Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы динамических механических испытаний

Методы динамических механических испытаний  [c.19]

Обычно динамические механические испытания дают больше информации о материале, чем другие методы механических измерений, хотя теоретически все механические методы могут давать одинаковую информацию. В результате динамических испытаний в широком температурном и частотном диапазонах определяют показатели, особенно чувствительные к химической и физической структуре полимеров. Эти испытания часто являются очень эффективными при изучении температуры стеклования и дополнительных температурных переходов в аморфных полимерах, а также морфологии кристаллических полимеров.  [c.19]


Наибольшее внимание уделяется методике испытаний на ползучесть, релаксацию и длительную прочность. Однако в лабораторной практике получили распространение и другие методы горячих механических испытаний — как статические (растяжение, кручение, изгиб, твердость), так и динамические (изгиб, разрыв). Особое место занимают горячие испытания на усталость. Большинство этих методов имеет немаловажное значение для установления полной механической характеристики жаропрочных сплавов.  [c.3]

Методические указания. Расчеты и испытания на прочность. Методы механических испытаний металлов. Определение характеристик вязкости разрушения (трещиностойкости) при динамическом нагружении. РД 50—344—82.— М. Изд-во стандартов, 1983.— 52 с.  [c.490]

Допускаемые напряжения назначаются на основе результатов механических испытаний образцов соответствующих материа лов. Применяемые в настоящее время методы механических испытаний материалов весьма многообразны. По характеру приложения внешних сил они разделяются на статические, динамические (или испытания ударной нагрузкой) и испытания на выносливость (нагрузкой, вызывающей напряжения, переменные во времени).  [c.75]

Метод тензометрии заключается в измерении линейных деформаций с помощью специальных приборов — тензометров (механических, оптических, электрических). По полученным значениям упругих деформаций в рассматриваемых точках нагруженного тела (образца) на основании закона Гука определяются соответствующие напряжения. Этот метод находит применение для изучения напряженного состояния как в статическом, так и в динамическом режимах испытания.  [c.6]

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ УРАВНЕНИЙ ДВИЖЕНИЯ МЕХАНИЧЕСКИХ СИСТЕМ ПО МЕТОДУ ДИНАМИЧЕСКИХ ИСПЫТАНИЙ  [c.51]

Рассматривается задача оценки параметров линейных и нелинейных дифференциальных уравнений, описывающих колебания механических систем, в условиях проведения наиболее чистого (модельного) эксперимента [1—4]. Параметры оцениваются с помощью процедур метода динамических испытаний [3—4].  [c.51]

Резюмируя изложенное выше, можно сделать следующий вывод. Как и было показано ранее [3], метод динамических испытаний — эффективный способ оценки параметров весьма широкого класса механических систем, чьи движения описываются произ-  [c.58]

Рассматривается вопрос оценки параметров уравнений движения механических систем, т. е. решение задачи идентификации в условиях наиболее чистого (модельного) эксперимента. Оценка производится с помощью процедур метода динамических испытаний.  [c.181]


Механические свойства конструкционных материалов определяют экспериментально специальными механическими испытаниями образцов, причем вид механического испытания назначают в зависимости от условий нагружения детали, подлежащей изготовлению из данного конструкционного материала. Механические свойства стали определяют при статических, динамических и циклических режимах приложения нагрузок, а также при пониженных, нормальных или повышенных температурах. Испытуемые образцы можно нагружать по различным схемам (одноосное растяжение — сжатие, чистый или поперечный изгиб, кручение). В за-виси.мости от времени воздействия нагрузки на испытуемый образец испытания могут быть кратковременными или длительными. Почти все методы механических испытаний стали (за исключением метода испытания твердости) являются разрушающими, что исключает возможность стопроцентного контроля механических свойств деталей машин или элементов конструкций и обусловливает весьма высокие требования к точности механических испытаний образцов (или контрольных деталей).  [c.454]

Вследствие многообразия видов механических разрушений не может быть какого-то единого универсального метода оценки сопротивления разрушению. Процессы разрушения- и соответствующие им оценочные виды испытаний следует в первую очередь разделять в зависимости от способа силового воздействия. В этой связи важная группа методов оценки сопротивления разрушению относится к кратковременным разрушающим испытаниям при статическом и динамическом нагружениях. Другая группа методов охватывает длительные испытания при циклическом и статическом нагружениях, которым соответствует усталостное, или замедленное, разрушение.  [c.235]

Определение динамического модуля упругости и тангенса угла механических потерь на установке с использованием принципа бегущих волн. Обычные методы и установки [33] для исследования динамических механических свойств полимеров не дают возможности определять модуль упругости Е и тангенс угла механических потерь tg б в широком интервале достаточно высоких частот при одноосном растяжении. Для измерения и tg б в интервале частот от 100 до 40 ООО Гц разработана установка с использованием принципа бегущих волн 31]. Особенностью установки является возможность испытания деформированных образцов. Сущность метода заключается в том, что вдоль образца движется каретка, в которой с противоположных сторон закреплен вибратор и приемник при помощи генератора в образце создается бегущая продольная волна, которая фиксируется приемником.  [c.235]

Затухание колебаний или механические потери обычно характеризуются теми показателями, которые удобнее получать в данном конкретном методе. Поскольку существует очень много различных методов динамических испытаний, широко используются разл ичные показатели, характеризующие механические потери,  [c.20]

До недавнего времени наиболее распространенным, пожалуй даже единственным, методом исследования динамического деформационного старения (синеломкости) стали был метод механических испытаний на растяжение и ударный изгиб при повышенных температурах. Применяли также испытания на кручение, измерение горячей твердости.  [c.219]

Следовательно, при прочих равных условиях аномальное изменение свойств в результате прокатки при определенных температурах обусловлено динамическим деформационным старением. Прокатка при температурах выше комнатной, но ниже Ль когда подвиж- ность атомов примесей уже достаточно велика, а подвижность атомов матрицы еще мала для заметной рекристаллизации в короткое время, обеспечивает необходимые условия для динамического взаимодействия между генерируемыми деформацией свободными дислокациями и примесными атомами. Воздействие пластической деформации и температуры при теплой прокатке и качественно, и по физической природе аналогично воздействию их при деформации растяжением или изгибом. Однако теплая прокатка предоставляет дополнительные возможности для исследования природы динамического деформационного старения, так как при прокатке, в отличие от метода механических испытаний при повышенных температурах, динамическое деформационное старение и механические испытания можно проводить раздельно, благодаря чему влияние повышенной температуры на эффект динамического деформационного старения устраняется, влияние его на свойства стали выявляется более полно.  [c.270]


Наряду с объективными характеристиками свойств материалов, экспериментальными методами устанавливают и сравнительные характеристики, так называемые технологические пробы. К этим видам испытаний относятся испытания на твердость, ударную вязкость и усталостную прочность. В зависимости от скорости приложения нагрузок механические испытания бывают статические, в которых процесс нагружения осуществляется медленно, и динамические.  [c.124]

Опыт показывает, что очень редко удается найти тесную связь между характеристиками механических свойств, определяемых на образцах, и службой деталей, в широких диапазонах охватывающих сразу значительное количество производства и методов нагружения. Разнообразие условий работы деталей требуют для оценки конструктивной прочности и различных характеристик механических свойств. В зависимости от характера действующих нагрузок механические испытания прежде всего следует разделить на 1) статические испытания при нормальных температурах или длительные статические испытания при повышенных температурах 2) ударные динамические испытания при различных температурах 3) испытания при повторных знакопостоянных или знакопеременных нагрузках при нормальных температурах.  [c.8]

Промышленность и наука пользуются в настоящее время методами механических испытаний (статических и динамических), химическими, металлографическими, спектральными и рентгеновскими анализами, технологическими пробами, дефектоскопией.  [c.13]

РД 50— 260— 71 РД 50—344—82 РД 50—345—82. Методические указания. Расчеты и испытания на прочность в машиностроении. Методы механических испытаний металлов. Определение характеристик вязкости разрушения (трещиностойкости) при статическом нагружении, щ)и динамическом нагружении при циклическом нагружении.— М. Стандарты 1982, 1983.  [c.429]

В настоящее время, насколько нам известно, отсутствует классификация методик исследования покрытий и материалов с покрытиями. В отдельных монографиях на различном методическом уровне рассматриваются способы оценки свойств собственно покрытий (пористость, прочность соединения с основным металлом, защитные свойства, износостойкость и др.). Однако вопрос влияния покрытий на конструктивную прочность изделия в целом значительно сложнее, чем представляется некоторым авторам, и не может быть решен простым исследованием структуры и свойств только покрытий. По-видимому, композицию основной металл — покрытие следует рассматривать как единое целое. Очевидна необходимость комплексного, всестороннего изучения данной композиции с привлечением современных средств оценки конструктивной прочности, таких как статические, динамические и усталостные испытания, а также испытания на трещиностойкость. Методы испытаний материалов с покрытиями разработаны значительно меньше, чем способы оценки свойств собственно покрытий. В предлагаемой нами классификации методик исследования структуры и физико-механических свойств (рис. 2.1) выделено два крупных раздела испытание покрытий и испытание материалов с покрытиями.  [c.13]

В образцах в зависимости от их форм и размеров, типа возбудителя и приемника, способа крепления и схемы приложения динамической нагрузки можно возбуждать продольные, изгибные, крутильные и более сложные виды колебаний. Данный метод можно использовать также при вибрационных испытаниях крупногабаритных изделий, однако при этом существенно изменяется методика испытаний, способы приложения нагрузок, а также способы возбуждения и регистрации колебаний. Метод используется также при оценке интегральной жесткости крупногабаритных конструкций [11, 22] и не может быть использован при локальном определении физико-механических характеристик в изделии. Для практического применения этого метода необходимо знать геометрические размеры изделия и плотность материала, обеспечить условия закрепления изделия на опорах и преобразователей на изделии, а также нормальные температурно-влажностные условия окружающей среды.  [c.87]

Методы механических испытаний на твердость можно условно разделить на статические и динамические. К статическим методам определения твердости относятся методы Бринелля, Роквелла, Виккерса, ври которых медленно нарастающая нагрузка прилагается к вдавливаемому стандартному наконечнику. К динамическим методам, применяемым реже статических, относятся методы упругой отдачи (метод Шора) и ударного вдавливания стального закаленного шарика (метод Польди). В исследовательской практике, помимо указанных, имеют применение метод определения твердости путем царапания и метод определения микротвердости..  [c.114]

Э. д. Арнольд, к. К. Глухарев, 3. К. К. Глухарев, Д. Е. Розенберг. В. А. Ковановская и др. К оценке Метод динамических испытаний точности воспроизведения урав- для синтеза уравнений движения нений движения механических механических систем с известным систем при моделировании их на числом степеней свободы.— Ма-АВМ,— В наст. сб. шиноведение, 1973, № 6.  [c.59]

Рассматриваются вопросы оценки качества (точности) моделирования линейных и нелинейных дифференциальных уравнений, онисываюш их колебания механических систем, при постановке и решении этих уравнений на аналоговых вычислительных машинах. Точность моделирования оценивается с использованием процедур метода динамических испытаний [1].  [c.68]

К. к. Глухарев, Д. Е. Розенберг. Д. Е. Розенберг, К. В. Фролов. Метод динамических испытаний Оценка допустимости линеариза-для синтеза уравнений движения ции нелинейных моделей (на при-механических систем с известным мере пневматических полостей числом степеней свободы.— Ма- переменного объема).— В наст, гаиноведение, 1973, № 6. сб.  [c.77]


Характеризуя наиболее существенные результаты в разработке и развитии методов механических испытаний, непосредственно связанных с последующей расчетной или экспериментальной оценкой прочности и ресурса конструкций, следует иметь в виду, что прочность и ресурс определяют по критериям следующих основных видов разрушения однократного статического и динамического (хрупкого, квазихрупкого, вязкого) длительного статического циклического (мало- и миогоциклового) длительного циклического.  [c.19]

Твердость (см. п. 8.1.2) не является каким-то особым специфическим свойством металла, а испытания на твердость — одна из разновидностей механических испытаний [42]. В зависимости от характера приложения нагрузки и движения индентора (наконечника твердомера) различают методы измерения твердости путем вдавливания, царапания и отскока закаленного стального бойка от поверхности испытуемого материала. В зависимости от скорости приложения на1рузки на индентор различают статические и динамические методы измерения твердости. Наибольшее распространение в технике получили статические методы измерения твердости при вдавливании шара, конуса или пирамиды. По геометрическим размерам отпечатка, полученного при вдавливании индентора под определенной нагрузкой, подсчитывают значение твердости с помощью соответствующих формул и таблиц. В табл. 8.89 приведена краткая классификация основных методов измерения твердости путем вдавливания индентора различной формы.  [c.346]

Содержит методы н примеры расчета силовых влемеитов конструкций из композиционных материалов, задачи статики и устойчивости многослойных анизотропных пластин и оболочек, способы решения динамических задач, некоторые данные механических испытаний волокнистых композиционных материалов и типовых элементов конструкций.  [c.4]

Надежность работы в значительной мере зависит от соответствия примененных материалов и их качества требованиям нормативнотехнологической документации. Действующие нормы и правила предусматривают механические испытания и металлографический анализ основного металла и сварных соединений котлов, трубопроводов пара и горячей воды и сосудов, работающих под давлением. Объемы и методы механических испытаний и металлографических исследований строго регламентированы [23, 24, 25]. Механические испытания ставят своей задачей определение механических свойств при комнатной и рабочей температуре, без знания которых нельзя правильно выбрать материал для изготовления детали и оценить состояние металла в процессе эксплуатации. Основными видами механических испытаний являются испытания на растяжение, твердость и на ударный изгиб (динамические испытания). Технологические испытания на загиб, раздачу и свариваемость служат для оценки возможности проведения технологических операций, необходимых для изготовления и монтажа оборудования (сварки, гибки, вальцовки и т. п.). Такие важнейшие для котельных материалов испытания, как испытания на ползучесть, длительную прочность, сопротивление усталости, релаксацию напряжений, не предусматриваются действующими правилами котлонадзора в качестве контрольных и служат в основном для выбора допускаемых напряжений и установления ресурса работы элементов, изготовленных из различных сталей.  [c.8]

РД 50-344—82. Рг1сч ты и испытания ва прочность в маш гностроени1 . Методы механических испытаний металлов. Определение характеристик вязкости разрушения (трещииостойкости) при динамическом нагружении Методические указания. М. Изд. стандартов, 1983. 62 о.  [c.78]

В зависимости от характера нагрузки механические испытания материалов разделяются на статические и динамические. Статические испытания [118, с. 19] характеризуются плавным и относительно медленным изменением нагрузки на образец во время испытаний настолько малой величиной ускорения движущихся во время испытания частей испытательной машины, что возникающими в них силами инерции можно при этод пренебречь возможностью с достаточной точностью определять методом простого статического равновесия величину усилий, приложенных к образцу в любой момент испытаний простотой измерения деформации образца практически в любой момент испытания.  [c.37]

Для определения ударной вязкости проводят испытания на ударный изгиб. Данный метод испытания относят к динамическим и производится изломом образца с надрезом в центре на маятниковом копре падающим с определенной высоты грузом. Удар наносится с противоположной стороны надреза. Ударная вязкость определяется как работа, израсходованная на ударный излом образца, отнесенная к поперечному сечению образца в месте надреза и измеряется в Дж/м или кГм/см . Образцы изготовляют квадратного сечения 10х 10 мм длиной 55 мм, вырезая их из сварного соединения механическими способами. Надрез, глубиной 2 мм и радиусом закругления 1 мм (образец Менаже) или острый 1 -об1зазный надрез (образец Шарпи) наносят в том месте сварного соединения, где необходимо установить значение ударной вязкости (шов, зона сплавления, зона термического влияния, основной металл). Результаты испытаний при  [c.213]

Модуль Юнга плазменных покрытий определяется статическими (А. М. Вирник, В. В. Кудинов и др.) и динамическими методами (Л. И. Дехтярь, Б. А. Ляшенко, В. А. Барвинок, Г. М. Козлов и др.). Модуль упругости окисных покрытий при температурах 20, 600, 1000°С оценивали на специальной высокотемпературной установке при скорости деформирования 1 мм/мин. За схему нагружения принимали трех-, четырехточечный изгиб брусков размером 5x5x70 мм [9]. Образцы изготавливались следующим образом в плазменном покрытии толщиной 5,5—6 мм, нанесенном на цилиндрическую оправку, прорезались алмазным кругом пазы по образующей до основного металла. После механического отделения брусков проводили их шлифование в оправке до указанных размеров. Испытания проводи-  [c.52]

Исследование скорости развития трещины в зависимости от уровня нагружения, свойств материала, среды и внешних факторов (поляризации, давления и температуры) [8,50]. При таком подходе данные о закономерностях роста трещин иод воздействием агрессивной среды и механических напряжений представляют в виде зависимостей скорости роста трещин при статическом (ко розионное растрескивание) или- динамическом (коррозионная усталость) нагружении от максимального (амплитудного) коэффициента интенсивности К цикла. При этом данные для построения указанных зависимостей (диаграмм разрушения) получают при испытании стацдаргных образцов с трещинами, образовавшимися на образцах в процессе периодического (усталостного) нагружения их на воздухе. Подрастание трещины во времени измеряют по изменению электросопротивления образца, оптическим методам по податливости материала и т. п. Испытания проводят iipn заданной температуре среды, накладывая, по необходимости, на образец анодную или катодную поляризацию. По полученнь м данным рассчиты-  [c.132]


Последние три требования имеют особенно большое значение в связи с развитием вероятностных методов расчета на усталость. В таких расчетах характеристики рассеяния механических свойств материала, для исследования которых необходимо проведение массовых испытаний, используются как самостоятельные расчетные параметры, поэтому они должйы быть обусловлены только природой самого материала, а не условиями проведения испытаний. При этом весьма важно динамическое исследование машин для испытания на усталость, рассматриваемое как один из ответственных этапов их доводки. Цель таких исследований состоит в, опытном определении динамических свойств соответствующих колебательных систем, отличающихся от расчетных моделей в связи с обычно принимаемыми в последних упрощениями, а также в накоплении данных, позволяющих достаточно томно судить о том, в какой мере результаты исследования закономерностей сопротивления усталости, получаемые с (ПОМОЩЬЮ этих машин, могут считаться достоверными.  [c.54]


Смотреть страницы где упоминается термин Методы динамических механических испытаний : [c.113]    [c.401]    [c.59]    [c.28]    [c.88]    [c.181]   
Смотреть главы в:

Механические свойства полимеров и полимерных композиций  -> Методы динамических механических испытаний



ПОИСК



Глухарев, Д. Е. Розенберг, И. Т. Чернявский ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ УРАВНЕНИЙ ДВИЖЕНИЯ МЕХАНИЧЕСКИХ СИСТЕМ ПО МЕТОДУ ДИНАМИЧЕСКИХ ИСПЫТАНИЙ

Испытание динамическое

Метод испытаний

Метод механический

Методы динамического

Методы механических испытаний

Механические испытания



© 2025 Mash-xxl.info Реклама на сайте