Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод динамического механического

Методы динамических механических испытаний  [c.19]

Расчет деталей сооружений на динамическую нагрузку более сложен, чем расчет на статическую нагрузку. Трудность заключается, с одной стороны, в более сложных методах определения внутренних усилий и напряжений, возникающих от действия динамической нагрузки, и, с другой — в более сложных методах определения механических свойств материалов при динамической нагрузке.  [c.287]


Ограниченность теории эффективных модулей явилась причиной многочисленных попыток построения более современных методов исследования механического поведения направленно армированных композитов, в особенности при динамическом их нагружении. В первом приближении эти методы можно разбить на два следующих класса.  [c.374]

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ УРАВНЕНИЙ ДВИЖЕНИЯ МЕХАНИЧЕСКИХ СИСТЕМ ПО МЕТОДУ ДИНАМИЧЕСКИХ ИСПЫТАНИЙ  [c.51]

Рассматривается задача оценки параметров линейных и нелинейных дифференциальных уравнений, описывающих колебания механических систем, в условиях проведения наиболее чистого (модельного) эксперимента [1—4]. Параметры оцениваются с помощью процедур метода динамических испытаний [3—4].  [c.51]

Резюмируя изложенное выше, можно сделать следующий вывод. Как и было показано ранее [3], метод динамических испытаний — эффективный способ оценки параметров весьма широкого класса механических систем, чьи движения описываются произ-  [c.58]

Рассматривается вопрос оценки параметров уравнений движения механических систем, т. е. решение задачи идентификации в условиях наиболее чистого (модельного) эксперимента. Оценка производится с помощью процедур метода динамических испытаний.  [c.181]

Задача решается методом динамического программирования. Основная трудность выбора оптимальных вариантов операций механической обработки заключается в недостатке количественных связей между параметрами, характеризующими точность, производительность и экономичность операции. Если известны модель станка, вид заготовки и конструкция режущего инструмента, то на выбор оптимального варианта станочной операции будут влиять режимы обработки, которые в конечном счете определяют ее точность, производительность и экономичность. Критерием качества выбран-  [c.106]

Внедрение в машиностроение, в строительство промышленных и гражданских сооружений таких материалов, как облегченные алюминиевые сплавы и пластмассы, которые являются с механической точки зрения нелинейно-упругими, выдвигает перед проектировщиками ряд новых вопросов расчета конструкций. Уже сейчас начинает ощущаться необходимость в практических методах динамического расчета конструкций, выполненных из нели-нейно-упругого материала, на действие различных динамических нагрузок случайного характера. Задачи динамического расчета нелинейных систем возникают также и при расчете конструкций, выполненных из линейно-упругого материала, когда нелинейность может быть обусловлена особенностью конструкций, например мачты на оттяжках, оболочки или пластинки при больших прогибах, большепролетные вантовые конструкции, нелинейная виброзащита и др.  [c.165]


Применяемая в машиностроении мягкая эластичная резина обладает большим относительным удлинением и может многократно переносить повторные деформации, поглощая и рассеивая при этом существенную часть подводимой механической энергии. Методы испытания механических и иных свойств резины стандартизованы, но характеризуют лишь образцы определенных габаритов. Однако форма и масштаб резинового изделия существенно сказываются на его механических свойствах. Объем резины при деформации практически не изменяется. Длительная статическая или многократно повторная динамическая деформации вызывают утомление резины, которое ведет к снижению ее прочности.  [c.394]

Современная техника нуждается в способах ускоренного прогнозирования механических характеристик существующих и вновь разрабатываемых полимерных материалов. В этом отношении удобен динамический механический метод, который отличается высокой чувствительностью, точностью, простотой и быстротой проведения эксперимента.  [c.55]

Рис. 30. Схема установки для измерения динамических механических характеристик полимеров методом нерезонансных вынужденных колебаний Рис. 30. Схема установки для <a href="/info/306939">измерения динамических</a> <a href="/info/7719">механических характеристик</a> полимеров методом нерезонансных вынужденных колебаний
Графический метод динамического анализа. Метод используют для функционального анализа многих механизмов разного служебного назначения в линейной и нелинейной упругой зоне. Частным случаем применения могут быть простые механические системы с сосредоточенной массой М, перемещающейся с силовым градиентом к от заданного источника возбуждения — активного элемента системы (рис. 6.19). Для всех приведенных примеров механических систем сила Я постоянна и является результирующей всех внешних сил, действующих на массу М. К внешним силам отнесем вес перемещающихся частей и , силу пружины под нагрузкой, силу трения Ff. Во всех примерах сила, действующая от  [c.289]

Определение динамического модуля упругости и тангенса угла механических потерь на установке с использованием принципа бегущих волн. Обычные методы и установки [33] для исследования динамических механических свойств полимеров не дают возможности определять модуль упругости Е и тангенс угла механических потерь tg б в широком интервале достаточно высоких частот при одноосном растяжении. Для измерения и tg б в интервале частот от 100 до 40 ООО Гц разработана установка с использованием принципа бегущих волн 31]. Особенностью установки является возможность испытания деформированных образцов. Сущность метода заключается в том, что вдоль образца движется каретка, в которой с противоположных сторон закреплен вибратор и приемник при помощи генератора в образце создается бегущая продольная волна, которая фиксируется приемником.  [c.235]

Обычно динамические механические испытания дают больше информации о материале, чем другие методы механических измерений, хотя теоретически все механические методы могут давать одинаковую информацию. В результате динамических испытаний в широком температурном и частотном диапазонах определяют показатели, особенно чувствительные к химической и физической структуре полимеров. Эти испытания часто являются очень эффективными при изучении температуры стеклования и дополнительных температурных переходов в аморфных полимерах, а также морфологии кристаллических полимеров.  [c.19]

Затухание колебаний или механические потери обычно характеризуются теми показателями, которые удобнее получать в данном конкретном методе. Поскольку существует очень много различных методов динамических испытаний, широко используются разл ичные показатели, характеризующие механические потери,  [c.20]

Общие представления о показателях динамических механических свойств полимеров, принципах и способах их определения даны в гл, 1. Там же приведены уравнения для расчета показателей механических потерь. Формулы для расчета динамических модулей, упругости при свободных или резонансных колебаниях даны в гл. 2. В литературе описаны десятки различных приборов для определения динамических механических свойств полимеров. Общий обзор существующих методов содержится в монографиях Ферри [1, 2] и Нильсена [3].  [c.90]


Большое теоретическое и прикладное значение динамических механических свойств полимеров обусловлено рядом причин. Динамический модуль упругости, как и модуль, измеренный любым другим методом, является важнейшим показателем деформационных свойств полимеров. Значение показателей механических потерь менее известно. Эти показатели служат наиболее чувствительным индикатором всех форм молекулярной подвижности в полимерах, особенно в стеклообразном состоянии.  [c.91]

Часто наблюдается хорошая корреляция между ударной прочностью и динамическими механическими потерями в ударопрочных полимер-полимерных композициях [249, 251, 257, 259, 260, 272]. Ударная прочность обычно возрастает с повышением пика механических потерь, соответствующего эластичной фазе [257, 259, 260]. Наилучшая корреляция наблюдается для ряда одинаковых материалов, хотя морфология эластичной фазы, метод получения образцов, адгезия и другие факторы могут до некоторой степени влиять на эту корреляцию. Наибольшее влияние на величину пика механических потерь и на соответствующее падение модуля упругости оказывает содержание эластичной фазы. При этом важно не количество введенного эластомера, а общее количество эластичной фазы (эластомера с распределенным в нем жестким полимером), которое определяет величину пика механических потерь.  [c.189]

Жесткие наполнители уменьшают упругую и вязкую компоненты ползучести полимеров при отсутствии отслаивания их от наполнителя. Часто уменьшение относительной податливости при ползучести наполненных полимеров равно обратной величине относительного модуля упругости этой же композиции, определенного из диаграмм напряжение—деформация или динамическими механическими методами [67, 120]  [c.243]

Общим методом исследования устойчивости является изучение возмущенного движения в окрестности невозмущенного. Этот метод (динамический критерий устойчивости) для консервативных механических систем был впервые применен Лагран-жем. А. М.Ляпунов построил строгую математическую теорию устойчивости движения [64].  [c.37]

Изложенный метод анализа механических систем при действии случайных импульсов произвольного направления позволяет определить максимально возможные динамические эффекты в системе и выбором параметров системы их минимизировать.  [c.259]

Основные направления развития общих методов динамического анализа механизмов. Современные машины характеризуются увеличением как скоростей движения рабочих органов, так и сил, действующих на звенья механизма. Сочетание этих факторов приводит к тому, что деформация звеньев, их упругие свойства начинают заметно влиять на движение механизма, его надежность и работосиособность. Если учесть упругость звеньев, то на основное движение, определяемое движением начального звена, накладываются упругие колебания, которые могут привести к значительным увеличениям нагрузок на звенья. Поэтому общие методы динамического анализа механизмов развиваются сейчас главным образом в направлении, связанном с теорией механических колебаний. Эти колебания могут быть вредными, вызывающими поломку звеньев механизма, но могут быть и иолезными, когда само действие механизма основано на эффекте колебаний (вибрационные транспортеры, сита, виброударные мащины для забивки свай и т. п.). За последние годы общие методы динамического анализа механизмов с учетом колебаний были развиты в работах С. Н. Кожевникова, К. М. Рагульски-са и многих других ученых.  [c.103]

Одно из них — разработка методов и технических средств оиределения состояния и ресурса динамических механических конструкций и систем. Результаты фундаментальных исследований указанных вопросов приведены в статьях Волкова И. И, н Мартового В. П, Прнмен вние АРСС-спектрального оценивания для оперативной диагностики динамических объектов и Семенычева В. К. Параметрическая оценка состояния и ресурса механических систем по разным фазовым переменным .  [c.146]

Э. д. Арнольд, к. К. Глухарев, 3. К. К. Глухарев, Д. Е. Розенберг. В. А. Ковановская и др. К оценке Метод динамических испытаний точности воспроизведения урав- для синтеза уравнений движения нений движения механических механических систем с известным систем при моделировании их на числом степеней свободы.— Ма-АВМ,— В наст. сб. шиноведение, 1973, № 6.  [c.59]

Рассматриваются вопросы оценки качества (точности) моделирования линейных и нелинейных дифференциальных уравнений, онисываюш их колебания механических систем, при постановке и решении этих уравнений на аналоговых вычислительных машинах. Точность моделирования оценивается с использованием процедур метода динамических испытаний [1].  [c.68]

К. к. Глухарев, Д. Е. Розенберг. Д. Е. Розенберг, К. В. Фролов. Метод динамических испытаний Оценка допустимости линеариза-для синтеза уравнений движения ции нелинейных моделей (на при-механических систем с известным мере пневматических полостей числом степеней свободы.— Ма- переменного объема).— В наст, гаиноведение, 1973, № 6. сб.  [c.77]

В книге излагаются методы динамического анализа и синтеза управляемых машии, основанные на рассмотрении взаимодействия источника энергии (двигателя), механической системы и системы управления. Излагаются способы построения адекватной модели управляемой машины в форме, удобной для применеиия ЭВМ. Рассмотрены системы управления движением машии (системы стабилизации угловой скорости, позиционирования и контурного управления), их эффективность п устойчивость. Изложены особенности управления машинами с двигателями ограниченной мощности. В основу исследования многомерных динамических моделей управляемых машинных агрегатов положены структурные преобразования и методы динамических графов. Последовательно развивается концепция составной динамической модели, на базе которой решается проблема собственных спектров и определяются частотные характеристики моделей.  [c.2]


Ио1еоторые проблемы взаимодействия механической части с двигателем и системой управления были рассмотрены в работах В. О. Коионенко [61], В. А. Бесекерского [6], В. Л. Вейца и А. Е. Кочуры [19, 20, 27, 38, 39] и ряда других авторов. В данной монографии делается попытка более полного и систематического изложения теоретических основ и практических методов динамического анализа и синтеза управляемых ма-шпп. Авторы стремились строить изложение таким образом, чтобы опо было доступно читателю, знакомому с обычным вузовским курсом математики, а также с основами классической теория колебаний и теории автоматического управления.  [c.6]

Катодно - осциллограф и-ческая двухканальнаяус-тановка для регистрации динамических и ударных деформаций (Институт машиноведения АН СССР) [22], [32]. Включение проволочного тензодатчика по потенциометрической схеме усилитель переменного тока. Регистрация ведегся фотографированием с экрана катодной трубки методом а) механической развертки на пленку на вращающемся барабане или  [c.555]

Структура системы. Структура включает в себя построение совокупности допусков, основных отклонений, посадок с применением фасетного метода. Фасетный метод определяет независимое деление заданного множества допусков и посадок с учетом функциональных свойств и точности производства изделий. Фасетный метод построения приводит к понятию уровней и вариантов основных признаков системы по горизонтали и вертикали. Уровни точности устанавливают ряды допусков по квалитетам, классам и степеням точности применительно к типу соединения (передачи). Для образования посадок вводят варианты основных отклонений. С учетом функциональных свойств (метрическое, кинематическое, динамическое, механическое, энергетическое) и сложности сопряжений не существует единственного построения с общей глубиной, емкостью и детализацией проработки системы типового соединения (передачи).  [c.60]

Метод динамической петли гистерезиса предусматривает одновременную регистрацию сигналов, пропорщюнальных напряжению (нагрузке Р) и деформации е (перемещение и), в процессе циклического нагружения механической системы (образца) и получение на этой основе экспериментальной петли гистерезиса в координатах ст - е или Р - и, площадь которой в определенном масштабе численно равна рассеянной в единице объема материала (в системе) за тщкл нагружения энергаи [79].  [c.318]

Рис. VI1.12. Схема установки для и.шерения динамических механических характеристик полимеров методом иерезонансных вынужденных колебаний Рис. VI1.12. Схема установки для и.шерения динамических <a href="/info/7719">механических характеристик</a> полимеров методом иерезонансных вынужденных колебаний
Производные целлюлозы, такие, как ацетат целлюлозы, обладают по крайней мере двумя или тремя пиками механических потерь помимо пиков при Т с [231, 337, 383]. Большое число сведений имеется в литературе о дополнительных переходах в других полимерах, например в поли(2,6-диметилфениленоксиде) [326, 334, 384, 3851, различных полиолефинах [171, 386], полиоксиме-тилене и его сополимерах [176, 178, 387, 388], фторсодержащих полимерах [10, 268, 328, 389, 390], эпоксидных полимерах [113, 328, 391, 392]. Эти переходы наблюдают различными методами, в том числе при использовании крутильного маятника с нитью, пропитанной исследуемым полимером, что позволяет исследовать динамические механические свойства полимеров в процессе отверждения, при термодеструкции и т. п. [393].  [c.140]

Помимо разработки методов решения кинетического уравнения Больцмана и приложения теории, базирующейся на таком уравнении (а для плазмы и на максвелловских уравнениях электромагнитного ноля), к широкому кругу весьма различных задач поведения неравновесных газов, перед кинетической теорией стояла другая общая проблема, которая может быть названа проблемой обоснования кинетической теории. Эта проблема фактически возникла сразу же после того, как Больцман предложил свое кинетическое уравнение. Дело в том, что хотя с помощью кинетического уравнения Больцмана оказывалось возможным дать определенное истолкование второго начала термодинамики и перенести вопрос о причине необратимости неравновесных явлений теплоты на атомно-мЬлекулярный уровень, вслед за этим сразу встал вопрос о том, почему динамические (механические) вполне  [c.17]

Отметим, что методы динамических жесткостей и податливостей многократно переоткрывались различными авторами, причем им давались, самые разнообразные названия (методы механического импеданса, методы перенесения граничных условий, метод приведения частей системы к безынерционным упругим связям и др.). Из числа работ, посвященных практическому использованию указанных методов к расчетам конкретных типов систем, упомянем статью А, В. Шляхтина (1960) и книгу Л, И. Штейн-вольфа (1961),  [c.169]

Рейнольдс (Reynolds) Осборн (1842-1912) — английский физик и инженер. Окончил Кембриджский университет 1867 г.) в 1868 1905 гг. — профессор Манчестерского университета. Основные труды относятся к теории турбулентности (статистическая теория, тензор турбулентных напряжений), теории динамического подобия и перехода ламинарного потока в турбулентный (1883 г.), гидродинамической теории смаЗки. Исследовал явления кавитации, теплопередачи от стенок сосуда к жидкости, методы определения механического эквивалента тепла. Сконструкровал ряд турбин и центробежных насосов.  [c.381]


Смотреть страницы где упоминается термин Метод динамического механического : [c.179]    [c.59]    [c.167]    [c.42]    [c.149]    [c.149]    [c.15]    [c.25]    [c.88]    [c.181]   
Компьютерное материаловедение полимеров Т.1 (1999) -- [ c.0 ]



ПОИСК



Метод механический

Методы динамического



© 2025 Mash-xxl.info Реклама на сайте