Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Измерение линейных деформаций

Метод тензометрии заключается в измерении линейных деформаций с помощью специальных приборов — тензометров (механических, оптических, электрических). По полученным значениям упругих деформаций в рассматриваемых точках нагруженного тела (образца) на основании закона Гука определяются соответствующие напряжения. Этот метод находит применение для изучения напряженного состояния как в статическом, так и в динамическом режимах испытания.  [c.6]


Рис. 4. Изменения зависи-Рис. 3. Измерение линейных деформаций мостей за время работы элементов конструкции стенда стенда Рис. 4. Изменения зависи-Рис. 3. Измерение линейных деформаций мостей за <a href="/info/55054">время работы</a> <a href="/info/28902">элементов конструкции</a> стенда стенда
По виду деформации различают тензометры а) для измерения линейных деформаций (т. е. изменения расстояния между ножками тензометра или длины наклеиваемого датчика) б) для измерения деформаций сдвига, при котором две неподвижные по отношению к корпусу прибора ножки устанавливаются на одной линии, а третья подвижная ножка — на другой, к ней перпендикулярной измеряется получаемое при деформации изменение прямого угла (сдвиг) в) для измерения нескольких компонентов деформации.  [c.220]

Определение напряжений на объемных моделях. В общем случае объемных моделей требуется более сложная техника измерений, чем для плоских моделей. Напряжения на поверхности и по отдельным сечениям модели при трехмерном напряженном состоянии наиболее просто оптическим методом решаются с применением оптически активных слоев. В общем случае исследования применяются независимо или в сочетании а) метод. замораживания , б) метод рассеянного света. Для разделения главных напряжений, кроме того, применяются вычислительные методы или (при Ф 0,5) измерение линейных деформаций при размораживании . Объяснение явления. замораживания см. [41], [49[.  [c.529]

Экспериментальное исследование физико-механических свойств материалов, в частности определение модуля продольной упругости и коэффициента Пуассона, связано с необходимостью измерения линейных деформаций.  [c.54]

Точность бесцентрового шлифования (погрешность диаметра и конусообразность) зависит от относительных положений опорного ножа, ведущего и шлифовального кругов. В процессе эксплуатации их положение меняется из-за температурных и упругих деформаций и износа. Кроме того, засаливание кругов вызывает увеличение вибраций и дестабилизирует положение детали в зоне обработки. Информация о состоянии рабочих органов, регистрируемая соответствующими датчиками, через аналого-цифровой преобразователь передается в вычислительное устройство. Например, для измерения линейных размеров используется дифференциальный индуктивный датчик, который обеспечивает измерение с точностью до I мкм. Вычислительное устройство производит анализ поступившей информации, рассчитывает параметры точности обработки, сравнивает их с заданным полем допуска, оценивает возможность проведения подналадки, выбирает необходимый механизм подналадки и рассчитывает для него величину подналадочного импульса и его направление.  [c.465]


Для измерения малых линейных деформаций в лабораторных и производственных условиях применяются различного вида тензометры, которые по принципу определения измеряемой величины подразделяются на механические, оптико-,механические и электрические. Любой из этих тензометров может быть применен для измерения деформаций в режимах статического и медленно изменяющегося нагружения. Для измерения деформаций при динамических испытаниях применяются электрические тензометры .  [c.52]

Изобразим точку Р (полюс) (рис. 6.8, а) и будем считать ее точкой расположения трехкомпонентной розетки общего вида. Изобразим три измеренные относительные линейные деформации е, г" и г " в окрестности точки тела  [c.470]

Пневматические приспособления применяют для измерения линейных и угловых размеров, относительного расположения поверхностей, отклонений от правильной геометрической формы, чистоты поверхности, деформаций и т. д. При этом достигается высокая точность измерений. Так, точность отсчета по шкалам некоторых пневматических приборов составляет 0,05 мк. Важным достоинством пневматических приспособлений является возможность осуществления дистанционных измерений.  [c.230]

Тензометр для измерения продольных и угловых деформаций трубчатых образцов (рис. 43). Отличительной особенностью этого тензометра является крепление фиксирующих игл внутри образца. Трубка 1 связана посредством винта 2 и фиксирующих игл 3 с верхней частью образца 7. В стержень, 5 вставлены нижние фиксирующие иглы 6, поджимаемые винтом 4. Торец стержня упирается в головку индикатора, корпус которого при помощи кронштейна 9 жестко связан с трубкой 1. Индикатором фиксируются линейные деформации образца. Угловые деформации измеряются оптическим устройством при помощи зеркал 8.  [c.47]

При измерении сил, деформаций в нескольких направлениях применяют многоэлементные тензорезисторы, так называемые розетки (рис. 45), которые образованы из двух, трех или четырех линейных тензочувствительных элементов на одной общей основе.  [c.408]

Самописец является высокочувствительным прибором для измерения линейных размеров. Он может быть использован для экспериментальных исследований параметров средств активного контроля, исследований технологических процессов с целью выявления величин силовых, температурных деформаций измерительных размерных цепей на металлорежущих станках, кузнечно-прессовом оборудовании, прокатных станах и др.  [c.111]

Для исключения существенного влияния на результаты измерения температурных деформаций самого прибора измерительные рычаги, базовую планку, планки, на которых установлены сопла и пятки прибора и пробки, изготовляют из материала, имеющего малый коэффициент линейного расширения.  [c.280]

Приборы для измерения деформаций. Наиболее простым и достаточно точным способом измерения угла кручения является замер опускания точки привеса груза, действующего на шкив (см. фиг. 136). Измерение линейного вертикального перемещения с точностью до 0,01-0,05 мм при помощи катетометров пли индикаторов не представляет затруднений. В машине на кручение, показанной на фиг. 136, на нагружающем шкиве 5 (в отдельной канав ке) укрепляется тонкая стальная проволока, на конце которой подвешивается грузик весом 40—50 г. На его полированной поверхности наносится тонкая риска. Перемещение грузика 6 измеряется посредством катетометра 7, стоящего на специальном кронштейне, укреплённом на станине машины. Во избежание влияния колебаний температуры помещения применяют проволоку из материала с малым коэфициентом линейного расширения.  [c.61]

Электронный измеритель деформаций отечественного изготовления предназначен для измерения при помощи проволочных датчиков деформаций в одной или в ряде точек (при наличии переключателя на требуемое число точек). Предел измерения относительной линейной деформации от 0 до 6 10 при 5 диапазонах погрешность измерения + 0,7% от диапазона измерения. Предназначен для работы с проволочными датчиками сопротивлением от 50 до 1000 ом с тензочувствительностью от 1,8 до 2,2. Генератор измерителя даёт напряжение 2 — 4—6 в при частоте 1000 гц. Питание установки от сети переменного тока 127/220 в или постоянным током 6 в.  [c.238]


Электронный измеритель ста тических деформаций для прополочных тензодатчиков сопротивлением 50— 200 ov (см. стр. 494). Общий диапазон измерений относительных линейных деформаций X (0,30,0 %. Одно деление лимба реохорда соответствует относительной деформации ЫО— или 1-10—Напряжение питания датчика 120 ом порядка Зв. Длина измерительной линии до 50 м (и больше). Для поочередных измерений с большого числа тензодатчиков применяются в комплекте ручные или автоматические переключатели на 0—2i)0 датчиков. Питание измерителя от сети переменного тока или ог аккумулятора.  [c.492]

При погрешности измерения частоты I /< и при длине струни I = 100 м и погрешность измерения относительной линейной деформации- 0,3-  [c.492]

Измерение деформаций сводится к измерению линейных размеров определенного участка детали при статических или динамических нагрузках пользуясь модулем упругости, определяют напряжения.  [c.600]

Электронный измеритель статических деформаций с применением проволочных тензодатчиков (см. стр. 549). Общий диапазон измерений относительных линейных деформаций (0,3-Ь 0,6)%. Одно деление лимба реохорда соответствует относительной деформации 1 10 или 1 10 . Напряжение питания датчика 120 ом порядка 30 т. Длина измерительной линии до 50 м. Для поочередных измерений с большого числа тензодатчиков применяют в комплекте ручные или автоматические переключатели на 10—150 датчиков или стандартные разъемы. Питание измерителя от сети или от аккумулятора.  [c.547]

Масштаб геометрического подобия выбирается больше или меньше единицы, так, чтобы иметь модель удобного размера. Нагрузка в модели доводится до напряжений порядка 50—100 кГ/rf. Измерения деформаций производят проволочными тензодатчиками с базой 3— 10 мм, устанавливаемыми в наиболее напряженных местах, которые могут быть оценены посредством лаковых покрытий. Измерение линейных и угловых перемещений производят с погрешностью  [c.569]

Обычно одновременно с определением оптической постоянной проводят измерения продольных и поперечных деформаций для определения модуля упругости и коэффициента Пуассона. Продольные и поперечные линейные деформации измеряются при помощи механических рычажных тензометров, проволочных тензодатчиков, винтового окулярного микрометра АМ9-2, катетометра КМ-6. На образце при испытании на одноосное растяжение предварительно наносится база, деформация которой измеряется. На основании этих измерений модуль упругости Е и коэффициент Пуассона х определяют по формулам  [c.97]

Тензорезисторы используются для измерения не только линейных деформаций, но и перемещений, сил, давлений, ускорений, вибраций и других механических величин.  [c.531]

Классификация т е н з о и з м е-рительной аппаратуры производится по следующим признакам а) по виду измеряемой деформации (измерение линейных деформаций, сдвига, соче-та1шя компонентов деформаций) б) в зависимости от длины базы (малобазные до 4 мм, средиебазные до 25 мм, с большой базой более 25 мм) в) по положению измеряемого волокна (в поверхности детали, в фиктивном волокне на некотором расстоянии от поверхности детали) г) по характеру изменения измеряемой величины во времени (статическое, динамическое с различными диапазоном частот н продолжительностью) д) 110 способу отсчета пл регистрации (визуальный отсчет, запись механическая или фотогрпфпческа О  [c.489]

Метод замораживания"-Объемная модель изготовляется из прозрачного материала, обладающего способностью к замораживанию". Нагруженная модель нагревается до температуры замораживания , выдерживается при ней и затем в нагруженном состоянии охлаждается до комнатной температуры. В модели после снятия нагрузки сохраняются упругие деформации, полученные при нагреве, как и в любом вырезанном из нее срезе (пластинке). Просвечивание вырезанных срезов поляризованным светом позволяет определить разнссть квазиглавных напряжений и их направления при нагреве срезов или частей модели их размеры возвращаются к первоначальным ( размораживание ), что используется для измерения линейных деформаций. Нагрузочные устройства не мешают измерениям.При исследовании напряжений быстровращающихся деталей устраняется необходимост 1 измерений во время вращения.  [c.530]

Тензоизмерительная аппаратура классифицируется. а) по виду измеряемой деформации (измерение линейных деформаций, сдвига, сочетания компонентов деформаций) б) в зависимости от длины базы (малобазные до 4 мм, среднебазные до 25 мм, с большой базой более 25 мм)-,  [c.542]

Определение напряжений на объемных моделях. В общем случае для объемных моделей требуется более сложная техника измерения, чем для плоских моделей. Для разделения главных напряжений применяют вычислительные методы, электрические модели или (при fi, 0,5) производят измерение линейных деформаций при разморал ивании . Напряжения на поверхности и по отдельным сечениям модели при трехмерном напряженном состоянии наиболее просто оптическим методом находят на объемных моделях из прозрачного оптически не чувствительного материала с вклейками из оптического материала. Приводимые ниже методы применяют независимо или в сочетании.  [c.590]

ХУГЕНБЕРГЕРА ТЕНЗОМЕТР — рычажный прибор для измерения линейных деформаций на образцах и в конструкциях. X. т. (рис.) прижимается двумя опорами-призмами к поверхности образца с помощью струбцины. Одна опора неподвижна вторая, вращаясь при деформации вокруг оси, передает через шарнирную систему движение стрелке, по отклонению к-рой на шкале прибора судят о величине деформации. Расстояние между опорами-призмами (база прибора) обычно равно 20.к.ч, па отд. моделях выполняется размером от 10 до 1000. ч.ч. Увеличение прибора — передаточное число системы -1000.  [c.426]


Для оценки сжимаемости веществ в широком диапазоне давлений используют уравнения, выражаютцие связь между р, V и Т. Определяют сжимаемость непосредственно по изменению объема тел под давлением, при акустических измерениях скорости распространения упругих волн в веществе, при экспериментах по ударному сжа- 1ИЮ, дяющих зависимость между р и р при максимальных полученных в эксперименте давлениях. Сжимаемость можно определить с помощью измерения линейной деформации твердого тела под гидростатическим давлением. Для изотропного тела коэффициент линейной сжимаемости  [c.64]

Непосредственное измерение величины линейной деформации зерен поверхностных и внутренних слоев образца из поликристал-лического армко-железа [60] показало, что при деформировании на площадке текучести величина линейной деформации поверхностного слоя составляла 2,52%, в то время как объемные слои продеформированы всего на 0,8%,что свидетельствует о пониженном напряжении течения поверхностных слоев. Различие в напряжениях течения поверхностных и внутренних слоев материалов оказывает существенное влияние на распределение действующих и остаточных напряжений в ГЦК металлах [61]. Сплавы, претерпевающие в процессе трения фазовые превращения [62], а также сплавы, содержащие мягкую структурную составляющую [63], также имеют свойства поверхностных слоев, отличные от глубинных. Соответственно и упрочнение при пластической деформации, отображаемое зависимостью прочности от плотности дислокаций, Б поверхностных слоях (кривая 2) и на глубине (кривая 1) будет протекать различно (рис. 3) [64].  [c.23]

Метод муаровых полос позволяет найти деформации и напряжения на поверхности контакта элементов композитной модели без использования поляризационно-оптического метода 70, 72]. Однако, если линейные деформации е и Ву можно найти этим методом довольно точно, то на деформацию сдвига уху сильно влияют угловые погрешности в установке эталонной сетки. Это отражается и на точности определения главных напряжений. Деформацию сдвига более точно можно вычислить по данным поляризационно-оцтиче-ских измерений  [c.34]

Динамические измерения. Для записи деформаций высоких частот применяется наиболее простая схема потенциометра с усилителем переменного тока (фиг. 175, а). Верхний предел измеряемых частот около 8000 гц может быть поднят применением очень коротких низкоёмкостных проводников и понижением коэфициента усиления отдельных ступеней усилителя. Нижний предел измеряемых частот 5—10 гц. Изменяющееся электрическое напряжение датчика подается на усилитель. Последний должен иметь линейную частотную характеристику во всём диапазоне измерений. При измерении статических деформаций схема потенциометра не применяется из-за неустойчивости усилителя постоянного тока при длительной работе.  [c.238]

База тензометра — длина участка, на котором производится измерение де-фо]1маций (расстояние между остриями ножек или длина тензочувствителыюй части наклеиваемого датчика). Средняя (на длине базы) относительная линейная деформация  [c.489]

Струнный метод Дави-денкова [16]. Деформация определяется по изменению частоты собственных колебаний струны, закрепляемой концами. Измерение частот производится электронным генератором — частотомером регистрация — на осциллографе. При погрешности измерения частоты в 1 гц и при длине струны I — 100 мм погрешность измерения относительной линейной деформации имеет величину порядка 0,3 10 .  [c.547]

Для оценки С. веществ в широком диапааове р используют уравнения состояния, выражающие связь между р, К и Т. Определяют С. непосредственно по изменению К под давлением (см. Пьезометр), из аку-стич. измерений скорости распространения упругих волн в веществе. Эксперименты в ударной волне позволяют установить зависимость между р и р при максимальных экспериментально полученных давлениях. С. находят также из измерений параметров кристаллич. решётки под давлением, производимых методами рентгеновского структурного анализа. С. можно определить измеряя линейную деформацию твёрдого тела под гидростатич. давлением (по т. н. линейной С.). Для изотропного тела коэф. линейной С.  [c.492]

Запись кинетики малых деформаций производится фотоэлектрическим устройством 5. Для этой цели между источником света и фотоэлементом установлена рамка с фигурной щелью, которая через систему рычагов соединена с внутренним цилиндром так, что ее линейные перемещения пропорциональны углу поворота цилиндра (деформации материала). Перемещение рамки вызывает изменение светового потока, поступающего на фотоэлемент, и изменение вследствие этого его анодного тока. Величина анодного тока регистрируется трехшлейфовым осциллографом на фотобумаге. Для проверки начального положения рамки и тарировки ее перемещения в цепь фотоэлемента через электронный усилитель б включен миллиамперметр. Измерение больших деформаций осуществляется фотоэлектронным способом в сочетании с оптической системой 7. В последнем случае рамка заменяется зубчатым диском. Отметки времени воспроизводятся на фотобумаге в виде прямой, прерывающейся через каждую секунду. Длина отрезка этой прямой зависит от скорости движения фотобумаги и может изменяться от 0,15 до 110 см1сек.  [c.164]

Схема прибора представлена на рис. 88. Исследуемый материал заполняет зазор между цилиндрами 1 и 2 (устройство измерительного узла и его характеристика даны в описании пластовискозиметра ПВР-2). К цилиндру 2 прикреплен длинный рычаг 3, практически неизгибающийся относительно оси прибора от усилий, приложенных в точках А и Б. Момент, возникаю1ций на поверхности цилиндра 2, уравновешивается посредством рычага 3 жестким динамометром 4, представляющим работающие на изгиб мало деформируемые и легко заменяемые консольно-заделанные балочки. Абсолютные величины их линейных деформаций составляют несколько микрон. При помощи комбинированного рычажно-оптиче-ского устройства 5 они увеличиваются в 3 10 —3,5 10 раз (до 120—250 мм) и фиксируются фоторегистрирующей камерой 6. При этом максимальный поворот наружного цилиндра 2 не превышает одной угловой минуты, что дает право пренебречь столь малым угловым перемещением торсиона и считать его абсолютно жестким. Тормозное устройство И позволяет мгновенно останавливать внутренний цилиндр и тем самым создавать условия для измерения релаксации напряжений при постоянной деформации.  [c.176]


Смотреть страницы где упоминается термин Измерение линейных деформаций : [c.229]    [c.529]    [c.180]    [c.301]    [c.349]    [c.133]    [c.134]    [c.219]    [c.44]    [c.549]    [c.187]    [c.290]   
Смотреть главы в:

Сопротивление материалов  -> Измерение линейных деформаций



ПОИСК



Деформации — Измерение

Деформация линейная



© 2025 Mash-xxl.info Реклама на сайте