Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные уравнения движения и их линеаризация

Основные уравнения движения и их линеаризация  [c.211]

ОСНОВНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ И ИХ ЛИНЕАРИЗАЦИЯ  [c.213]

Положим H = Ho- h и Е = Ео- -е, где h и е — возмущения магнитного и электрического полей. Проведем теперь линеаризацию основных уравнений, описывающих движение при наличии упругого электрического и магнитных полей (см. 5 гл. II). В системе MKS эта линеаризированная система уравнений имеет вид [248]  [c.541]


С упругой связью, причем основной задачей этих опытов являлось решение вопроса о том, насколько правильны результаты, полученные на основании линеаризации дифференциальных уравнений движения механизма, и являются ли факторы, учтенные при анализе, действительно решающими  [c.183]

Лучшее согласование экспериментальных данных с теоретическими дает метод эквивалентной задачи теории теплопроводности [3], если, следуя эксперименту, для каждого сечения потока задавать начальное распределение температуры для эквивалентной задачи в виде кольца постоянной температуры на бесконечной плоскости таким образом, чтобы его площадь оставалась равной площади сечения потока на срезе сопла, а средний радиус был равен среднему радиусу кольцевой струи в рассматриваемом сечении. Последний определяется из эксперимента как радиус окружности максимальных значений плотности потока импульса или избыточного теплосодержания. При таком расчете получается плавное изменение всех параметров вдоль оси потока, начиная от его среза. Заметим, что метод линеаризации уравнений движения, предложенный Г. Рейхардтом, был также, применен к расчету потока с градиентами статического давления (основной участок следа за плохо обтекаемым телом) [2].  [c.198]

Если возникает вопрос о контроле устойчивости соответствующего основного режима движения, то при гладкой характеристике трения задача допускает линеаризацию и проблема сводится к исследованию знака того члена дифференциального уравнения возмущенного движения, который отражает действие сил трения. В связи с такой постановкой задачи об условиях самовозбуждения возник, может быть, спорный, но весьма яркий и хорошо ориентирующий термин отрицательное затухание .  [c.103]

Работы О. Ф. Васильева (1955, 1958) также посвящены теории винтовых и циркуляционных потоков, причем автор дал в них подробный разбор диссертации И. С. Громеки Некоторые случаи движения несжимаемой жидкости (1881), в которой впервые рассматривался указанный класс движений жидкости. Васильевым предложен метод линеаризации основных уравнений двухпараметрических вихревых и винтовых потоков, которые в общем случае являются нелинейными эллиптическими уравнениями. Им подробно рассмотрены винтовые и циркуляционные потоки невязкой жидкости в призматическом русле, а также некоторые случаи осесимметричных винтовых потоков.  [c.783]

Несмотря на большой интерес к изучению течений с переходом через скорость звука, в их теории вследствие сложности исследования все еще много нерешенных задач. Наибольшее продвижение достигнуто в теории плоских потенциальных околозвуковых течений газа. Это продвижение связано в основном с использованием переменных годографа, в которых уравнения движения газа становятся линейными (см. 3), причем в околозвуковом приближении уравнение для функции тока сводится к уравнению Эйлера—Трикоми (6.26). Линеаризация уравнений в исходных переменных в рамках теории малых возмущений скорости, как уже говорилось ранее, при околозвуковых скоростях невозможна.  [c.384]


Случай квазигармонических колебаний. Для приложений имеет основное значение вариант уравнений (32), соответствующий предположению, что возмущенное движение носит характер квазигармонических колебаний с медленно меняющейся частотой (О, амплитудой и фазой, при котором можно пренебречь второстепенными диссипативными членами, положив = О при п Ф т пт = Ря при п = т м малыми добавочными инерционными членами, появляющимися при Re оо и S 0. В результате уравнения (32) после гармонической линеаризации и переноса начала координат в метацентр G приобретут следующую форму  [c.70]

Линеаризация. Пусть известно некоторое основное движение, т.е. точное решение уравнений газовой динамики (3.11)  [c.123]

Один из основных методов приближенного аналитического решения соответствуюш,их гидродинамических задач заключается в линеаризации уравнений Павье — Стокса при малых числах Рейнольдса. Этот метод часто используется в данной главе для исследования движения малых частиц, капель и пузырей в жидкости.  [c.41]

Исследование динамики дроссельного гидропривода на электронной моделирующей установке Исследование динамики дроссельного привода на электронной моделирующей установке имело целью показать влияние основных нелинейностей на характер переходных процессов и частотных характеристик привода и сделать заключение о диапазонах изменения входных управляющих сигналов, в пределах которых возможна линеаризация уравнения движения для анализа устойчивости сложных следящих систем с дроссельным исполнительным приводом. При этом исследовании было принято, что движение дроссельного гидропривода с достаточной степенью точности можно представить нелинейным диффереециаль-ным уравнением (6.8), полученным на основании системы уравнений (6.7), полагая Ах = О, = 0.  [c.377]

Если возмущения, вызванные движением летательного аппарата и деформацией его частей, малы, то задача решается в упрощенной постановке [2.6,2.7,2.27]. Предположение малости возмущений позволяет существенно уменьшить трудности решения задачи благодаря линеаризации основных уравнений и условий. Кроме того, в этом случае нет необходимости заново решать задачу нового закона движения. Достаточно решить некоторые базовые задачи (например, о единичном сту-пенча1Ч)м по т воздействии), а переход к произвольным зависимостям от времени и произвольным значениям безразмерных частот р осуществляется с помощью интегральных соотношений (методом свертки) [2.6],  [c.49]

Другим предельным случаем движения тонких тел, когда проведенная в главе IV линеаризация неприменима, является движение тонких тел с очень большими сверхзвуковыми скоростями. Такие движения называются гиперзвуковыми. При гиперзвуко-вых движениях впереди тела образуются мощные ударные волны, приводящие к неизоэнтропическому возмущенному движению газа, которое не может быть изучено методом обычной линеаризации основных уравнений газовой динамики.  [c.402]

Из ЭТИХ рассуждений следует, что всегда возможное основное колебание (6.27), когда масса маятника колеблется вертикально, при определенном соотношении собственных частот может вызывать колебания по координате ф. В силу закона сохранения энергии это, конечно, возможно лишь за счет амплитуды основного колебания. Таким образом, в процессе колебаний энергия колебаний по координате X перекачивается в энергию колебаний по координате ф, и, как показывают эксперименты, этот процесс происходит периодически в обоих направлениях. Происходящие при этом процессы внешне очень похожи на обычные связанные колебания, однако в их основе лежит совершенно другой механизм возникновения. В то время как обычные связанные колебания ранее рассмотренного типа можно исследовать методом малых колебаний, т. е. путем линеаризации уравнений движения, описанные здесь явления принципиально нельзя объяснить, работая с линеаризованными уравнениями. На эти важные обстоятельства указал Меттлер (Ing.-Ar h., 1959, Bd. XXVlIl, 213—228).  [c.266]

Аналитические методы определения характеристик объектов регулирования основаны на составлении их дифференциальных уравнений. Составление дифференциальных уравнений базируется на использовании основных физических законов сохранении массы, энергии и количества движения. Как правило, таким путем удается получить нелинейное уравнение объекта, аналитическое решение которого в общем случае не может быть получено. Следующим шагом является линеаризация полученного уравнения, т. е. переход к линейной математической модели объекта. Линеаризация обычно проводится путем разложения нелинейных зависимостей в ряд Тейлора в окрестности исходного станционарного режима с сохранением только линейной части разложения и последующим вычитанием уравнений статики. Полученная таким образом линейная модель объекта справедлива лишь при малых отклонениях от исходного стационарного режима. Решение уравнений при ступенчатом или импульсном изменении входных величин позволяет получить соответственно переходные функции (кривые разгона) или импульсные временные характеристики объектов. Решение часто проводят в области изображений Лапласа или Фурье. В этом случае получают соответственно передаточные функции или амплитудно-фазовые характеристики.  [c.817]


В инженерной практике широко распространены конструкции, элементы которых имеют полости или отсеки, содержащие жидкость, иапример, объекты авиационной и ракетно-космической техники, танкеры и плавучие топливозаправочные станции, суда для перевозки сжиженных газов и стационарные резервуары, предназначенные для хранения нефтепродуктов и сжиженных газов, ректификационные колонны и т. д. В большинстве случаев жидкость-заполняет соответствующие полостн или отсеки лишь частично, так что имеется свободная поверхность, являющаяся границей раздела между жидкостью и находящимся над ней газом (в частности, воздухом). Обычно можно считать (за исключением особых случаев движения тела с жидкостью в условиях, близких к невесомости, которые здесь не рассматриваются), что колебания жидкости происходят в поле массовых сил, гравитационных и инерционных, связанных с некоторым невозмущенным движением. Как правило, это поле можно в первом приближении считать потенциальным, а само возмущенное движение отсека и жидкости — носящим характер малых колебаний, что Оправдывает линеаризацию уравнений возмущенного движения. Ряд актуальных для практики случаев возмущенного движения жидкости характеризуется большими числами Рейнольдса, что позволяет использовать при описании этого движения концепцию пограничного слоя, считая, кроме того, жидкость несжимаемой. Эти гипотезы лежат в основе теории, излагаемой ниже [23, 28, 32, 34, 45, 54J. Учету нелинейности немалых колебаний жидкости посвящены, например, работы [15, 26, 29, 30]. Взаимное влияние колебаний отсека и жидкости при ее волновых движениях может сильно изменять устойчивость системы, а иногда порождать неустойчивость, невозможную при отсутствии подвижности жидкости. В качестве примера можно привести резкое ухудшение остойчивости корабля при наличии жидких грузов и Динамическую неустойчивость автоматически управляемых ракет-носителей и космических аппаратов с жидкостными ракетными двигателями при неправильном выборе структуры или параметров автомата стабилизации. Поэтому одной из основных Задач при проектировании всех этих объектов является обеспечение их динамической устойчивости [9, 10, 39, 43]. Для гражданских и промышленных сооружений с отсеками, содержащими жидкость, центр тяжести при исследовании их динамики смещается в область определения дополнительных гидродинамических нагрузок, например при сейсмических колебаниях сооружения [31].  [c.61]

Обратимся теперь к специальному рассмотрению обтекания тонких тел при больших сверхзвуковых скоростях. На примере обтекания пластинки ( 14) мы уже видели, что простая линеаризация уравнений по отношению к основному потоку в случае, когда Мсо 1. не даёт удовлетворительных результатов. Мы видели, что характерным параметром задачи является, в случае пластинки, величина M ol-Для общего случая обтекания тонких тел при Моо 1 были открыты специальные законы подобия. Это было сделано Цзянем для безвихревых движений и обобщено Хэйсом на случай движений выхре-вык 2).  [c.208]

Линеаризация основных соотношений и решение линеаризованных уравнений. Ограничимся изучением только таких неустановившихся движений газа в канале, которые мало отличаются от установившихся одномерных движений с плоскими волнами. Примем, что отклонения потока от поступательного и установившегося могут происходить вследствие следуюгцих причин.  [c.597]

Нестационарые задачи были подробно изучены в случаях изотермического течения- В большинстве работ по дозвуковому движению газа в газопроводах при малых числах Маха конвективным инерционным членом в динамическом уравнении пренебрегают. Однако и в этом приближении нелинейная система основных дифференциальных уравнений одномерного движения оказывается гиперболической- По-вйдимому, И. А. Чарным (1951, 1961) впервые было предложено для дальнейшего упрош ения задачи при рассмотрении медленно изменяющ,ихся во времени движений газа отбрасывать также и локальный инерционный член динамического уравнения. В этом приближении задача становится параболической, хотя, вообще говоря, сохраняет нелинейный характер, И для того, и для другого приближений Чарным были предложены различные способы. линеаризации уравнений (в некоторых случаях задача сводится к уравнению теплопроводности). Им же были даны решения некоторых типичных задач в линейной постановке )  [c.735]


Смотреть страницы где упоминается термин Основные уравнения движения и их линеаризация : [c.120]    [c.133]   
Смотреть главы в:

Механика жидкости и газа  -> Основные уравнения движения и их линеаризация

Механика жидкости и газа Издание3  -> Основные уравнения движения и их линеаризация



ПОИСК



Линеаризация

Линеаризация уравнений

Линеаризация уравнений движени

Линеаризация уравнений движения

Основное уравнение движения

Основные уравнения движения

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте