Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ И РАСЧЕТА КОНСТРУКЦИЙ

ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ И РАСЧЕТА КОНСТРУКЦИЙ  [c.4]

Особенность справочника заключается в попытке последовательной реализации подхода от свойств материала к свойствам конструкции . Приведенные в нем характеристики материалов не могут быть непосредственно использованы в расчетах вследствие практически неограниченной и быстро меняющейся номенклатуры композитов, а также зависимости свойств композитов от технологии. Основная задача авторов справочника — дать ориентировочные свойства материалов, систематизировать методы определения этих свойств и способы их использования при проектировании и расчете конструкций основных типов.  [c.6]


При проектировании и расчете машины закладывается ее надежность. Она зависит от конструкции машины и ее узлов, применяемых материалов, методов защиты от различных вредных воздействий, системы смазки, приспособленности к ремонту и обслуживанию и других конструктивных особенностей.  [c.7]

Композиционные материалы (КМ) обладают комплексом свойств и особенностей, отличающихся от традиционных конструкционных материалов (металлических сплавов) и в совокупности открывающих широкие возможности, как для совершенствования существующих конструкций самого разнообразного назначения, так и для разработки новых конструкций и технологических процессов. Успешная реализация больших потенциальных возможностей, заложенных в идее композиционного материала и в свойствах его компонентов, в значительной степени зависит от уровня информированности конструктора об этих возможностях, принципах конструирования и методах расчета. К сожалению, этот уровень не вполне соответствует достижениям науки. Ситуация усугубляется и тем, что имеющаяся (и достаточно обширная) литература по композитам ориентирована в основном на научных работников, а не на инженеров, занятых расчетом, проектированием и изготовлением конструкций из композитов.  [c.6]

При проектировании и расчете зданий и сооружений требуемая надежность и необходимая гарантия от возникновения предельных состояний конструкций и оснований обеспечивается учетом минимальной прочности материалов, наибольших нагрузок и воздействий, условий и особенностей действительной работы конструкций и оснований, а также надлежащим выбором расчетных схем и предпосылок расчета.  [c.59]

Особенности выполнения расчетов при проектировании следующие расчет конструкции и ее вычерчивание выполняются одновременно, так как многие размеры, необходимые для расчета, можно получить только из чертежа, в то же время поэтапное вычерчивание конструкции в процессе расчета является проверкой, дает возможность оценить пропорциональность конструкции.  [c.310]

Потенциальная опасность катастрофических разрушений и связанных с этим материальных и экологических последствий предопределяет настоятельную необходимость совершенствования методов расчета, проектирования и изготовления конструкций с позиций исключения их разрушения в процессе эксплуатации. Актуальность такой задачи особенно остро ощущается применительно к сварным изделиям, поскольку нельзя игнорировать практическую неизбежность присутствия в них различного рода несплошностей (дефектов) как технологического, так и эксплуатационного характера.  [c.193]


Особенности конструирования и расчета на прочность отдельных узлов и соединений самолета излагаются с учетом современного состояния технологии и материаловедения. В отличие от других изданий, посвященных вопросам конструирования в самолетостроении, в данном учебном пособии рассматриваются не общие вопросы проектирования самолета и его агрегатов в целом, а главным образом, вопросы конструкторской разработки отдельных деталей, узлов и типовых соединений с подробным анализом конструкции и методов расчета на прочность. Именно такая детальная разработка конструкции особенно важна для начинающего инженера-конструктора. Это несомненно будет способствовать выработке необходимых навыков конструирования у студентов и повышению интереса будущих инженеров к работе в подразделениях конструкторских бюро.  [c.6]

Изложены основы проектирования энергооборудования блоков атомных электростанций (АЭС), рассмотрены тепловые схемы АЭС с перспективными типами реакторов, их термодинамические циклы, особенности конструкции и расчетов основных элементов энергетического оборудования блоков АЭС, особенности эксплуатационных режимов блоков АЭС, приведены их техникоэкономические показатели.  [c.429]

Учесть все многообразие силовых факторов, действующих на механизм (машину, прибор), а также все особенности самой конструкции при расчете на прочность невозможно. Поэтому при расчетах и проектировании учитываются лишь главные факторы и главные особенности формы, и вместо реальной конструкции рассматривают ее упрощенный прототип, называемый расчетной схемой.  [c.123]

Основные проблемы, возникающие при создании почти всех ферменных конструкций — это проблемы, связанные с проектированием и технологией изготовления узлов соединений. Масса большинства ферм определяется в первую очередь массой узлов соединений, особенно если в один узел сходится более трех стержней. Невозможность удовлетворения в сложном узле изложенных в разделе И,Б, 1 гипотез, на которых основан расчет ферм, вызывает появление в узле значительных по величине и неопределенных по направлению нагрузок, которые усложняют расчет.  [c.129]

Механика композитов основывается на двух различных, дополняющих друг друга гипотезах. Первый опыт конструкционного использования композитов позволил сделать вывод [1], что представительный объемный элемент композита есть бесконечно малый куб dx, dy, dz анизотропного материала, который для практических целей можно рассматривать как однородный. Поведение этого материала можно охарактеризовать таким же образом, как и поведение любого другого идеально анизотропного материала, не рассматривая его микроструктуру (например, металлов и древесины, особенностями микроструктуры которых пренебрегают при расчете конструкций). Предположение об однородности позволяет применять существующие методы анализа слоистых сред при проектировании многослойных стержней, балок, пластинок и элементов оболочек из композитов.  [c.249]

Внедрение сварки в самые ответственные изделия было обеспечено созданием советскими учеными методов расчета, гарантирующих эксплуатационную прочность сварных конструкций. Многолетний опыт проектирования и изготовления сварных конструкций в СССР определил разработку комплексного метода проектирования конструкций и технологии их изготовления, рациональный выбор принципиальных схем конструкций и основного металла для них, применение сталей повышенной и высокой прочности, высокопрочных сплавов цветных металлов, экономичных профилей и штамповочных заготовок, а также комбинированных сварных конструкций (из проката, литья и поковок). Характерной чертой методов расчета сварных соединений, разработанных советскими учеными, является стремление связать вопросы прочности с особенностями сварочной технологии, в то время как аналогичные зарубежные методы расчета крайне слабо связаны с технологией производства.  [c.141]

Эти расчеты, как уже говорилось выше, очень традиционны, и по ним разработаны рекомендации (см., например [3, 32, 33, 83, 971, обобщающие долголетний опыт проектирования и эксплуатации различных конструкций и деталей, а также огромный объем экспериментальных исследований. Однако большая часть этого материала относится к расчетам на регулярное или нерегулярное переменное нагружение при линейном напряженном состоянии или при двухпараметрическом плоском напряженном состоянии с нормальным и касательным напряжением. В значительно меньшей степени освещены вопросы расчета на усталость при других видах напряженного состояния, особенно в условиях нестационарного нагружения.  [c.118]


Следует считать непреложным правилом проектирования проверку расчетом всех участков трубопроводов теплового пункта независимо от их протяженности. К сожалению, весьма часто диаметры всех участков ставятся на глазок . Это особенно недопустимо при двухступенчатых схемах горячего водоснабжения, где потери напора в тепловых пунктах значительно возрастают. Весьма ценным пособием при проектировании тепловых пунктов являются альбомы типовых схем и конструкций, разработанные в институте Мосинжпроект и распространяемые библиотекой типовых проектов.  [c.265]

При вычерчивании может быть задан масштаб для расчетной схемы и величин узловых сил и напряжений. При вычерчивании эпюр и линий влияния производится автоматическое планирование листа с возможностью получения на нем нескольких изображений. Так как проектирование объекта длительный процесс, а полный объем результатов расчета велик, в системе предусмотрено хранение графической информации на внешних носителях и выдача ее на чертеж по заказу. Это позволит осуществить поэтапную выдачу графических изображений по мере надобности. Графическая информация накапливается и хранится в архиве под определенными шифрами, по которым и осуществляется доступ к ней. Хранение позволяет видоизменять форму выдачи (менять масштабы, вид изображения) с тем, чтобы получить максимально удобный для контроля и анализа чертеж без проведения повторного расчета. Это особенно важно для пространственных конструкций, когда схема может быть начерчена в различных видах.  [c.210]

На стадиях проектирования мониторинг заключается в правильности выбора конструкционных материалов с учетом особенностей их эксплуатации и расчета долговечности конструкции. На стадии эксплуатации мониторинг заключается в периодической диагностике коррозионного состояния оборудования. Регламент мониторинга определяется условиями эксплуатации диагностируемой системы.  [c.148]

Поскольку долговечность машины (или аппарата) часто связана с интенсивностью повторно-переменного неупругого деформирования, проблема математического описания соответствующих процессов приобрела большую актуальность. Классические теории пластичности и ползучести не охватывают столь сложных задач, особенностью которых является неизотермическое и непропорциональное повторно-переменное нагружение, чередование этапов быстрого изменения внешних воздействий и длительных выдержек. При этом практика проектирования предъявляет достаточно жесткие требования к теории ее приемлемость для инженерных приложений оценивается в зависимости от соответствия экспериментальным данным, универсальности при описании широкого спектра свойств и эффектов, наблюдаемых при различных условиях нагружения, реальной возможности применения к расчету конструкций.  [c.5]

Долгое время считалось, что для статических нагрузок и многих других случаев нагружения справедлив закон подобия. Однако, в особенности для усталостного и хрупкого разрушения, влияние абсолютных размеров тела на его поведение под нагрузкой (понижение долговечности и прочности) стало обнаруживаться настолько часто и сильно, что привело к необходимости учета масштабного фактора (или эффекта) при проектировании, расчетах и механических испытаниях образцов и элементов конструкций.  [c.312]

Во-первых, расчетные схемы реальных конструкций, в особенности строительных (неразрезные балки и плиты, рамы, фермы, пространственные каркасы), были значительно сложнее схем, рассматриваемых в классических трудах по теории колебаний и необходима была разработка специальных методов динамического расчета сложных систем. Во-вторых, идеализированные предпосылки классической теории — вязкое сопротивление, идеальная упругость материала, идеализация расчетных схем конструкций и действующих на них динамических нагрузок — яе соответствовали действительным условиям работы конструкций. В-третьих, не было необходимых для динамического расчета конструкций опытных данных об эксплуатационных динамических нагрузках, о динамических характеристиках материалов и конструкций, о надежных расчетных схемах конструкций и т. д. Вследствие этого динамический расчет, например, строительных конструкций, находился в начальной стадии развития и еще не вошел в практику проектных организаций того времени (имеются ввиду 30-е годы). Единственным практическим руководством по динамическому расчету в то время был раздел в Справочнике проектировщика пром-сооружений Методы динамического расчета сооружений , составленный А. И. Лурье (1934 г.) и отражавший состояние динамики сооружений в те годы. Но к помощи этого раздела обращались только отдельные, хорошо подготовленные инженеры при проектировании важнейших объектов. Подавляющее большинство проектных организаций того времени предпочитало уклоняться от динамического расчета и продолжало применять традиционный способ динамического коэффициента нагрузки. Способ этот, как известно, состоял в том, что каждому агрегату (например, машине) с динамическим воздействием приписывался свой динамический коэффициент, больший единицы, ца который умножался вес агрегата. Динамический расчет конструкции подменялся таким образом ее статическим расчетом. Сейчас излишне говорить о том, насколько несостоятелен этот способ, игнорирующий динамические характеристики как нагрузки, так и самой конструкции.  [c.21]

Отметим некоторые особенности выполнения расчетов при проектировании. Студент, начинающий проектировать, стремится вначале выполнить весь расчет и потом разработать чертеж конструкции. Эго неправильно. Расчет конструкции не следует выполнять без ее вычерчивания, так как многие размеры, необходимые для расчета (расстояния между опорами вала, места приложения нагрузок и т. п.), можно получить только из чертежа. В то же время поэтапное вычерчивание конструкции в процессе расчета является проверкой этого расчета. Неправильный результат расчета обычно проявляется в нарушении пропорциональности конструкции.  [c.9]


При проектировании и изготовлении металлоконструкций, работающих в условиях равномерной коррозии, предусматривается определенный запас толщины металла (ДУ). Иногда эта величина больше проектной вследствие узкой номенклатуры толщин листов, используемых для изготовления конструкций. Величина запаса зависит от различных факторов, например, точности расчета прочностных характеристик, технологических особенностей изготовления конструкций, ожидаемой скорости коррозии и др.  [c.34]

Учитывая особенности работы, к листовым конструкциям предъявляются определенные требования швы должны быть прочными и плотными в местах защемлений оболочек (у колец жесткости, у днищ и т. п.) необходимо в расчете учитывать локальные краевые напряжения при проектировании предусматривать фасонный раскрой листового проката, вальцовку обечаек и колец, штамповку выпуклых элементов, правильно располагать люки, лазы, врезки и т. п.  [c.331]

Необходимо отметить, что отечественные нормы проектирования, наиболее прогрессивные по методам расчета, предусматривают меньшие, чем в нормах ряда зарубежных стран, толщины защитного слоя, в особенности при воздействии на конструкции агрессивных сред. Это позволяет получать более легкие конструкции, т. е. экономить материалы при изготовлении их. При этом прогрессивному проектированию должна соответствовать прогрессивная технология изготовления конструкций, обеспечивающая высокую однородность бетона по плотности и минимальные (в пределах допуска) отклонения в положении арматуры, т. е. необходимые условия длительной сохранности арматуры и, соответственно, безремонтной эксплуатации конструкций.  [c.187]

Экспериментальные исследования вспомогательных трактов лопастных машин необходимы для совершенствования теоретических методов исследования, подтверждения заложенных при проектировании методов расчета, корректировки методов расчета с учетом особенностей реальных конструкций машин и условий их работы, подтверждения эффективности доводочных работ.  [c.91]

Указанные выше факторы и особенности конструктивных форм и условий эксплуатации атомных реакторов не получали ранее отражения в расчетах напряженно-деформированных состояний и прочности конструкций традиционного машиностроения, в том числе и теплового энергетического машиностроения. Вместе с тем при проектировании и расчетах на прочность в конце 50-х — начале 60-х годов первых атомных энергетических установок [1, 2] с ВВЭР бьши широко использованы методы расчетов и нормы прочности, применявшиеся тогда для котлострое-ния [3,4].  [c.27]

Решение проблемы обеспечения прочностной надежности элементов конструкций на стадии их проектирования и расчета в значительной степени зависит от достоверности информации о возникающих в эксплуатации воздействиях (нагрузках). Информация эта может быть представлена в различной формами иметь различную степень детализации. Она может быть использована либо непосредственно для анализа нагрузок и напряжений и оценок прочностной надежности, либо быть исходной (входом) при динамическом анализе механических систем. Разнообразие режимов работы и особенностей функционирования различных элементов конструкций обусловливает многообразие возникающих воздействий. В качестве примера рассмотрим осциллограммы реальных нагрузок, возникающих в подрессоренных и неподрес-соренных элементах конструкций транспортных и землеройных машин при движении их по дорогам случайного профиля и при выполнении некоторых технологических операций (рис. 1.1 и 1.21. Качественные и количественные различия в возникающих нагрузках обусловлены различием в условиях нагружения и особенностями выполняемой, технологической операции. Неупорядоченные нагрузки возникают также в элементах строительных конструкций (мачтах, антеннах) при случайных порывах ветра, в самолетах в полете при пульсации давления в пограничном турбулентном слое воздуха и при посадке и движении самолета по взлетной полосе и т. д. Нерегулярные морские волнения приводят к аналогичной картине изменения усилий и напряжений в элементах конструкций судов и береговых гидротехнических сооружений. Вопрос о том, какая по величине нагрузка возникнет в некоторый конкретный момент времени, не имеет определенного (детерминированного) ответа, так как в этот момент времени она может быть, вообще говоря, любой из всего диапазона возможных нагрузок. Введение понятия случайности, мерой которой является вероятность, снимает эту логическую трудность и позволяет ввести количественные оценки в область качественных представлений  [c.7]

Существенные особенности имеются при проектировании обмоток индукторов. На промышленной частоте витковые напряжения значительно меньше, чем в среднечастотном диапазоне, и для согласования индуктора с сетью 380 или 660 В необходимо большое число виктов. Часто витки ие укладываются в один слой, тогда используются двух- и трехслойные конструкции. Для однослойных обмоток применяют трубчатые проводники с основной токонесущей стенкой толщиной dl = 10- 12 мм и смещенным отверстием круглого (рис. 12-12, а) или прямоугольного (рис. 12-12, б) сечения. Ширина провода с лежит в диапазоне 16—70 мм. Прямоугольное сечение отверстия охлаждения предпочтительно, так как позволяет увеличить площадь канала при малой ширине провода и уменьшить расход меди и жесткость провода — при большой. Расчет активного и внутреннего реактивного сопротивлений однослойных обмоток производится так же, как и обмоток для средней частоты, причем в качестве толщины провода берется размер с1,.  [c.203]

Главная особенность проектирования — это многовариантность решений для получения оптимальной конструкции, обеспечивающей требуемые характеристики машины при наименьших затратах на ее изготовление и эксплуатацию. При эюм в поисках оптимального варианта конструкции часто приходится выполнять несколько вариантов pa 4eia. Для того чтобы избавить конструктора от выполнения трудоемких расчетов, многофакторного анализа и большого объема графических работ, поиски оптимального варианта удобно выполнять с помощью электронно-вычислительных машин (ЭВМ).  [c.37]

Среди различных отраслей строительства мостостроение занимает особое место. При проектировании мостов следует принимать во внимание условия прокладки дорог через природные препятствия, например через овраги и протоки. Кроме того, необходимо учитывать, что каждый мост благодаря своим конкретным функциям, пролету и размерам придает соответствующий облик окружающей местности, городу или природному ландшафту. В ходе выполнения проектирования, выбора систем, воспринимающих нагрузки, и применяемого материала, так же как и дальнейшего подбора поперечных сечений и расчета соединений отдельных элементов с учетом функциональных особенностей и требований экономичности, инженер должен суметь разработать и возвести мостовые конструкции, соответствующие поставленной задаче. Должны быть обеспечены несущая способность и хорошие эксплуатационные качества сооружения. Умение при возведении моста — чисто инженерного сооружения — решать вопросы взаимосоот-ветствия масштаба и формы сооружения с окружающим ландшафтом является показателем мастерства инженера, его высочайшей степени профессионализма. Техническим инструментом при проектировании и возведении мостов являются соответственно применяемые закономерности механики и численно представляемые геометрические зависимости. Значительную роль, однако, при проектировании и конструировании мостов играют опыт и интуиция инженера. Так, в мостах, которые проектировал и строил В.Г. Шухов, можно отчетливо видеть взаимослияние интеллекта и логики с изобретательностью и интуицией инженера .  [c.136]


Одной из особенностей созДаМия Но ых конструкций современных ракет является неразрывная связь проектирования с аэродинамическими, температурными, динамическими и прочностными расчетами. Инженер, специализирующийся в области ракетостроения, должен уверенно ориентироваться в теоретических основах и практических методах всех этих расчетов. В настоящее время имеются учебники, учебные пособия и монографии, в которых достаточно полно, строго и доступно изложены вопросы аэродинамики, теплопередачи, динамики применительно к ракетостроению. Поэтому в настоящем учебнике было решено ограничиться только вопросами, непосредственно связанными с прочностными статическими расчетами конструкции ракет.  [c.4]

В третьей части особое внимание уделено простым аналитическим методам расчета типичных элементов конструкций ракет. Приводимые здесь примеры не могут дать даже отдаленного представления о тех мощных комплексах программ, какими пользуются при уточненных современных прочностных расчетах. Но упрощенные методы расчета не потеряли и, видимо, еще очень долго не потеряют своего значения. Во-первых, простые аналитические решения, наглядно.ограждающие влияние отдельных параметров конструкции, необходимы для правильного понимания особенностей силовой схемы конструкции раке-тьь Во-вторых, умение пользоваться простыми методами расчета, не требующими сложных программ счета, с одной стороны, избавляет проектировщика от необходимости каждый раз прибегать к помощи мощных ЭВМ для получения оперативного результата на начальной стадии проектирования, с другой сторрны, помогает ему контролировать и правильно истолковывать результаты уточненных поверочных расчетов. Наконец, упрощенные аналитические методы используются в системах автоматизированного проектирования на этапах оптимизации силовых конструкций, когда производится многократное повторение прочностного расчета с целью подбора оптимальных параметров отдельных элементов и всей конструкции.  [c.4]

На всех этапах проектирования проектный расчет основан на анализе технологичности схемы или конструкции механизма. Наличие большого числа первичных опшбок, требующих производственного и, особенно, технического уровня точности, свидетельствует о петехнологичности схемы или конструкции. В этом случае должны приниматься меры к расширению допусков — либо путем изменения параметров механизма (схемы, конструкции), либо с помощью применения компенсаторов (стр. 473).  [c.477]

Основные экспериментально установленные факты, выявившие характер влияния вибраций на механические свойства грунтов (в основном песчаных), сводятся к следуюш ему. Вибрация вызывает изменение-деформационных и прочностных свойств грунта (суш ественно возрастает-сжимаемость и резко падает сопротивление сдвигу). Кроме того, грунт приобретает свойства вязкой жидкости. Особенность рассматриваемых эффектов состоит в том, что они оказываются обусловленными только-ускорениями колебаний, и зависимость механических характеристик от ускорения носит четко выраженный пороговый характер — влияние-колебаний на механические характеристики (сжимаемость, коэффициент вибровязкости и т. д.) начинает сказываться лишь после достижения амплитудой вибрационного ускорения некоторого порогового значения. Проведенные эксперименты позволили выявить как сами пороговые значения ускорения, так и конкретный вид указанных зависимостей. (Н. А. Преображенская, 1958 И. А. Савченко, 1958 Д. Д. Баркан, 1959, и др.). Д. Д. Барканом, О. Я. Шехтер, О. А. Савиновым и другими с учетом полученных в опытах данных были разработаны методы теоретического решения задач о вибропогружении свай и иных конструкций в грунт и о глубинном и поверхностном уплотнении грунтов вибраторами. Полученные при этом результаты позволили разработать, рациональные инженерные методы расчета и проектирования как вибровозбудителей, так и самих процессов вибропогружения и виброуплотнения.,  [c.222]

Исходя из анализа особенностей работы упругофрикционного демпфера, изложенного в подразд. 2.4, можно предложить следующий порядок его расчета на стадии проектирования и доводки опытной конструкции.  [c.328]

Недостатком формулы по источнику [89] является введение в нее значения производительности, которое вытекает из входящих в ту же формулу величин диаметра ротора, высоты копания и сопротивления копанию. Искажает действительные результаты по формулам табл. 2 и то, что у них (кроме наших формул) высота копания включает и всю глубину. Между тем 1 м глубины копания не равнозначен по своему влиянию на параметры экскаватора 1 м высоты копания, что учтено в наших формулах. Следует также отметить, что все формулы, кроме выведенных нами специально для карьерных экскаваторов с малыми рабочими размерами, практически основываются на базе некоторых определенных конструкций или их статистического обобщения. Иначе говоря, формулы не учитывают особенностей, связанных с различием конструкций узлов и их компоновки, не говоря уже о различных подходах к проектированию, материалах и технологии изготовления, надежности и долговечности. Поэтому даже откорректированные должным образом формулы пригодны только для предварительных расчетов и с особой осторожностью должны использ0ваться в технико-экономических расчетах при обосновании новых моделей. В этом случае необходимо каждый раз корректировать их с учетом указаных факторов.  [c.55]

Проектирование сварных конструкций имеет свои специфические особенности. Сварка — не только технологический процесс получения заготовок разнообразной формы и сложности, предназначенных для последующей механической обработки. Сварка — это в первую очередь метод сборки и монтажа конструкций из отдельных элементов, выполняющих различные функции. Высокие эксплуатационные характеристики сварных изделий — результат ра-цпональных конструктивных решений и совершенства технологического процесса сборки и сварки. Потребности в создании ранее неизвестных сочетаний деталей, их свойств и служебных назначений рождают новые технологические приемы сварки, последние в свою очередь открывают для конструкторов новые возможности. В результате многолетних усилий проектировщиков и исследователей установлены рациональные формы сварных соединений, обоснованы методы их расчета на прочность. Итогом этой огромной работы яатяются многочисленные публикации в нашей и зарубежной литературе.  [c.3]

Проектирование приспособления, будучи одним из наиболее трудоемких этапов создания АС, автоматизировано в наименьшей степени. Это связано с тем, что во многих случаях особенности закрепления и обработки заготовки требуют оригинального конструкторского решения, формализация которого недостаточно продвинута. Важную роль в этом процессе играют расчеты деформаций заготовки и элеменгов конструкции приспособления в процессе обработки.  [c.660]

Такие возможности программы в итоге превращают ее в универсальный инструмент, с помощью которого можно предсказывать характеристики новых процессов и быстро решать возникающие задачи, связанные с функционированием и надежностью приборов. В процессе проектирования часто применяется метод проб и ошибок. Целью моделирования технологического процесса и анализа приборов является сокращение времени проектирования при одновременном повышении вероятности достижения оптимально спроектированных процессов. Не слишком большие вычислительные затраты, необходимые для проведения расчетов, говорят о чрезвычайной пользе моделирования, так как в процессе расчетов можно проанализировать многие варианты технологического процесса и топологии проектируемого прибора с целью выбора наиболее подходящих для создания первых работающих образцов. Возможность вносить изменения необходима для оптимизации конструкции, а также для выбора первоначального варианта технологического процесса. Расчет позволяет анализировать внутреннюю структуру приборов, в результате чего часто появляются оригинальные решения задачи усовершенствования конструкции. Несмотря на то, что многое уже сделано в описываемой программе FEDSS, необходимы более тщательная верификация моделей, а также их усовершенствование, что особенно важно для расчета бокового смешения профиля концентрации примеси. Необходимы также надежные измерения таких профилей для обоснования моделей перераспределения.  [c.319]

Прочность при низких температурах. Хрупкое разрушение стальных конструкций наблюдается особенно часто при низких температурах. Упомянутые выше случаи разрушения резервуаров а судов происходили при температурах ниже нуля. В условиях крайнего севера, где металлические конструкции и механизмы работаюг зачастую при температурах —40° и —50°, хрупкие разрушения, особенно часты, и проектирование сооружений, работающих в этих, условиях, требует особого внимания. Явление хрупкости стали при низких температурах получило название хладноломкости. Схематическое объяснение хладноломкости может быть следующее (А. Ф. Иоффе,. 1924 г.). Пластические свойства металла в сильной степени зависят от температуры, предел текучести с понижением температуры повышается. В то же время сопротивление отрыву практически не зависит от температуры. Поэтому при низких температурах условия перехода от хрупкого разрушения к пластическому меняются и отрыв становится возможным прежде, чем наступит пластическое состояние. В частности, и при растяжении может случиться, что образец разорвется прежде, чем появятся пластические деформации. Не у всех металлов оказывается возможным получить хрупкое разрушение при растяжении за счет понижения температуры металлы с гранецеитри-рованной решеткой сохраняют пластические свойства при весьма низких температурах, среднеуглеродистая сталь, весьма пластичная в обычных условиях, становится хрупкой при растяжении лишь при температуре жидкого водорода. При динамическом деформировании, предел текучести оказывается выше, чем при статическом, поэтому критическая температура хладноломкости, то есть температура перехода от вязкого разрушения к хрупкому, повышается, В опытах Давиденкова Н. Н. (1936 г.), который испытывал на ударное растяжение цилиндрические образцы из среднеуглеродистой стали, критическая температура получилась —95° для крупнозернистой структуры и — 160° для мелкозернистой. При сложном напряженном состоянии, например в месте концентрации напряжений, условия перехода от пластического разрушения к хрупкому будут другими и критическая температура, определенная в этих условиях, отличается от критической температуры, найденной путем испытания гладких образцов иа растяжение. В настоящее время не существует теории, которая позволяла бы надежным образом производить расчеты на прочность в условиях низких температур с тем, чтобы предусматри вать возможность хрупкого разрушения, однако надлежащий выбор, материалов и соблюдение некоторых конструктивных и технологических предосторожностей позволяют избежать хладноломкости.  [c.411]



Смотреть страницы где упоминается термин ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ И РАСЧЕТА КОНСТРУКЦИЙ : [c.453]    [c.144]    [c.113]    [c.683]    [c.61]    [c.100]    [c.35]    [c.2]    [c.393]   
Смотреть главы в:

Проектирование тонкостенных конструкций Изд.3  -> ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ И РАСЧЕТА КОНСТРУКЦИЙ



ПОИСК



2.143 — Особенности конструкци

Особенности проектирования

Особенности расчета

Проектирование конструкции

Расчеты при проектировании

ЭСБ-1-ВЗ-1, ЭСБ особенности конструкции



© 2025 Mash-xxl.info Реклама на сайте