющей применялся желоб, позволили производить соударение тонких и длинных стержней со скоростями 1—5 м/с, что достаточно просто обеспечивает условия, близкие к допущениям теории Сен-Венана, и получить для скоростей стержней после удара значения, согласующиеся с теорией. Все это можно противопоставить результатам Фойгта и Гамбургера и считать, что разногласий между теорией Сен-Венана и надлежащим образом поставленным экспериментом не существует. Для теории удара это имеет принципиальное значение, поскольку теория продольного соударения стержней Сен-Венана представляет в теоретическом отношении безукоризненно строгое аналитическое решение задачи теории упругости при вполне четких и обоснованных допущениях.  [c.224]

Поставленная смешанная упруго-пластическая задача об определении напряженного состояния скручиваемого стержня — сложная математическая задача. Аналитическое решение этой задачи получено только для стержней, имеющих некоторые простые формы поперечных сечений. В частности, легко решается задача в случае стержня круглого поперечного сечения (см. ниже стр. 479).  [c.471]

В обш,ем случае стержни упругих систем испытывают растяжение-сжатие, сдвиг, кручение и изгиб. Точные дифференциальные уравнения этих видов сопротивлений являются нелинейными и построить аналитические решения этих уравнений весьма затруднительно. Для преодоления математических трудностей нелинейные дифференциальные уравнения линеаризуют и используют их решения в расчетной практике. Погрешность приближенных решений при fJh> 0 не превышает 3% [312], что вполне удовлетворяет требованиям к точности инженерных расчетов. В этой связи представим известные решения приближенных дифференциальных уравнений всех видов сопротивлений.  [c.41]

В инженерной практике встречаются случаи, когда упругая стержневая система контактирует с упругим основанием. Расчет такой системы должен быть дополнен схемой стержня на упругом основании. Наиболее простой и широко применяемой расчетной схемой является модель Е.Винклера - схема с одним коэффициентом постели. Простота этой модели приводит к недостаточной точности получаемых результатов. Поэтому позже бьши разработаны более совершенные и точные модели Здесь отметим модели на основе упругого полупространства [80, 291] (решения получаются весьма громоздкими, а сама методика сводится к набору таблиц, что создает неудобства при ее применении) и модели с двумя коэффициентами постели (проф.П.Л.Пастернак, проф.В.З.Власов, проф.М.М.Филоненко-Бородич [273]).Модель с двумя коэффициентами постели позволяет построить аналитическое решение задачи Коши, учесть деформацию сдвига основания, его неоднородность и много других факторов. В этой связи получим уравнение типа (1.40) для модели с двумя коэффициентами постели. Используя принцип независимости действия сил и дополняя уравнение динамики стержня в амплитудном состоянии на упругом основании слагаемым от продольной силы F v" x), будем иметь  [c.199]


А. Сен-Венан и М. Леви, сформулировав основы теории идеальной пластичности, не дали решения каких-либо двумерных задач. Затем последовал почти сорокалетний перерыв в разработке этой проблемы- Возникший вновь в начале XX в. интерес к теории пластичности был поддержан тем, что Л. Прандтль и А. Надаи нашли в начале 20-х годов решения нескольких важных задач, а Г. Генки исследовал свойства линий скольжения при плоской деформации. Надаи рассмотрел задачи кручения жестко-пластических и упруго-пластических стержней. Помимо аналитического решения, он воспользовался интересной физической аналогией. Согласно ей, поверхность, описываемая функцией напряжений, аналогична поверхности кучи песка, насыпанной на сечение скручиваемого стержня, причем угол внутреннего трения песка пропорционален напряжению текучести. Если это сочетать с аналогией с мыльной пленкой для функции напряжений при кручении упругого стержня, принадлежащей Прандтлю, то задача об упруго-пластическом кручении иллюстрируется при помощи модели пленки, раздуваемой под крышей , образуемой поверхностью кучи песка.  [c.266]

Для односвязного профиля с возрастанием крутящего момента разгрузка, как недавно показал Ф. Г. Ходж, не происходит ни в одной точке сечения. При кручении же стержня с многосвязным сечением разгрузка может в известных условиях наступить. Естественно, что это обстоятельство сильно затрудняет аналитическое решение упруго-пластических задач отмеченного класса.  [c.112]

Упруго-пластическое кручение. При кручении стержня из упругопластического материала (см. рис. 1, б) для крутящих моментов, меньших предельного Лi , в сечении стержня, наряду с пластическими зонами, будут и упругие зоны. В упругих зонах функция напряжений удовлетворяет уравнению (31), а в пластических — уравнению (33). Аналитическое решение упруго-пластической задачи связано с большими трудностями. Имеется удобный экспериментальный метод, предложенный Надаи на основе мембранной аналогии [3].  [c.514]

Точные аналитические решения задачи кручения призматических стержней для многих сечений, широко применяемых на практике, пока еще не известны и их расчет может быть выполнен при помощи приближенных или экспериментальных методов теории упругости.  [c.350]

В монографии М. П. Шереметьева [375] эти задачи были сведены к интегро-дифференциальному уравнению Прандтля (с помощью комплексных представлений Колосова — Мусхелишвили) и получен алгоритм приближенного решения этого уравнения. Еще одна интересная задача исследована автором сведением проблемы к задаче линейного сопряжения для аналитических функций, решение которой известно. Это—задача равновесия неограниченной пластинки, эллиптическое отверстие которой подкреплено двумя абсолютно жесткими и симметрично расположенными припаянными накладками, между которыми вставлены с натягом два упругих стержня, причем пластинка растянута на бесконечности в двух направлениях. Аналогичным методом исследован случай четырех накладок.  [c.18]

В заключение приведем точные в рамках трехмерной динамической теории упругости математические постановки задач о линейных колебаниях ограниченного тела, один или два размера которого малы по сравнению с остальными. Именно эти задачи и составляют предмет изучения в теории динамики стержней, пластин и оболочек. В связи с тем, что получение обозримых аналитических решений указанных задач возможно для очень ограниченного числа простейших частных случаев, развивались и уточнялись приближенные теории, которые в основном и удовлетворяли многообразные запросы практики.  [c.8]

По-прежнему остается актуальной необходимость сравнения результатов приближенных теорий с результатами аналитических и численных решений задач трехмерной динами-у ческой теории упругости. Желательно иметь сравнение результатов приближенных теорий с точными решениями для стержней различных поперечных сечений. Имеющиеся сравнения на основе уравнений плоской деформации или обобщенного плоского напряженного состояния не убедительны, поскольку эти уравнения сами являются приближенными.  [c.229]


Метод начальных параметров. Когда поперечный изгиб происходит под действием сосредоточенных сил, эпюра изгибающих моментов имеет точки перелома, в которых не существует производной. Поэтому, строго говоря, уравнение (5.26) справедливо только в пределах участков, лежащих между соседними точками перелома эпюры. При определении упругой линии и в этом случае используется уравнение (5.28), однако аналитическое выражение его решения на каждом из участков стержня различно. Различны на этих участках и значения постоянных фо и Щд- Вследствие непрерывности упругой линии поворот сечения ф и прогиб ш в конце предыдущего и в начале последующего участков, очевидно, одинаковы. Это позволяет выразить постоянные фд, Шд для последующего участка через постоянные для предыдущего. При этом можно либо совмещать начало отсчета координаты г для каждого участка с началом этого участка, либо сохранять начало отсчета координаты г неизменным для всех участков.  [c.141]

Как видно из предыдущей главы, упруго-пластическая задача для сложного сдвига исследуется достаточно полно аналитическими средствами. В более сложной задаче кручения, когда пластическая зона становится сравнимой с размером поперечного сечения стержня, результатов значительно меньше. Здесь следует прежде всего упомянуть точное решение В. В. Соколовского для стержня овальной формы, близкой к эллипсу [24]. Это решение получено полу-обратным методом в 1942 г. Другим полуобратным методом Л. А. Галин [13] решил несколько упруго-пластических задач для стержней с сечением, близким к полигональному (в частности, близким к прямоугольному сечению). Л. А. Галин также привел задачу кручения стержня полигонального сечения к решению дифференциального уравнения класса Фукса [12], что позволило ему найти эффективное решение некоторых задач (например, для квадратного сечения).  [c.62]

Отсутствие удобного для анализа аналитического решения даже при использовании наиболее простого уравнения состояния, включающего вязкость, затрудняет получение ясного представления о связи характера деформирования материала под нагрузкой с закономерностями волновых процессов в стержнях. Экспериментально установленное распространение волн догрузки со скоростью упругих волн при растяжении (сжатии) [239, 344, 377, 426] и кручении [25] подтверждает теорию Мальвер-на—Соколовского, в то время как многие эффекты, связанные с распространением упруго-пластических волн (например, распределение остаточных деформаций по длине длинного стержня, постоянная скорость распространения деформаций и др.), удовлетворительно описываются деформационной теорией.  [c.146]

Анализируя рассмотренные выше построения, следует указать, что метод весовой линии имеет несомненные преимущества по сравнению с другими графическими методами. В первую очередь это простота и точность, так как отпадает двойственность построения, присущая другим методам. Операции с параллельными и пересекающимися векторами (силами) следует простому закону сложения краевых и параллельных составляющих. Вычисление центров масс стержневых систем и механизмов, по методу весовой линии значительно проще, чем по существующим способам. Упрощается также исследование давлений в кинематических парах механизмов и определение реакций опор в стержневых системах. Методом весовой линии весьма просто производится бесполюсное интегрирование и дифференцирование, так как закон распределения сил соответствует закону изменения функции q = f (х). При этом первообразная функция (вес фигуры, заключенной между кривой q = f [х) и координатными осями) представляет собою интеграл. В дискретном анализе понятие бесконечно малая величина" заменяется понятием конечно малая величина со всеми вытекающими отсюда представлениями о производной в конечных разностях и численным интегрированием (вычислением квадратур). Полигоны равновесия узлов в стержневых системах, построенные по методу весовой линии, проще диаграмм Л. Кремоны, так как позволяют вычислять усилие в заданном стержне не прибегая к определению усилий в других стержнях, необходимых для построения диаграмм Кремоны. Графическое решение многочленных линейных уравнений (многоопорные валы и балки, звенья, имеющие форму пластин, и т. д.) производится по опорным весам или коэффициентам при неизвестных. Такой путь наиболее прост и надежен для проверки правильности решения. Впервые в технической литературе. дано графическое решение дифференциальных уравнений для балки переменного сечения на упругом основании и для круглых пластин с отверстиями, аналитическое решение которых требует сложного математического аппарата. В заключение отметим предельно простое решение дифференциальных уравнений теории упругости (в частных производных) указанным методом.  [c.150]

Из условия стационарности полной потенциальной энергии (65 — 0) можно найти равновесные состояния изогнутого стержня и, исследуя знак второй вариации установить, какие из равновесных состояний устойчивы. Пока на значения перемещений и углов поворота не наложено никаких ограничений, приведенные зависимости, описывающие изгиб стержней с нерастяжимой осью, являются точными (в рамках теории гибких упругих стержней). Для ряда частных случаев нелинейное дифференциальное уравнение, к которому сводится задача изгиба стержня при конечных перемещениях, допускает аналитическое решение. В общем случае это нелинейное уравнение можно с любой степенью точности решить численно. Сейчас мы с помощью метода Рэлея—Ритца найдем приближенное аналитическое решение, позволяющее наглядно описать закритическое поведение любого произвольно нагруженного стержня при конечных, но не слишком больших прогибах.  [c.208]


Строгие решения дифференциального уравнения продольного изгиба известны лишь для простейших задач. Поэтому инженерам приходится часто довольствоваться лишь приближенными решениями. Идя навстречу такого рода запросам, Энгессер предложил метод ) вычисления критических нагрузок способом последовательных приближений. Чтобы получить приближенное решение, он рекомендует задаться некоторой формой изогнутой кривой, удовлетворяющей граничным условиям. Эта кривая является вместе с тем и эпюрой изгибающих моментов, из которой, пользуясь методом моментных площадей, мы имеем возможность вычислить прогибы. Из сравнения вычисленной таким путем кривой прогибов с первоначально принятой можно получить уравнение для определения критического значения нагрузки. Чтобы прийти к лучшему приближению, Энгессер принимает вычисленную кривую как новое приближение для упругой кривой продольно изогнутого стержня и повторяет расчет, аналогично проделанному такой прием воспроизводится несколько раз. Вместо того чтобы оперировать с аналитическим выражением для первоначально принятой упругой кривой, можно исходить из ее графического представления и последовательные приближения находить графическим методом ).  [c.358]

Большой интерес был вызван выходом в свет первого издания книги А. Стодолы ) по паровым турбинам. В ней аналитическим расчетам было уделено больше внимания, чем это обычно делалось в технической литературе. Особое внимание было уделено точным расчетам напряжений и указаны случаи, где обычные элементарные расчеты недостаточны и приходится обращаться к более точным решениям теории упругости. Было указано, например, на высокие напряжения, появляющиеся у краев круглых отверстий в быстровра-щающихся дисках. Вопрос концентрации напряжения поперечного сечения стержня или балки был в то время мало разработан. Имелось только решение ) для равномерно растянутой полосы, ослабленной круглым отверстием, и это решение было дано в окончательной форме без всякого указания на метод, каким оно было получено. Было ясно, что вопрос концентрации напряжений имеет не только  [c.680]

Таким образом, выражения (4.22)-(4.27) дают аналитическое решение задачи о деформировании упругого трехслойного стержня для различных видов граничных условий. Следует отметить, что при р = О, O = onst полученное решение (4.28) совпадает с известным решением, приведенным в [308.  [c.145]

А. Виллерсом и Г. Занденом В некоторых случаях отсзггствие аналитического решения задачи может быть восполнено экспериментальными исследованиями распределения напряжений в деформированных телах, и мы считали уместным в техническом курсе упругости остановиться на некоторых приемах экспериментального решения задач. Так, например, мы изложили оптический метод исследования напряжений в прозрачных пластинках с использованием поляризованного света. С помощью этого метода в последнее время был успешно решен целый ряд задач. Далее мы привели аналогию Прандтля, даюшую возможность находить экспериментальным путем распределение напряжений при скручивании призматических стержней, а также указали экспериментальный способ решения плоской задачи, основанный на полном совпадении соответствующего уравнения с уравнением для изогнутой поверхности пластинки.  [c.11]

Упруго-пластическое кручение. Эта сравнительно простая упруго-пластическая задача была рассмотрена в ранних работах А. Надаи (1923) им указан способ экспериментального решения на основе мембранной аналогии. Первые аналитические решения, полученные Э. Трефтцем в 1925 г., относятся к определению пластической зоны, возникаюш,ей вблизи входящего угла при кручении стержня уголкового профиля. Трефтц применил метод конформного отображения для упругой зоны сечения. К решению той же и некоторых других задач Ф. С. Шоу в 1944 г. успешно применил метод сеток (на основе релаксационных приемов Р. Саутвелла).  [c.112]


Смотреть страницы где упоминается термин Аналитические решения для упругого стержня : [c.22]    [c.74]    [c.10]    [c.25]    [c.673]   
Смотреть главы в:

Механика слоистых вязкоупругопластичных элементов конструкций  -> Аналитические решения для упругого стержня



ПОИСК



Аналитическое решение

К упругих решений

Стержни упругие

Стержни упругие на упругих

Стержни — Стержни упругие



© 2025 Mash-xxl.info Реклама на сайте