Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод граничных элементов в общем виде

Метод граничных элементов (МГЭ) — это метод решения краевых задач для дифференциальных уравнений в частных производных, появившийся в результате сочетания идей теории потенциала с методами современной теории аппроксимации. МГЭ, с точки зрения теории аппроксимации, имеет много общих черт с широко известным методом конечных элементов, но отличается от него существенным преимуществом дискретизация осуществляется, как правило, не внутри области, в которой ищется решение, а на ее границе. Такое упрощение достигается путем точного удовлетворения исходным дифференциальным уравнениям с помощью представлений решения в виде, характерном для теории потенциала. Указанные представления могут быть использованы в рамках МГЭ лишь в случае, когда известны в явном виде (точно или приближенно) фундаментальные решения (или функции Грина) для рассматриваемых дифференциальных уравнений 1 исследованы граничные свойства соответствующих потенциалов. Путем предельного перехода на границу в формулах представления решения получаются граничные интегральные уравнения (ГИУ), которые являются основным объектом аппроксимации Б МГЭ. Этим объясняется еще одно (более раннее) название МГЭ — метод граничных интегральных уравнений. Заметим, что возникающие в теории упругости и в других разделах механики деформируемого твердого тела ГИУ часто являются сингулярными интегральными уравнениями [114, 107, 84], методы аппроксимации которых далеко не тривиальны.  [c.3]


МЕТОД ГРАНИЧНЫХ ЭЛЕМЕНТОВ В ОБЩЕМ ВИДЕ  [c.222]

В настоящей работе с помощью импедансного метода решается задача определения спектров резонансных (и антирезонансных) частот колебаний в сложных неконсервативных системах с распределенными параметрами, которые могут включать элементы с сосредоточенными параметрами, с граничными условиями общего вида, когда импеданс нагрузки комплексный, а его действительная и мнимая части зависят от частоты, а также задача определения спектра собственных частот колебаний в консервативных системах.  [c.311]

Соотношения (1.30), (1.31) эквивалентны обычным условиям сшивания полей. Кроме того, они учитывают и граничные условия. Конкретный вид операторов R а Т зависит от рассматриваемой дифракционной структуры и вида падающего на решетку поля. Знания введенных матричных операторов достаточно, чтобы полностью описать дифракционные свойства структуры при периодическом ее возбуждении, а также для использования структуры в качестве элементарной при решении более сложных композиционных задач методом, который известен как метод обобщенных матриц рассеяния, метод матричных операторов, операторный метод, метод декомпозиции [54, 131, 132]. В этой главе нас интересует не конкретный вид R и Т, а некоторые общие свойства этих операторов. Рассмотрим, вначале ряд энергетических свойств, характерных для элементов обобщенных матриц рассеяния. Отдельно останавливаться на отражательных структурах нет смысла, поскольку переход к ним всегда осуществим, если в (1.28) и в последующих формулах для более общего случая полупрозрачной структуры, положить Тпр = О, п = О, 1,. ..  [c.24]

Учитывая, что сила резания, действующая на лезвие, является, как правило, переменной во времени по величине и направлению, а температурное поле нестационарно, аналитический расчет напряженного состояния лезвия в общем виде представляют собой очень сложную и до сих пор нерешенную задачу. Для несвободного косоугольного резания криволинейным лезвием ее решают численным методом (методом конечных или граничных элементов) или экспериментально с использованием поляризационно - оптического метода и метода лазерной интерферометрии [15].  [c.87]

При определении параметров переходного процесса методом характеристик (см. подразд. 2.5.2) система уравнений в частных производных сводится к системе обыкновенных дифференциальных уравнений, решаемых методом конечных разностей. При наличии вынужденных колебаний каждый участок тракта и входящие в тракт местные гидравлические сопротивления, насосы, регуляторы, демпфирующие устройства, как было показано в гл. 2, удобно описать уравнениями четырехполюсников. Матричные уравнения (2.8.15) и (2.8.20) описывают распространение колебаний в трактах без учета граничных условий, которые зависят от вида элементов (агрегатов) на концах трактов. В частности, для тракта горючего газогенератора условия на входе формируются насосом (или насосами) ТНА, на выходе—форсунками газогенератора. Так же как и для отдельных участков тракта в гл. 2, для всего г-го тракта сохраним общую форму записи граничных условий (2.3.5) и  [c.230]


В настоящее время большое внимание уделяется созданию адекватных моделей нелинейных процессов деформирования, связанных с большими деформациями, неупругим поведением материала и нелинейными динамическими волновыми явлениями в слоистых и композиционных материалах. Построение общих сложных моделей, как правило, сочетается с необходимостью разработки достаточно простых, но в то же время эффективных моделей описания процессов с требуемой точностью, выделением главных или ведущих параметров рассматриваемых процессов деформирования и созданием экономичных программ их численной реализации. При решении задач механики сплошных сред и деформирования элементов конструкций достаточно универсальными и широко распространенными являются метод конечных элементов (МКЭ), метод граничных элементов (МГЭ), вариационно-разностные методы (ВРМ), метод конечных разностей (МКР) в различных вариантах и сочетаниях с другими методами. В основу этих методов положено дискретное представление функций непрерывного аргумента и областей их определения, ориентированное на использование современных ЭВМ с дискретным способом обработки информацш, включая вычислительную технику новой архитектуры с векторными и параллельными процессорами. В механике, в частности в строительной, дискретное представление тел или конструкций в виде набора простых элементов имеет глубокие исторические корни, которые в свое время и послужили отправной точкой развития и обобщений МКЭ.  [c.5]

Введенные выше потенциалы простого слоя, двойного слоя и их производные, как показано в 1, удовлетворяют тождественно дифференциальным уравнениям теории упругости внутри тела при отсутствии объемных сил. Частное решение, соответствующее действию объемных сил, выражается объемным потенциалом с плотностью, равной объемной силе. В связи с этим решение тон или иной краевой задачи теории упругости можно попытаться искать в виде суммы одного или нескольких граничных потенциалов и объемного потенциала. Плотности граничных потенциалов должны содержать достаточно неизвестных, чтобы можно было удовлетворить граничные условия. Для нахождения этих неизвестных строятся интегральные уравнения на границе тела —граничные интегральные уравнения (ГИУ). Если при заданных краевых условиях доказано существование решения построенного интегрального уравнения, то тем самым обоснована использованная формула представления решения. Вопрос обоснования формулы представления решения не возникает, если в качестве ее используется формула Сомильяны, справедливая дл любого регулярного, т. е. принадлежащего классу ( (Q) n (Q)) , поля перемещений, а также для более общих классов перемещений, для которых имеет место формула Бетти. Поскольку плотности потенциалов простого и двойного слоя, входящих в формулу Сомильяны, имеют прямой физический смысл, то соответствующую формулировку метода граничных элементов (МГЭ) называют прямой формулировкой МГЭ. В противоположность этому формулировку МГЭ, использующую другие формулы представления, называют непрямой формулировкой МГЭ.  [c.62]

Суть метода механических квадратур заключается в следующем. Представим некоторую двумерную область V в виде М плоских сегментов, а границу S разобъем на N отрезков. Для вектора смещения заранее выбранной характерной точки границы Р можно записать интегральное уравнение (П1.9). Элементы, на которые дискретизируется граница, будем называть граничными элементами (ГЭ). Геометрия элемента в общем случае произвольна, но, как правило, используются ГЭ в виде отрезков прямых, дуг окружностей либо отрезки квадратичных функций. Сегменты, на которые разделена область V, называют ячейками. Обычно ячейки выбирают в виде треугольных или четырехугольных конечных элементов.  [c.56]

Задача об определении напряжений и деформаций в упругом твердом теле под действием данных массовых сил и при заданных поверхностных силах, или при условии, что под действием этих последних поверхность тела принимает заданную форму, приводится к аналитической задаче об определении функций, выражающих проекции смещения. Эти функции должны удовлетворять всем диференциальным уравнениям равновесия в каждой точке внутри тела, а также некоторым условиям на его поверхности. Методы, предложенные для интегрирования этих уравнений, распадаются на два класса. Методы одного из этих дбух классов состоят в том, что сначала разыскиваются частные решения для того чтобы удовлетворить граничным условиям, решение представляют в виде конечного или бесконечного ряда, состоящего из частных решений. Частные решения обычно могут быть выражены через гармонические функции. Этот метод решения можно рассматривать, как обобщение разложения по сферическим функциям или обобщение тригонометрических рядов. Методы второго класса состоят в том, что искомую величину выражают в виде определенного интеграла, элементы которого имеют особые точки, распределенные по поверхности или объему, тот тип решения является обобщением методов, которые Грин ввел в теорию потенциала. К моменту открытия общих уравнений теории упругости, метод рядов был уже применен к астрономическим, акустический проблемам и к проблемам теплопроводности ), а метод решений, имеющих особые точки, еще не был изобретен ). Ламе и Клапейрон ) первые применили метод разложения в ряд к проблемам равновесия упругих твердых тел. Они рассматривали случай тела, ограниченного бесконечной плоскбстЬю и находящегося под давлением, распределенным по какому-либо вакону. Позже Ламе °) рассматривал проблему тела, ограниченного сферической поверхностью и деформируемого данными повер ностными силами. Задача а распределении напряжений в полупространстве, ограниченном плоскостью, в основном совпадает с проблемой передачи внутрь тела действия силы, при-  [c.28]



Смотреть страницы где упоминается термин Метод граничных элементов в общем виде : [c.53]    [c.165]    [c.415]    [c.281]   
Смотреть главы в:

Метод граничных элементов в механике деформируемого твердого тела  -> Метод граничных элементов в общем виде



ПОИСК



223 — Виды 224 — Методы

Метод граничных элементов

Общий метод

Элемент граничный



© 2025 Mash-xxl.info Реклама на сайте