Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изнашивание шероховатых поверхностей

ИЗНАШИВАНИЕ ШЕРОХОВАТЫХ ПОВЕРХНОСТЕЙ  [c.342]

Предложенная модель позволяет описать кинетику процесса усталостного изнашивания шероховатой поверхности и определить его характеристики скорость износа, размер и форму отделившихся с поверхности частиц материала, изменение микрогеометрии поверхности, эволюцию контактных давлений.  [c.350]

Большинство деталей машин подвержено изгибу и кручению, при которых напряжения растут в направлении к поверхности. На поверхности действуют основные источники концентрации напряжений, вызванных формой и шероховатостью поверхности, контактные напряжения происходит изнашивание и зарождаются трещины.  [c.33]


Стадии изнашивания. Обычно имеют место две стадии изнашивания 1) приработка поверхностей трения 2) нормальный (эксплуатационный) износ, когда после приработки вместо исходной шероховатости поверхности, полученной при изготовлении, образуется некоторая новая равновесная шероховатость, которая в дальнейшем суш,ественно не меняется [10 . Другими словами в процессе изнашивания исходный (технологический) микрорельеф поверхности преобразуется в эксплуатационный с изменением параметров шероховатости, например среднего арифметического отклонения профиля Ra (рис. 8.1, б).  [c.244]

Изнашивание зубьев зависит от шероховатости поверхности,червяка, точности монтажа, степени загрязненности масла, частоты пусков и остановок передачи, а также от значения а . После износа происходит излом зубьев.  [c.252]

Следует иметь в виду, что между силой или работой трения и скоростью изнашивания поверхности нет непосредственной зависимости, поскольку работа, расходуемая на изнашивание, как правило, составляет небольшую часть всей работы трения. Поэтому возможны значительные изменения интенсивности изнашивания материалов, особенно при сухом трении, при сравнительно небольшом колебании коэффициента трения. Возникновение сил трения и износ поверхностей — это различные проявления процесса контактирования шероховатых поверхностей при их трении.  [c.247]

Например, на скорость (интенсивность) изнашивания несмазанных шероховатых поверхностей влияет не только твердость материала Я , но и характеристика шероховатости поверхности (v + 1) tg a, где V — показатель опорной поверхности (для различных классов шероховатости обычно лежит в пределах от 1,2 до 2) и а — угол наклона неровностей [951. В этом случае параметр X, определяющий скорость изнашивания у зависит от нескольких (в данном случае трех) технологических факторов  [c.438]

Необходимость написания книги Влияние шероховатости твердых тел на трение и износ обусловлена тем, что принятые в настоящее время критерии оценки микрогеометрии (параметров шероховатости) оказались недостаточными для изучения таких важных служебных свойств, как контактная жесткость, электро- и теплопроводность, газопроницаемость, а также для изучения процесса трения и изнашивания. Развитая за последние годы теория контактирования, трения и изнашивания твердых тел позволяет установить связь между некоторыми параметрами шероховатости поверхности и важнейшими эксплуатационными свойствами. В работе использован комплексный критерий оценки шероховатости, учитывающий форму неровностей и их распределение по высоте.  [c.3]


Влияние шероховатости поверхности на трение и изнашивание подвижных сопряжений  [c.5]

Проведенные в дальнейшем исследования влияния шероховатости поверхности на трение и изнашивание сводились к установлению так называемой оптимальной шероховатости применительно к конкретным трущимся сопряжениям. Покажем это на некоторых примерах. Исследования по влиянию чистоты механической обработки поверхности хромированного зеркала цилиндра на износ поршневых колец показали, что кривая зависимости износа поршневого кольца от класса чистоты обработки цилиндра имеет минимум. При этом установлено, что наибольшая износостойкость кольца будет в том случае, когда чистота обработки поверхности зеркала цилиндра соответствует У9, что благоприятствует жизнеспособности масляной пленки [94].  [c.7]

КРИТЕРИИ ОЦЕНКИ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ ПРИМЕНИТЕЛЬНО К ЗАДАЧАМ ТРЕНИЯ И ИЗНАШИВАНИЯ  [c.22]

Геометрические характеристики шероховатости поверхности Ятях, г и параметры опорной кривой Ь, v используются в молекулярно-механической теории трения и усталостной теории изнашивания и наиболее полно удовлетворяют решению поставленной задачи. Изучению и определению этих характеристик посвящены работы [19, 20, 38, 88, 102].  [c.27]

В настоящее время в лабораториях применяется широкий ассортимент способов и приборов для оценки шероховатости поверхности. Следует отметить, что вопрос выбора методов оценки шероховатости решен еще не полностью. В связи с этим данному вопросу в настоящее время уделяется большое внимание. В нашу задачу не входило детальное рассмотрение этого вопроса. Остановимся на некоторых способах, которые находят в настоящее время применение при оценке трения и изнашивания. Их можно  [c.27]

Развитые за последнее время методы расчета площадей касания, сил трения, интенсивности изнашивания показывают, что наиболее существенной характеристикой шероховатости поверхности является профиль поверхности. Обработка профилограммы позволяет получить перечисленные выше статистические параметры.  [c.32]

Таким образом, существующие в настоящее время критерии оценки шероховатости поверхности Яа и Яг по ГОСТу 2789—59 недостаточны для решения задач трения и изнашивания, и ГОСТ необходимо дополнить комплексной характеристикой шероховатости поверхности.  [c.41]

Коэффициент трения, интенсивность изнашивания и контактная жесткость стыков в значительной мере зависят от степени шероховатости поверхностей. Минимум на кривых зависимости коэффициента трения и интенсивности изнашивания от степени шеро.ховатости объясняется двойственной молекулярно-механической природой трения и механизмом усталостного изнашивания. Минимальные значения коэффициента трения и интенсивности изнашивания материала соответствуют равновесной шероховатости, которая воспроизводится в процессе длительной эксплуатации. Предложенный расчет позволяет определить комплексный критерий Д, соответствующий равновесной шероховатости, по известным физико-механических характеристикам пар трения и приложенной нагрузке.  [c.102]

На кривой интенсивности изнашивания деталей, работающих в паре трения (рис. 6.1), можно выделить три стадии 1 — приработка, 2—установившееся изнашивание, 3 — ускоренное изнашивание. Первая стадия характеризуется ростом интенсивности изнашивания, что объясняется малой площадью контакта поверхности из-за макро-и микронеровностей и большими контактными нагрузками вследствие этого. В конце стадии приработки устанавливается равновесная, стабильная шероховатость поверхности. Одновременно происходят структурные превращения в поверхностном слое с образованием вторичных структур. В стадии установившегося изнашивания интенсивность изнашивания невелика и постоянна по величине. При ухудшении условий работы может наблюдаться третья стадия — ускоренное изнашивание. В реальных условиях эксплуатации какая-либо из стадий может отсутствовать.  [c.92]


Независимо от способа проведения испытания при ударе по абразиву на поверхности образца появляются четкие лунки и выступы, образованные в результате прямого внедрения абразивных частиц в эту поверхность в момент соударения с ней абразива. Глубина внедрения абразивных частиц в поверхность изнашивания образцов, испытанных при ударе по монолитному абразиву (особенно по горным породам высокой прочности, но низкой абразивности), меньше, чем для образцов, испытанных при ударе по незакрепленному абразиву или абразивной массе. В связи с этим шероховатость поверхности изнашивания образцов, испытанных при ударе по незакрепленному абразиву или абразивной массе, всегда больше, чем у образцов, изнашивание которых проходило при ударе по горным породам высокой прочности.  [c.63]

Частицы в результате дробления породы приобретают неправильную форму — с-тупыми или острыми углами при вершинах, с гладкой или шероховатой поверхностью.-Так, при дроблении доломита образуются частицы округлой формы, частицы гранита всегда имеют острые грани. Характер воздействия абразивных частиц на поверхность изнашивания определяется не только твердостью, но также формой и микрогеометрией их поверхности.  [c.84]

Связь трения и износа с неровностями поверхности. Современная молекулярно-механическая теория трения объясняет силу сухого (и граничного) трения скольжения образованием и разрушением адгезионных мостиков холодной сварки контактирующих участков шероховатой поверхности и зацеплением (и внедрением) неровностей 110, 40]. Трение обусловлено объемным деформированием материала и преодолением межмолекулярных связей, возникающих между сближенными участками трущихся поверхностей. При этом износ протекает в виде отделения частиц за счет многократного изменения напряжения и деформации на пятнах фактического контакта при внедрении неровностей истирающей поверхности в истираемую поверхность. Во многих случаях износ имеет усталостный характер растрескивания поверхностного слоя под влиянием повторных механических и термических напряжений, соединения трещин на некоторой глубине и отделения материала от изнашиваемого тела. Интенсивность изнашивания зависит от величины фактического контакта и напряженного состояния изнашиваемого тела, которые в свою очередь в сильной степени зависят от размеров и формы неровностей и, в частности, от радиусов закругления выступов. В обычных условиях истирающая поверхность является существенно более жесткой и шероховатой по сравнению с той, износ которой определяется, и ее неровности оказываются статистически стабильными при установившемся режиме трения. Таким образом, в отношении износостойкости деталей неровности их поверхностей имеют первостепенное значение.  [c.46]

К сопутствующим формам износа автор [3] относит износ при фреттинге, кавитацию и эрозию, которые очень часто классифицируются как самостоятельные виды износа. Фреттинг является сложным процессом, комбинацией адгезионного, коррозионного и абразивного износа. Под эрозией понимается разрушение, вызванное ударением острых частиц, природа его аналогична природе абразивного изнашивания. Отличие заключается в том, что при ударе частиц шероховатость поверхности значительно больше, чем при обычном абразивном изнашивании. Кавитация сходна с поверхностным усталостным износом, и материалы, которые стойки к усталостному разрушению (твердые, но не хрупкие), хорошо сопротивляются кавитации. Дополнительное требование к ним — сопротивляемость коррозионному действию жидкости, в которой они работают [3].  [c.16]

ИСПЫТАНИЯ НА ИЗНАШИВАНИЕ С ВОССТАНОВЛЕНИЕМ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ  [c.14]

Тот факт, что в определенных условиях трения со смазкой может проявляться закономерность (2 ), полученная при абразивном виде изнашивания и в случаях трения металлов без смазки, может рассматриваться как свидетельство отсутствия несущего эффекта смазочного масла, а износ — как воздействие шероховатой поверхности вала (как при абразивном виде изнашивания).  [c.51]

Для износа. монолитным абразивом, поверхностью, шаржированной твердыми частицами, и, тем более, массой, содержащей абразивные частицы различной величины, твердости и формы, характерна менее регулярная шероховатость с царапинами различной величины и профиля. Световое сечение шероховатой поверхности (фиг. 9), полученной при изнашивании стали 45 корундовым порошком в смеси с автолом, дает представление о микрорельефе такой 1 1 рхности.  [c.17]

Процесс схватывания первого рода вызывает наиболее интенсивное разрушение поверхностей трения, приводит к образованию шероховатых поверхностей с глубокими вырывами и налипшими частицами металла, упрочнению трущихся поверхностных слоев металлов вследствие возникающих значительных пластических деформаций и снижению объемной усталостной прочности деталей. Поверхности трения деталей машин в результате изнашивания в условиях схватывания первого рода представляют собой беспорядочное скопление впадин, выступов и продольных борозд разной величины и формы, следы пластического течения металла по направлению перемещения трущихся пар. На твердых поверхностях имеют место следы хрупкого разрушения металла,  [c.15]

Изнашивание образцов изучали при трении скольжения и трении качения с 10%-ным скольжением, со смазкой и без смазки. Нагрузку на образцы изменяли от 50 до 150 кгс, что создавало напряжение в поверхностном слое 39—68 кгс/мм . В качестве характеристики износа были приняты абсолютный весовой износ (за 8 ч испытания при 200 об/мин), смятие (изменение диаметра) образца, изменение микроструктуры и первоначальной шероховатости поверхности трения и изменение коэффициента трения.  [c.313]

Как показали испытания, при обработке поверхности трения методом гидрополирования износостойкость повышается на 25—30% по сравнению с механическим полированием, причем величина износа зависит от фактической шероховатости поверхности. С увеличением шероховатости износ увеличивается, хотя коэффициент трения в диапазоне от 4 до 10-го классов чистоты по ГОСТу 2789—59 существенно не меняется. Оптимальная микрогеометрия поверхности (при которой износ минимален) устанавливается в зависимости от условий нагружения и изнашивания и физико-механических свойств материала, главным образом его поверхностного слоя.  [c.313]


Например, по исследованиям проф. И. В. Крагельского [18] на скорость (интенсивность) изнашивания несмазанных шероховатых поверхностей влияет не только твердость материала Ну, но и характеристика шероховатости поверхности (v-Ь l)-tga  [c.44]

Процессы, протекающие в этих двух слоях при заданных режимах эксплуатации, оказывают существенное влияние на надежность узла трения прибора. Они определяют изменение прочности [37], шероховатости поверхности [12], трение и кинетику изнашивания [3 14 38], работоспособность в экстремальных условиях, что в конечном счете определяет интенсивность отказов и срок службы до предельного состояния [И 13].  [c.95]

Фиг. 125. Схема абразивного изнашивания шероховатых поверхностей (по В. С. Щедрову). Фиг. 125. <a href="/info/337726">Схема абразивного</a> изнашивания шероховатых поверхностей (по В. С. Щедрову).
При граничном трении в большинстве случаев скорость ижа-пшвания и износ деталей достаточно велики. Основная причина этого в том, что вследствие волнистости и шероховатости поверхностей их контактирование происходит на очень малых участках, а контактные давления имеют высокие значения. В этих условиях тонкая граничная пленка масла не предохраняет поверхности от пластического деформирования, что неизбежно ведет к изнашиванию деталей.  [c.70]

Наблюдение за изнашиванием одноименных деталей одной партии в одинаковых машинах показало, что износ деталей носит ярко выраженный случайный характер, обусловленный вероятностной природой контакта шероховатых поверхностей, разбросом свойств конструкционных и смазочных материалов в пределах норм технических условий и размеров деталей в пределах допусков на изготовление, широким спектром эксплуатационных нагрузок, скоростей, условий работы (колебания мощности машины, сопротивления рабочей среды, рельеф дороги и т.п.). Поэтому наиболее характерен случай, когда плотность вероятности распределения скорости изнашивания /(у) подчиняется нормал1>ному закону. В этом случае срок службы Т пары трения при предельно допустимом износе [U является функцией случайного аргумента у, т.е.  [c.82]

Рассмотренный пример позволяет лучше понять следующие об1дие закономерности процесса коррозионно-механического изнашивания. Агрессивные среды, разрыхляя поверхности трения, усиливают процесс изнашивания температура в зоне трения значительно активизирует процесс коррозии и тем самым интенсифицирует процесс изнашивания. Увеличение контактного давления и скорости скольжения повышает температуру на поверхности трения и интенсивность изнашивания. С увеличением нагрузки возрастает напряжение в областях фактического контакта, что может привести к пластическому взаимодействию выступов шероховатых поверхностей и даже к схватыванию или микрорезанию. Для снижения возможности развития таких явлений необходимо разрабатывать узлы трении с минимальными нагрузками в паре и применять материалы с высокой твердостью.  [c.138]

Макроприработка — основная причина нелинейности процесса изнашивания. Первый период протекания износа сопряжений машины, как правило, характеризуется его нелинейным изменением во времени. Соответственно нелинейный характер будет иметь и изменение во времени выходного параметра изделия, что необходимо учитывать при расчете и прогнозировании надежности. Такое протекание износа является следствием процесса приработки сопряжений, который вызван изменением начальной шероховатости поверхностей (процесс микроприработки) и увеличением реальной площади контакта сопряженных поверхностей (процесс макроприработки). С точки зрения микрогеометрии процесс приработки заканчивается установлением оптимального значения шероховатости (см. рис. 74).  [c.378]

Влияние параметров технологического процесса на износо< стойкость поверхностей. Показатели качества изготовления изделий, как следствия принятого технологического процесса, оказывают непосредственное влияние на такое основное эксплуатационное свойство, как износостойкость поверхности. Во-первых, как это было показано выше, на износостойкость влияют химический состав, структура и механические характеристики материалов (см. гл. 5, п. 2 и п. 5), которые зависят от металлургических или других процессов получения материалов, от термических и термохимических видов обработки поверхностей. Во-вторых, износостойкость зависит от геометрических и физико-химических параметра поверхностного Слоя (см. гл. 2, п. 2). При этом отклонения формы деталей увеличивают период макроприработки (см. гл. 8, п. 3), а шероховатость поверхности влияет на период микропри-райотки, поскольку в процессе нормального изнашивания устана-вливаетря оптимальная шероховатость, соответствующая данным условиям работы сопряжения (см. рис. 74).  [c.437]

В настоящее время имеется несколько гипотез, объясняющих влияние предварительного упрочнения на износоустойчивость. По данным работы [37], предварительное упрочнение уменьшает износ за счет деформации смятия и за счет истирания микронеровностей на контакте. Как считают авторы [43] и [101], предварительное упрочнение пластической деформацией способствует диффузии кислорода воздуха в металле и образованию в нем твердых химических соединений РеО, РегОз, Рсз04 в результате окислительного изнашивания, происходящего с ничтожно малой интенсивностью. Согласно гипотезе [109] упрочнение поверхностного слоя рассматривается как средство повышения жесткости поверхностных слоев и уменьшения взаимного внедрения при механическом и молекулярном взаимодействии. На этот счет существуют и другие теории. Так, например, по мнению А. А. Маталина [64], главным фактором, определяющим износоустойчивость, является величина остаточных напряжений после приработки изделий. Между микротвердостью поверхностного слоя и его износоустойчивостью имеется определенная связь в процессе изнашивания микротвердость поверхностных слоев после приработки стремится к оптимальному значению однако в силу одновременного влияния разнообразных факторов (шероховатость поверхности, напряженное состояние поверхностного слоя и пр.) эта связь имеет только качественный характер и не может быть использована для практических расчетов.  [c.14]

Как было отмечено выше, получение необходимых характеристик исследуемой шероховатой поверхности является весьма кропотливым и трудоемким процессом. Это затрудняет применение современных методов расчета на трение и изнашивание с привлечением комплексного критерия шероховатости поверхности. В работе [2] сделана попытка установить связь между отношением Ятах/г и чистотой поверхностц для различных видов обработки. Однако полученные авторами результаты не учитывают характеристик распределения неровностей по высоте. Мы сделали попытку установить эту связь с учетом параметров 6 и V, различно обработанных и приработанных поверхностей трения.  [c.36]


Результаты экспериментов показывают, что исходная шероховатость поверхности контртела оказывает существенное влияние на интенсивность изнашивания и величину коэффициента трения. Интенсивность изнашивания зависит от величины комплексного параметра шероховатости А. Так, для полированных поверхностей до У9—10 получены наименьшие интенсивность изнашивания и коэффициент трения, несмотря на разные высоты неровностей, но почти одинаковые величины А. Расчетная величина комплексной характеристики соответствует экспериментальным параметрам шероховатости поверхности контртела, при которых получены наименьшая интенсивность изнашивания и минимальный коэффициент трения для подшипника из метал-лофторопласта, работающего в паре с металлическим валом из стали 45 при установившемся режиме трения.  [c.101]

В. Н. Кащеев ш М. М. Тененбаум считают, что процесс изнашивания при трении в абразивной массе определяется многими взаимо-влняющими факторами [187, 191—194]. Для процесса характерна малая площадь контакта абразивной частицы с рабочей поверхностью, что вызывает значительные напряжения, величины которых зависят от формы и механических свойств частицы, а также от прижимающей силы. При этом возможны два случая если возникающие напряжения превышают предел упругости, но ниже предела текучести, то происходит усталостное разрушение если уровень напряжений выше предела текучести, то изнашивание сопровождается пластической деформацией микрообъемов и происходит последефор-мационное разрушение [187, 193]. Иногда отмечается нроцесс шаржирования [191, 192, 194], при котором за счет уменьшения шероховатости поверхности износ резко снижается. Его величина может даже принимать отрицательное значение, т. е. размеры и масса образца будут увеличиваться. Причинами шаржирования, по-видимо-му, являются неизбеншое ударное действие острых абразивных частиц, их дробление и некоторые процессы адгезионного характера. Эффект шаржирования зависит от скорости перемещения абразивной массы и соотношения твердостей абразива и образца. Вероятно, он может наблюдаться только у мягких, пластичных покрытий.  [c.112]

Шероховатость поверхности изнашивания в згвиси--мости от диаметра образца мало изменяется, и чем свидетельствуют следующие данные  [c.81]

Трение различных материалов [18]. При испытании на изнашивание зубной эмали, дентина, различных пломбировочных материалов трением о шлифовальный круг, по одному и тому же месту абразивной ленты, путем вытирания вращающимся диском лунки на плоскости образца но удавалось получить устойчивых значений износа из-за постепенного понижения шероховатости поверхности, вызывающей износ. Поэтому ниже, при испытании последним из перечисленных методов на машине трения Шкода-Савнна , был применен диск из стали высокой твердости, шероховатость которого периодически восстанавливалась трением о цемент. Ус.ловия подготовки диска были следующие нагрузка 20 кгс, число оборотов диска 675 об/мин (это число оборотов рекомендуется руководством по производству опытов на машине для образцов из стали), продолжительность 6 мин. После такой подготовки диск испытывался по плоской поверхности из закаленной стали высокого класса шероховатости, твердостью около 900 кгс/мм . Если износы, получившиеся на ней до и после испытания с испытуемым материалом, были одинаковые, это свидетельствовало о сохранении диском постоянной шероховатости в процессе испытания. Постоянство же износов закаленной стали (эта.лона) после каждой подготовки диска указывало на достижение одинаковой исходной шероховатости диска.  [c.20]


Смотреть страницы где упоминается термин Изнашивание шероховатых поверхностей : [c.83]    [c.74]    [c.102]    [c.88]    [c.13]    [c.24]   
Смотреть главы в:

Механика фрикционного взаимодействия  -> Изнашивание шероховатых поверхностей



ПОИСК



Влияние шероховатости поверхности на трение и изнашивание подвижных сопряжений

Изнашивание

Испытания на изнашивание с восстановлением шероховатости поверхности

Критерии оценки шероховатости поверхности применительно к задачам трения и изнашивания

Поверхности шероховатость

Шероховатость поверхности при поверхностей

Шероховатые поверхности



© 2025 Mash-xxl.info Реклама на сайте