Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дислокаций свободные

МЕТОД ЯМОК ТРАВЛЕНИЯ. Этот метод основан на том. что при воздействии специально подобранного травителя на полированную поверхность шлифа в местах выхода дислокаций на эту поверхность появляются ямки травления. Их появление в. местах выхода дислокаций обусловлено тем, что в ядре дислокации свободная энергия повышена и растворение идет быстрее, чем вдали от дислокации. Ядро дислокации действует как центр растворения. Под микроскопом ямка травления становится видна тогда, когда  [c.101]


Рассматривая совокупность приведенных данных, естественно предположить, что в свежем мартенсите дислокации свободны и могут легко перемеш.аться, однако, на очень малые  [c.336]

После того как все деформированные зерна выметаются границами зерен и очищаются от большинства дислокаций, свободная энергия поликристалла все еще может уменьшиться, если уменьшится общая площадь границ зерен [81]. Это достигается путем роста зерен, который приводит либо к образованию равновесной полигональной структуры, либо в некоторых случаях даже к образованию монокристаллов [215].  [c.90]

Следует также учитывать энергетическую сторону образования выделений. Энергия связи атомов углерода и азота с дислокацией, свободной от примесных атомов, в 1,5—2 раза выше, чем в соответствующем карбиде или нитриде [6]. С повышением концентрации атомов внедрения на дислокациях энергия связи с внедренными атомами может значительно уменьшаться, становясь такой же, как в карбиде или нитриде. Если учесть, что образование выделений происходит на поздних стадиях старения (высокая температура или продолжительная выдержка), то благодаря достаточно высокой диффузионной подвижности атомов внедрения и ослаблению энергии связи их с дислокациями возможен переход атомов от дислокаций к частицам карбидов. Даже возникшее выделение, обладая весьма малыми размерами, вряд ли будет устойчиво в соседстве с крупными карбидными частицами. По-видимому, старение средне- и высокоуглеродистых сталей ограничивается стадией сегрегаций, разрушающихся при повышении температуры или продолжительности старения.  [c.168]

Средняя плотность свободных дислокаций, т. е. число дислокационных линий, пересекающих площадку размером 1 см , составляет для отожженных монокристаллов германия рд = = 10 н- 10 Мсм . При большем числе дислокаций свободные дислокации сливаются в группы, образующие внутри кристалла сетку так называемой субструктуры.  [c.78]

Образование дислокаций путем сдвига (рис. 91, в и д) не требует удаления материала или добавления лишнего, поэтому такой путь является наиболее естественным. В кристалле достаточно больших размеров и не содержащем других дефектов дислокация может перемещаться. Действительно, искажение кристаллической решетки, связанное с дислокацией, означает изменение междуатомных сил, а следовательно, изменение энергии кристалла. Чтобы образовать дислокацию, нужно переместить края разреза, при этом придется преодолевать междуатомные силы, то есть совершать работу. Эта работа равна энергии дислокации. Очевидно, что в кристалле неограниченных размеров энергия дислокации не зависит от ее поло- жения, следовательно, с энергетической точки зрения дислокация свободна и может перемещаться как угодно. Однако существует кинематическое ограничение возможных движений дислокации. Представим себе, что положительная краевая дислокация переместилась вниз на некоторое расстояние 6. Это значит, что мы должны были сделать дополнительный разрез на длину б и вставить туда слой атомов.  [c.144]


Несовершенства строения кристаллов влияют на энергетическую неустойчивость кристаллической системы в целом. В наибольшей степени несовершенства строения проявляются в бездиффузионных процессах при самопроизвольной перестройке кристаллической решетки. Поскольку несовершенства строения характеризуются повышенной величиной свободной энергии и их передвижение, как указывалось ранее, в зависимости от типа кристаллической решетки также обусловлено энергетическими факторами, большое значение в установлении наиболее оптимальных в энергетическом отношении способов перестройки решетки кристаллов играют дислокации. Винтовая дислокация, например, на поверхности кристалла стимулирует кристаллизацию с минимальными затратами энергии по сравнению с кристаллизацией на идеально плоской грани.  [c.26]

Другой путь, как это ни парадоксально, прямо противоположен и состоит в создании металлов, имеющих возможно больше нарушений правильной кристаллической структуры. Эти нарушения микроструктуры — точечные и линейные (дислокации) — могут быть получены или сочетанием пластического деформирования металла (наклепа) с термообработкой, или путем нейтронного облучения. При этом из кристаллической решетки выбиваются атомы и в решетке создаются или свободные места — вакансии, или атомы без места — внедренные атомы. Эти нарушения микроструктуры делают металл более прочным, так как затрудняют передвижение внутри кристалла, подобно тому как шероховатые поверхности двух брусков препятствуют их скольжению.  [c.37]

Дислокации представляют собой дефекты кристаллического строения, вызывающие нарушения правильного расположения атомов на расстояниях, значительно больших, чем постоянная решетки. Они возникают случайно при росте кристалла и термодинамически неравновесны. Причинами образования дислокаций могут быть также конденсация вакансий, скопление примесей, действие высоких напряжений. Процесс преобразования скоплений точечных дефектов в линейные идет с уменьшением свободной энергии кристалла.  [c.470]

Свободная энергия дислокации, подчиняющаяся уравнению Гельмгольца (12.54), полностью определяется потенциальной энергией. Это вызвано двумя обстоятельствами.  [c.472]

Дислокация представляет собой энергетически неуравновешенный атомный комплекс с повышенной свободной энергией. Под влиянием внешнего силового (энергетического) воздействия она начинает двигаться к положению с наименьшей свободной энергией (стабильному состоянию). В процессах возникновения и движения дислокаций, в том числе при пластической деформации, они перемещаются к поверхности, где увеличивают плотность участков с повышенной свободной энергией, повышенной активностью, что имеет большое значение при сварке металлов давлением в твердом состоянии.  [c.472]

При ускоренном охлаждении и больших степенях переохлаждения вместо стабильной фазы 0 часто образуется метастабиль-ная фаза 0, содержащая обычно меньше растворенного компонента, чем в стабильной (см. рис. 13.6). Фаза 0 зарождается гетерогенно предпочтительно на малоугловых границах блоков внутри зерен, скоплениях вакансий и отдельных дислокациях. Они имеют полностью или частично когерентные границы раздела. Возникновение метастабильных фаз обусловлено меньшим значением энергетического барьера при их зарождении, чем стабильных. Кроме того, для возникновения метастабильной фазы требуются меньшие концентрационные флуктуации. При длительной выдержке может произойти переход 0 в 0, в результате чего будет достигнуто равновесное состояние сплава с минимальной свободной энергией.  [c.498]

Использование количественного анализа магнитных эффектов позволило найти количество углерода в этих состояниях. В частности, на ранних стадиях термообработки отпуском большая часть углерода стали (не менее 60% от общего количества) находится в свободном состоянии в виде сегрегаций в местах наибольшей концентрации дислокаций.  [c.68]

Свободная энергия дислокации (на единицу ее длины) дается интегралом  [c.155]

Прямолинейная винтовая дислокация расположена параллельно плоской свободной поверхности изотропной среды. Найти действующую на дислокацию силу.  [c.163]


Поле напряжений, оставляющее поверхность среды свободной, описывается суммой полей дислокации и ее зеркального отражения в плоскости у, г, как если бы они были расположены в неограниченной среде  [c.163]

Заметим, что на упругие и пластические свойства твердых тел оказывает влияние характер сил связи. Ковалентные кристаллы (алмаз, кремний, германий) при комнатной температуре бывают жесткими и хрупкими, так как направленный характер связей препятствует сдвиговому движению, а также мешает перемещению одного атома вслед за другим, как это имеет место при движении дислокаций в решетке. Разрушение начинается прежде, чем дислокации могут обеспечить достаточно большие сдвиги, поскольку их движение затруднено ио сравнению с движением дислокаций в металлах. Ионные кристаллы гораздо более пластичны, если они совершенно чистые (обычные кристаллы могут быть и хрупкими из-за наличия внедренных в них дефектов). Электростатические силы — ненаправленные, и потому ионы могут перемещаться с места на место в той мере, в какой этому мешают их размеры. Металлы, как мы видели выше, наиболее пластичны в них возможно свободное перемещение дислокаций.  [c.136]

Рассеиваться фононы могут не только на фононах, но и на точечных дефектах (например, на примесных атомах), на линейных (дислокации), на границах зерен в поликристаллах и т. д. Перечисленные несовершенства кристаллической решетки могут поглощать и энергию, и импульс фонона. Поэтому в кристаллах с большим количеством дефектов длина свободного пробега фононов I мала при любых температурах.  [c.46]

Здесь 1 0 — энергия винтовой дислокации в неограниченной среде, определяемая по формуле (14.5.2), второй же член формулы может быть назван энергией взаимодействия со свободной поверхностью. В формуле принято = р/Д. Энергия дислокации, рассматриваемая как функция ее относительной координаты имеет минимум при = О и максимум цри S =  [c.470]

Дислокация, созданная в неограниченной упругой среде, может в ней свободно перемещаться, если выполнено условие (14.9.1). Действительно, энергия дислокации не зависит от ее положения, следовательно, движение линии дислокации с сохранением конфигурации не требует затраты дополнительной работы. В теле конечных размеров дислокация уже не свободна, упругая энергия тела зависит от положения дислокации и естественным направлением ее движения будет то, которое приводит к уменьшению энергии. Так, в примере 14.8 дислокация, находящаяся на расстоянии от оси цилиндра р < 0,541, будет двигаться к оси, стремясь занять положение устойчивого равновесия. Дислокация, удаленная от оси на расстояние, превышающее р = 0,541, будет двигаться от оси, стремясь выйти па поверхность.  [c.472]

Деформация существенно меняет состояние материала и пленок. Вопрос о влиянии на развитие коррозионных трещин перемещения дислокаций (свободных мест в узлах кристаллической рещетки) в металле и в самой пленке является до сих пор дискуссионным.  [c.185]

Обратное напряжение создается только присутствием дисперсных частиц (а) в обратное напряжение вносит вклад внутреннее напряжение, создаваемое дислокациями (свободными и связанными в границах субзерен) и дисполями (б).  [c.165]

Вначале образование зуба и площадки текучести в о. ц. к. металлах связывали с эффективной блокировкой дислокаций примесями. Известно, что в о. ц. к. решетке атомы примесей внедрения образуют не обладающие шаровой симметрией поля упругих напряжений и взаимодействуют с дислокациями всех типов, в том числе с чисто винтовыми. Уже при малых концентр а-циях [<10 —10 % (ат.)] примеси (например, азот и углерод в железе) способны блокировать все дислокации, имеющиеся в металле до деформации. Тогда, по Коттреллу, для начала движения дислокаций и, следовательно, для начала пластического течения необходимо приложить напряжение, гораздо большее, чем это требуется для перемещения дислокаций, свободных от примесных атмосфер. Следовательно, вплоть до момента достижения верхнего предела текучести заблокированные дислокации не могут начать двигаться и деформация идет упруго. После достижения а , по крайней мере, часть этих дислокаций (расположенная в плоскостях действия максимальных касательных напряжений) отрывается от своих атмоафер и начинает перемещаться, производя пластическую деформацию. Последующий спад напряжений — образование зуба текучести — происходит потому, что. свободные от примесных атмосфер и более подвижные дислокации могут скользить некоторое время под действием меньших напряжений, пока их торможение не вызовет начала обычного деформационного упрочнения.  [c.144]

На участках контакта в процессе трения вследствие повышения температуры и давления, а также передеформации поверхностных слоев происходят своеобразные хемосорбционные (механо-химические) процессы, в результате которых с поверхности медного сплава удаляются атомы примесей легирующих элементов, поверхность в тонком слое обогащается медью и как бы ожижается вследствие слияния вакансий, образуя прочные связи со смазкой. Новый мягкий и тонкий слой на поверхности обеспечивает минимальное трение и почти полностью воспринимает деформацию. Так как процесс деформации этого слоя происходит в восстановительной среде, например глицерин восстанавливает окись меди до меди, и появление окисных пленок на образующемся медном пористом слое исключено, то дислокации свободно в нем перемещаются и выходят на поверхность. Последнее устраняет развитие процессов усталостного разрушения и вместе с взаимным переносом металла с одной поверхности на другую обеспечивает эксплуатацию узла трения практически без износа.  [c.205]

С повышением температуры превращения при высоких скоростях нагрева (при перенагреве) свободная энергия системы возрастает настолько, что число центров зарождения 7-фазы увеличивается за счет их образования в областях структуры о меньшей плотностью дислокаций. Свободная энергия, существующая вокруг этих зон, исчезая при превращении, передается зародышу новой фазы, понижая энергию его образования. Отмеченное подтверждается тем обстоятельством, что при быстром нагреве стали аустенит образуется в первую очередь вокруг деформированных участков а-фазы, термодинамический потенциал которых выше, чем у недеформированной а-фазы, из-за наличия большого количества дефектов кристаллического строения и низкой устойчивости с термодинамической точки зрения. В то же время при медленном нагреве (со скоростью до 1 °С/мин) в результате исчезновения искажений решетки в образцах с различной исходной структурой образуется примерно одинаковое количество аустенита, так как при этом участками зарождения 7-фазы становятся поверхности раздела фаз.  [c.74]


Другой фазы. При закаливании стали, например, выпадают кристаллы карбида железа. К тому же эффекту (упрочнению) приводит наличие границ зерен. Закрепить дислокации можно также путем введения примесей. Введенные при высокой температуре примеси концентрируются на дислокациях, так как там имеется большой свободный объем и они легко диффундируют в него. При низких температурах атомы примесей замораживаются и не дают дислокации свободно двигаться по кристаллу. Взаимодействие атомов примесей с дислокациями также может фиксировать дислокации в решетке, поскольку разрыв связи между атомами примеси, вызываемой движением дислокации, связан с затратой энергии. Наконец, даже в самом чистом кристалле может протекать процесс упрочнения, называемый упрочнение при холодной обработке , которое происходит за счет переплетания и сцепления дислокаций при механической обработке, например при волочении и наклепе. В совокупности эти механизмы могут обусловить увеличение прочности кристалла на величину до одного процента модуля сдвига совершенный кристалл, как можно показать, выдерживает механические напряжения до Ve модуля сдвига (кубическая решетка). При высоких температурах вследствие увеличения растворимости и скорости диффузии дислокации снова могут свободно передвигаться по кристаллу, и поэтому прочность кристалла падает.  [c.87]

Напряжспнс при достижении им предела текучести вызовет пластическую деформацию, т. е. приведет в движение дислокации. Если препятствий для свободного перемещения дислокаций нет и они не возникают в процессе деформации, то деформация может быть сколь угодно большой. При растяжении образец может удлиниться в десятки и сотни раз, превращаясь в подобие проволок. В некоторых случаях (при определенных температурах и скоростях деформации иек оторых металлов) это наблюдается и носит название сверх-пластичность. Конечно, так удлиниться на многие сотни и даже тысячи нро-цептов образец сможет лишь тогда, когда не возникает местное сужение (Шейка). Если возникает шейка, то деформация локализуется и в таком металле, в конечном итоге, произойдет разделение образца на два куска, но тогда, когда в месте разделения сечение утонилось до нуля. Это не редкий случай (рис. 48).  [c.70]

При этом принятые допущения имеют разумное физическое объяснение. Известно, что в поверхностных слоях металла зарождение скользяЩ Их дислокаций значительно облегчено по сравнению с глубинными слоями. Феноменологически это явление связано со снижением напряжения микротекучести материала в поверхностных слоях образца [1, 190]. В результате при весьма низких нагрузках может зародиться микротрещина, размер которой соответствует размеру поверхностного слоя [191]. В то же время при образовании трещины длиной 1° сопротивление пластическому деформированию в окрестности ее вершины увеличивается (деформирование происходит не у свободной поверхности) и дальнейший рост трещины возможен только при нагрузках, приводящих к обратимой пластической деформации материала (строго говоря, к процессам микротекучести) в объеме, большем чем размер зерна, т. е. при А/С > > AKth.  [c.220]

В металлах положительные ионы расположены практически равноправно по отношению друг к дру17 а свободные злектроны в виде "электронного г за , являясь общими для всего куска металла или металлической детали(рис.4,а)> не препятствуют перемещению ионов металла по отношению друг к другу. Ионы металла способны сравнительно легко перемещаться под действием незначительных нагрузок в любом направлении, образуя при этом широкие дислокации.  [c.10]

Особое значение для циклической прочности имеет предупреждение коррозии. Положительный эффект дает нанесение микронных пленок полимеров (поливинияхлоридов, эпоксидов, синтетических каучуков), а также органических веществ с активными гидроксильными группами, обеспечивающими прочную связь покрытия с металлом. Упрочняющее действие пленок обусловлено не только предупреждением коррозионных процессов. Пленки, по-видимому, образуют молекулярный барьер, препятствующий выходу дислокаций на поверхность металла. Этот способ применим для свободных поверхностей и поверхностей в неподвижных соединениях и ограниченно для поверхностей, работающих в условиях трения скольжения.  [c.324]

В холоднодеформированном металле при нагреве миграция границ зерен и изменение их размера и формы имеет свои специфические особенности. В этом случае получает развитие процесс рекристаллизации обработки или первичной рекристаллизации. Движущей силой процесса служит накопленная при пластической деформации энергия, связанная в основном с образованием дислокаций, имеющих высокую плотность (до 10"...10 см ). Рекристаллизация обработки приводит к образованию новых равноносных зерен с обновленной кристаллической решеткой. При этом свободная энергия рекристаллизованного металла становится меньше, чем деформированного вследствие уменьшения плотности дислокаций (до 10. ..10 см ). Процесс состоит из образования зародышей новых зерен и их роста. Имеется определенная аналогия с фазовыми превращениями диффузионного типа. Накопленная в объеме зерен энергия деформации примерно в 100 раз выше поверхностной энергии их границ, поэтому рекристаллизация на первых этапах может привести к образованию мелких зерен и увеличению их числа (по сравнению с деформированным металлом).  [c.507]

Современными методами легирования (т.е. внесения в решетку чужеродных атомов), создающими всякого рода несовершенства и искажения кристаллической решетки, являются методы создания препятствий для свободного перемещения дислокаций (блокирюва-ния дислокаций). К данной технологии относятся способы образования структур с так называемыми упрочняющими фазами, вызывающими дисперсионное твердение, и др. Известны следующие методы п]юизводства дисперсионно-упрочненных сплавов порошковые методы, методы взаимодействия твердого металла с газовой средой (метод окисления и азотирования) и металлургические методы- (плавка и легирование тугоплавкими металлами).  [c.27]

Упругие напряжения вокруг дислокации такого типа можно представить, если рассмотреть деформацию цилиндрического кольца изотропного (для простоты) материала (рис. 10.6). Пусть в этом кольце совершен разрез, а затем свободные поверхности разреза сдвинуты относительно друг друга вдоль оси цилиндра на расстояние Ь, равное длине вектора Бюргерса. Возникшая при этом однородная деформация сдвига евг равна высоте стпеньки Ь, разделенной на длину окружности 2яг цилиндрического элемента радиуса г  [c.240]

Применяемые на практике металлы и сплавы представляют собой твердые растворы с упорядоченным и неупорядоченным аморфным распределениями атомов. Твердые растворы могут содержать несовершенства четырех основных типов точечные (нульмерные), линейные (одномерные), поверхностные (двухмерные) и объемные (трехмерные). К первым относятся вакансии (свободные узлы кристаллической решетки) и межузельные (смещенные) атомы ко вторым — цепочки точечных дефектов, различные типы дислокаций к третьим — дефекты упаковки атомов, границы зерен, блоков, двойников и т. д. к четвертым дефектам относятся поры, включения, выделения, технологические трещины и тому подобные образования, размеры которых намного превосходят межатомные расстояния.  [c.321]


Величина с — это радиус ядра дислокации, имеющий порядок Ь. Желая вычислить энергию более точно, мы должны были бы прибавить ск1да энергию ядра, которая уже не может быть найдена методами теории упругости, для ее подсчета необходимо прибегать к атомным моделям. Величина R представляет собою размер тела, для тела бесконечных размеров и энергия дислокации становится бесконечно большой. В связи с этим можно сделать следующее замечание. При построении дислокации мы исходили из неограниченной среды, в предположении бесконечных размеров тела были вычислены напряжения. В теле конечных размеров, вообще говоря, возникает дополнительная система напряжений, которая находится из условия равенства нулю сил, действующих на свободную поверхность. Для винтовой дислокации как раз дело обстоит просто, поверхность кругового цилиндра,  [c.464]

Краевая дислокация может быть образована сдвигом одной части кристалла относительно другой на одно межатомное расстояние не на всю длину кристалла U, а только на ее часть l=AD (рис. 14). В этом случае в верхней части кристалла образуется одна дополнительная плоскость АА В В, называемая экстраплоскостью. Граница экстраплоскости АВ внутри кристалла и есть дислокация. Ее длина L составляет обычно 10 —10 нм. Так как плоскость скольжения AB D не распространилась на всю длину кристалла 1 и сдвиг прошел только в части кристалла до границы АВ, можно сказать, что дислокация — граница незавершенного сдвига, а длина ее свободного пробега /с.п=ЛЬ.  [c.31]

При приближении дислокации к свободной поверхности энергия деформации кристалла уменьшается, так как свободная поверхность не вызывает напряжений, которые препятствовали бы перемещению дислокации. Чем меньше расстояние от свободной поверхности до дислокации, тем меньше энергия дислокации и больше ее притяжение к свободной поверхности. Поэтому дислокация будет притягиваться к поверхности до тех пор, пока она не выйдет на поверхность, при этом образуется ступенька в одно межатомное расстояние. Сила притяжения дислокации к свободной поверхности кристалла аналогична силе, с которой в бесконечном кристалле на нее действует воображаемая дислокация противоположного знака, соответствующим образом ориентированная по отношению к поверхности. В случае винтовой дислокации, приближащейся к плоской поверхности, воображаемая дислокация есть зеркальное отражение исходной дислокации от поверхности кристалла. В этом случае силу, притягивающую дислокацию к поверхности, называют силой изображения. В частности, если винтовая дислокация параллельна свободной поверхности и лежит на расстоянии г от нее, то сила изображения на единицу длины дислокации  [c.52]


Смотреть страницы где упоминается термин Дислокаций свободные : [c.464]    [c.471]    [c.206]    [c.207]    [c.123]    [c.158]    [c.69]    [c.54]    [c.111]    [c.37]    [c.238]    [c.245]    [c.50]   
Ползучесть металлических материалов (1987) -- [ c.31 , c.73 , c.74 , c.75 , c.76 , c.83 , c.102 , c.110 , c.130 , c.138 , c.143 , c.148 , c.164 , c.168 ]



ПОИСК



Дислокация

Особенности термоактивизированного движения дислокаций вблизи свободной поверхности

Свободные, подвижные и движущиеся дислокации

Структурно-энергетические особенности зарождения и размножения дислокаций вблизи свободной поверхности твердого тела



© 2025 Mash-xxl.info Реклама на сайте