Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рассеяние механических свойств

При таких условиях в теории вероятности доказывается центральная предельная теорема Ляпунова, в соответствии с которой распределение суммы большого числа независимых случайных величин (с произвольными законами распределения ) подчиняется нормальному закону. В практике нормальное распределение встречается очень часто погрешности изготовления и измерения деталей, рассеяние механических свойств материалов, распределение различного рода случайных воздействий и т. п. Нормальный закон распределения обладает устойчивостью, линейные функции нормальных случайных величин также следуют этому закону. Во многих задачах с помощью нормального закона или его модификаций можно приближенно представить другие распределения. Плотность распределения при нормальном законе выражается следующим равенством  [c.218]


РАССЕЯНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ  [c.107]

Основное преимущество статистического запаса прочности по сравнению с обычными (детерминистскими) запасами состоит в том, что сопоставление приводится к одинаковым условиям (по объему используемой информации) по рассеянию механических свойств материала и действующих напряжений.  [c.625]

Для данного типа- систем (изделий) должны быть установлены нормы прочности, регламентирующие допустимые запасы прочности и необходимый объем экспериментальных исследований. Запасы прочности должны учитывать рассеяние механических свойств материала, вероятности рабочих нагрузок различной величины и продолжительности, число циклов нагружений и т. п.  [c.630]

Экспериментальные исследования показали, что статическая прочность стеклопластиков мало зависит от размера заготовки (объекта), из которой изготовляется образец, и определяется размерами нагружаемого элемента или образца. Влияние абсолютных размеров на прочность связано с рассеянием механических свойств  [c.40]

В литературе нет достаточно полных сведений о рассеянии механических свойств стеклопластиков при повышенных температурах и нет данных о проведении соответствующих испытаний па образцах, подвергающихся одностороннему тепловому воздействию.  [c.120]

Оценка запаса прочности в статистическом плане предполагает наличие следующих данных а) о различной нагруженности в силу тех или иных эксплуатационных причин многих одинаковых деталей, иначе о вероятности определенной нагруженности единичной детали, и б) о рассеянии механических свойств, в данном случае долговечности рассчитываемой детали, определенной при массовых испытаниях одинаковых образцов и деталей по соответствующей программе, иначе о вероятности той или иной ее прочности. Вопрос о запасе решается сопоставлением двух указанных выше статистических распределений.  [c.15]

Сопоставляя между собой расчетную и конструкционную прочность, необходимо иметь в виду один из важнейших факторов, влияющих на несущую способность конструкции, — фактор рассеяния механических свойств металлов, геометрических размеров сечений и действующих нагрузок. Конструкционная прочность, объективно отражающая влияние рассеяния, всегда по своей природе является величиной, изменяющейся в довольно широких пределах. Обычно пользуются сравнением некоторых средних значений фактической конструкционной прочности и расчетной. Даже при их совпадении остается открытым вопрос о возможном рассеянии кон-  [c.260]

Свойства этого чугуна зависят от структуры металлической основы и от формы, размера и количества графитных включений. Чем меньше в металлической основе феррита, тем выше прочность чугуна. Хрупкие включения графита нарушают сплошность металлической основы. Мелкие равномерно рассеянные графитовые включения несколько ослабляют чугун, который по прочности приближается к металлической основе. Лучшими механическими свойствами обладает чугун со структурой перлита, содержащий графит в виде мелких равномерно распределенных чешуек.  [c.75]


Выше уже указывалось, что кристаллы с точечными дефектами в определенном количестве могут быть термодинамически равновесны. Однако в ряде случаев возникают и избыточные неравновесные точечные дефекты. Различают три основных способа, с помощью которых дефекты могут быть созданы быстрое охлаждение от высоких до сравнительно низких температур (закалка) дефектов, которые были равновесны до закалки, пластическая деформация, облучение быстрыми частицами. Возникающие в этих случаях типы точечных дефектов, как правило, те же, что и вблизи термодинамического равновесия. Однако относительные доли каждого типа дефектов могут существенно отличаться от характерных для равновесия. Поэтому в изучении дефектов решетки особую роль играют экспериментальные методы, такие, как изучение электросопротивления (зависимости его от температуры и времени), рассеяния рентгеновских лучей и нейтронов, зависимости теплосодержания от температуры и времени, механических свойств, ядерного гамма-резонанса, аннигиляции позитронов и т. д.  [c.235]

При перекрестной прокатке карбонильного железа и вообще о. ц. к. металлов обнаружено существенное уменьшение рассеяния текстуры. В г. ц. к. металлах, в частности меди, текстура после перекрестной прокатки представляла собой наложение двух обычных текстур прокатки, повернутых одна относительно другой на 90°. Кроме того, возникают и некоторые другие ориентировки, что в сумме заметно уменьшает анизотропию механических свойств.  [c.290]

Предел выносливости детали определяют экспериментально на некоторой базе испытаний (обычно 10 циклов). Разброс характеристик сопротивления усталости деталей обусловлен нестабильностью механических свойств металла даже в пределах одной плавки, отклонениями в режиме термообработки, отклонениями размеров деталей в пределах допусков, микроскопическими источниками рассеяния, связанными с неоднородной структурой материала и др.  [c.264]

Кроме измельчения зерна и повышения механических свойств, вибрация интенсифицирует дегазацию залитого в матрицу расплава. Несмотря на получение мелкозернистой структуры, если до приложения давления газ не успевал выделиться, возможно даже снижение механических свойств сплавов в заготовках, получаемых с рассеянными газовыми раковинами, наблюдаемыми в расплющенном виде. Поэтому расплав перед заливкой должен быть тщательно рафинирован и дегазирован.  [c.143]

В направлении, перпендикулярном к плоскости листа, блоки когерентного рассеяния в 2,5—3 раза меньше, чем у мартенсита обычной закалки. Наличие кристаллографической текстуры мартенсита, безусловно, предопределяет отмеченную выше анизотропию механических свойств упрочненной стали [111, 112, 121].  [c.81]

Теневой метод применяют в основном для контроля листов малой и средней толщины, изделий из материалов с большим рассеянием УЗК (покрышек колес). При особенно большом рассеянии используют временной теневой метод (контроль бетона, огнеупоров). Условием его применения является двусторонний доступ к изделию. В случае, когда это условие не выполняется, может быть использован зеркально-теневой метод (например, для контроля железнодорожных рельсов). Теневой эхо-метод и сквозной эхо-метод применяют для повышения чувствительности теневого метода к мелким дефектам. Различные варианты методов прохождения применяют для контроля физико-механических свойств бетона, чугуна, стеклопластиков, древесностружечных плит, технических тканей и т. д.  [c.203]

Рассеяние вызывается устранимыми факторами (различная шероховатость поверхности, биение образцов, колебания механических свойств металла, отклонение размеров образцов, неидентичность условий испытания и др.), а также постоянно действующими факторами (неоднородное распределение неметаллических включений, различная ориентация и прочность зерен, текстура и др.).  [c.54]

Теневой метод применяют вместо эхо-метода при исследовании физико-механических свойств материалов с большими коэффициентами затухания и рассеяния акустических волн, например, при контроле прочности бетона по скорости ультразвука. Для этой цели применяют не только теневой метод, но и (в более общем виде) метод прохождения. Например, излучатель и приемник располагают с одной стороны изделия на одной поверхности и измеряют время и амплитуду сквозного сигнала головной или поверхностной волны.  [c.102]


Анизотропия механических свойств обусловливает аномальное изменение не только скоростей упругих волн и их траектории распространения, но и коэффициента затухания (рассеяния). В работе (90 ] исследовано изменение коэффициента затухания продольных волн в металле шва в зависимости от угла ф между волновым вектором и осью кристаллита. Установлено, что коэффициент затухания при f —2,5 МГц изменяется периодически от  [c.323]

Применительно к однократным статическим и динамическим испытаниям мало изученным остается вопрос о рассеянии характеристик упрочнения, хотя дисперсии стандартных механических свойств было уделено достаточное внимание при выборках, достигающих тысяч и десятков тысяч.  [c.20]

Испытания на коррозионную усталость, как известно, характеризуются неизбежным разбросом результатов эксперимента. Разброс вызывается погрешностью машин, условиями проведения опыта, точностью и технологией изготовления образцов и др., а также неоднородностью структуры и химического состава испытываемого материала. (наличие неметаллических включений, микротрещин, химическая неоднородность, анизотропность механических свойств и пр.). Если влияние первой группы факторов можно значительно уменьшить усовершенствованием оборудования и методики испытаний, то рассеяние экспериментальных данных, вызванное неоднородностью материала, связано со статистической природой коррозионно-усталостного разрушения и его нельзя полностью устранить. Его необходимо учитывать при испытаниях достаточно большого числа образцов, а результаты опыта желательно обрабатывать с помощью методов математической статистики.  [c.32]

Таким образом, на рассеяние пределов выносливости деталей серийно изготовляемых машин помимо указанного фактора будут влиять еще межплавочное рассеяние механических свойств и отклонение фактических размеров деталей от номинальных, определяющих рассеяние величины о.  [c.149]

Влияние межплавочного рассеяния механических свойств металла учитывается с помощью коэффициента вариации о и средних значений пределов вьгаосливости  [c.149]

Последние три требования имеют особенно большое значение в связи с развитием вероятностных методов расчета на усталость. В таких расчетах характеристики рассеяния механических свойств материала, для исследования которых необходимо проведение массовых испытаний, используются как самостоятельные расчетные параметры, поэтому они должйы быть обусловлены только природой самого материала, а не условиями проведения испытаний. При этом весьма важно динамическое исследование машин для испытания на усталость, рассматриваемое как один из ответственных этапов их доводки. Цель таких исследований состоит в, опытном определении динамических свойств соответствующих колебательных систем, отличающихся от расчетных моделей в связи с обычно принимаемыми в последних упрощениями, а также в накоплении данных, позволяющих достаточно томно судить о том, в какой мере результаты исследования закономерностей сопротивления усталости, получаемые с (ПОМОЩЬЮ этих машин, могут считаться достоверными.  [c.54]

Такие характеристики сопротивления усталости, как число циклов до разрушения N и предел выносливости a j являются случайными величинами, которым свойственно большое рассеяние даже при условии испытания идентичных образцов, изготовленных из материала одной плавки. Для совокупности всех плавок ме-. талла данной марки это рассеяние становится еще большим, так как добавляется межплавочное рассеяние механических свойств металла, связанное со случайными вариациями химического состава металла различных плавок и металлургических факторов, влияющих на свойства [10, 13, 26—28, 34, 60, 76].  [c.34]

РАССЕЯНИЕ МЕХАНИЧЕСКИХ свойств — изменение св-в материала при переходе от одного образца к другому внутри одной серии идентичных образцов, изготовленных из материала одного состояния. Р. м. с. связано с колебаниями химич. состава материала, отклопениями в режимах технологии производства полуфабрикатов, неоднородностью структуры материала (ликвацпонные последствия, различные ориентации и св-ва самих зерен, различия в границах зерен, наличие включений, искажения кристаллич. решетки и т.д.), а также с изменением условий изготовления и испытания образцов (колебания режимов термич. обработки, изменение радиуса закругления режущей кромки инструмента в процессе обработки, различия в точности установки образцов в захватах машины и т. д.).  [c.107]

На рассеяние пределов выносливости деталей серийно-изготовляемых машин помимо указанного фактора влияют еще межплавочное рассеяние механических свойств, отклонение фактических размеров деталей от номинальных и отклонения в параметрах технологических процессов.  [c.274]

Влияние межплавочного рассеяния механических свойств металла учитывается с помощью коэффициента вари-  [c.274]

Межплавочное, рассеяние механических свойств сплавов может быть весьма большим и существенно различаться у разных сплавов [3]. Так, например, коэффициенты вариации предела прочности титанового  [c.139]

Непрерывные распределения, пр>1меняемые при анализе рассеяния механических свойств  [c.266]

Процессы усталостного повреждения, условия возникновения и распространения трещин под циклической нагрузкой носят случайный характер, так как тесно связаны со структурной неоднородностью материалов и локальным характером разрушения в микро- и макрообъемах. Усталостные разрушения обычно возникают на поверхности, поэтому качество и состояние поверхности часто является причиной случайных отклонений в образовании разрушения. Эта особенность усталостных явлений порождает существенное рассеяние механических характеристик, определяемых при испытании под циклической нагрузкой. Рассеяние свойств при усталостном разрушении значительно превышает рассеяние свойств при хрупком и вязком разрушениях. В связи с этим статистический анализ и интерпретация усталостных свойств материалов и несущей способности элементов конструкций позволяют отразить их вероятностную природу, являющуюся основным фактором надежности изделий в условиях длительной службы.  [c.129]


Рассмотрим кратко механизм об1)емной прочности полимеров. Разрушению в [юлимерах предшествует значительная вязкотекучая деформация в окрестностях треи(ин1)1, сопровождающаяся рассеянием энергии упругой деформации. Сложность оценки прочности полимеров состоит в том, что они могут находиться в нескольких физических состояниях, которые су[цественно отличаются по механическим свойствам и механизмам разруп1ения. Наличие в полимерах двух резко различающихся типов взаимодействия между атомами больших химических сил (связей), действующих вдоль цепных макромолекул, и малых сил (слабых связей) мсжмолекулярного взаимодействия определяет возникновение неоднородности распределения механических напряжений в изотропных полимерах.  [c.92]

В 1852 г. в работе О проявляющейся в природе общей тенденции к рассеянию механической энергии В. Томсон вводит важнейшее деление процессов на обратимые и необратимые. Вое реальные процессы необратимы. Он писал, что только системы тел, подверженные обратимым изменениям, обладают свойством восстанавливать механическую энергию , то есть способно>сть производить ту же самую механическую работу. При не-братимых же процессах, таких, как трение, теплопроводность и т. п., система тел не может прийти в первоначальное состояние, поскольку их механическая энергия , то есть способность совершать работу, непрерывно уменьшается и происходит рассеяние механической Энергии , превращающейся в теплоту.  [c.157]

Металлы, применяемые на практике, имеют поликристалли-ческое строение, и затухание волн в них предопределяется дву.мя основными факторами рефракцией и рассеянием ультразвука вследствие анизотропии механических свойств металла. В результате рефракции фронт ультразвуковой волны отклоняется от прямолинейного направления распространения и амплитуда принимаемых сигналов резко падает. Помимо рефракции волна, падающая на границу кристаллов (.зерен), испытывает частичное отражение, преломление ультразвука и трансформацию, что и определяет механизм рассеяния. Рассеяние в отличие от рефракции приводит не только к ослаблению сигнала, но и образованию  [c.21]

В первой части книги представлены некоторые вопросы теории и практики методов, разрабатываемых в Отделе физики неразрушающего контроля АН БССР, а также результа-1Ы исследования физических процессов и явлений, протекающих в материалах при воздействии переменных и постоянных полей, статических и динамических нагрузок. В области теории нелинейных процессов в ферромагнетиках получены общие соотношения для расчетов гармонических составляющих э. д. с. накладных преобразователей в зависимости от коэрцитивной силы, максимальной и остаточной индукции при наложении постоянного и переменного полей. Даны обзор по теории феррозондов с поперечным и продольным возбуждением, практические рекомендации по их применению. Приведены результаты исследований магнитостатических полей рассеяния на макроскопических дефектах, обоснована возможность их моделирования, рассмотрены режимы записи указанных полей при магнитографической дефектоскопии, обеспечивающие максимальную выяв ляёмость дефектов. Анализируется характер изменения магнитных, механических и структурных свойств высоколегированных и жаропрочных сталей в зависимости от режимов термической обработки для обоснования метода контроля по градиенту остаточного поля ири импульсном локальном намагничивании, который широко используется при контроле механических свойств низкоуглеродистых сталей.  [c.3]

Возникает вопрос чем может быть обусловлена активация новой системы скольжения в процессе усталостного нагружения На этот вопрос в настоящее вре.мя трудно ответить однозначно. Нам представляются вероятными две причины. Во-первых, в процессе усталостного нагружения происходит неупругое рассеяние механической энергии, которое приводит к разогреву образца. Поскольку молибден обладает разной ориентационной и температурной зависимостью предела текучести, то при увеличении температуры испытания будет изменяться геометрия скольжения. Поэтому в процессе усталостных испытаний, когда происходит автокаталитпческий разогрев образца, может активироваться новая система скольжения. В результате начнут проявляться ко.ллективные свойства дислокационного ансамбля с образованием бездислокационных каналов.  [c.168]

Степень суммарных повреждений определяли из уравнения (2.1). Повышенный разброс данных для сплава ХН56МВТЮ (рис. 2.24, в) можно объяснить меньшей деформационной способностью этого сплава и большим разбросом результатов испьгганий на мапоцикловую и термическую усталость. Указанный диапазон разброса суммарньгх повреждений соответствует весьма малому рассеянию данных по долговечности, что, учитьтая различие механических свойств исследуемых сплавов, подтверждает возможность деформационной трактовки условий малоцикловой неизотермической прочности для различных уровней температур и режимов нагружения] 2, 3 ].  [c.44]

Совершенно стоек к действию воды, весьма стоек к действию озона. Окраска и механические свойства не изменяются от воздействия рассеянного света. Под действием прямых солнечных и ультрафиолетовых лучей распадается, прочность и эластичность понижаются, появляется липкость. Добавка окрашенных наполнителей или нанесение защитного слоя лака повышают светостойкость (добавка 1% активной сажи приводит к стабильности механических свойств под кварцевой лампой в течение 24 ч). Сохраняет эластичность др —55° С. При нагревании до -fl00° С и выше механические свойства снижаются (примерно в 3—4 раза), а пластичность возрастает (примерно в 4—5 раз). При комнатной температуре первоначальные прочность и пластичность восстанавливаются.  [c.167]

В результате отпуска сталей Н16 и Н25 при 43Q° G, I ч происходит значительное уменьшение ширины линий интерференции. Разделение эффекта уширения интерференционных линий за счет наличия микроискажений и малости областей когерентного рассеяния позволило установить, что резкое уменьшение ширины линий, наблюдаемое при отпуске сталей Н1б и Н25 в основном связано с уменьшением величины неоднородных микроискажений. Так, в сплаве Н25 отпуск при 430° G приводит к снижению Дй/о с 2,8 до 0,3 х 10 [68 J. Размер же областей когег рентного рассеяния и твердость остаются практически неизменными (рис. 50), а предел текучести несколько- возрастает. Аналогичная закономерность в характере изменения характеристик тонкой структуры и механических свойств при отпуске наблюдается  [c.119]


Смотреть страницы где упоминается термин Рассеяние механических свойств : [c.162]    [c.81]    [c.70]    [c.250]    [c.502]    [c.276]    [c.139]    [c.222]    [c.871]    [c.574]    [c.437]   
Расчеты деталей машин и конструкций на прочность и долговечность (1985) -- [ c.139 , c.140 ]



ПОИСК



Механические рассеяние

Рассеяние долговечности механических свойств

Рассеяние характеристик механических свойств металлов, геометрических размеров элементов, нагрузок и вероятностные методы оценки прочности

Статистические методы исследования и контроля механических свойств Рассеяние механических характеристик и задачи статистических методов их исследования и контроля (9. Н. Дарчинов, Б. М. Струнин)



© 2025 Mash-xxl.info Реклама на сайте