Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Параметры технологического процесса резания

Параметры технологического процесса резания  [c.561]

При обработке резанием в зависимости от материала детали и параметров технологического процесса в поверхностном слое может возникать деформационное упрочнение (табл. 7.10), а также сжимающие или растягивающие остаточные напряжения, значение которых может превышать значение предела прочности материала детали.  [c.165]

На рис. 7.12 приведена зависимость шероховатости поверхности Ра от параметров технологического процесса V и я. Увеличение скорости резания и подачи приводит к увеличению шероховатости, однако при исследуемых диапазонах у и 5 она не превосходит значения РаХ 1,25 мкм. Поскольку выходным параметром процесса также является качество поверхности, выбор оптимальных режимов обработки, обеспечивающих  [c.157]


Измерение составляющих силы резания показало, что вертикальная составляющая Р, на два порядка меньше горизонтальной составляющей Рх, которая, в свою очередь, не превосходит значения 90 И. Поэтому на рис. 7.13 приведены лишь зависимости горизонтальной составляющей Р от параметров технологического процесса и и 5. Вертикальную составляющую Рг В Практических расчетах можно не учитывать.  [c.158]

Совокупность значений параметров технологического процесса в определенном интервале времени называется технологическим режимом или, сокращенно, режимом. К параметрам технологического процесса относятся скорость резания, подача, глубина резания, температура нагрева или охлаждения.  [c.89]

Влияние режимов резания и геометрии инструмента на шероховатость поверхности при обработке того или иного материала можно определить экспериментальным путем, если изменять при обработке какой-либо параметр технологического процесса и измерять шероховатость обработанной поверхности.  [c.105]

Для расчета оптимальных параметров технологического процесса используются различные функциональные модели, как правило, в виде аналитических зависимостей от управляемых параметров технологического процесса. Примером аналитической модели служит зависимость скорости резания от параметров технологического процесса при наружном точении на токарном станке  [c.211]

При выборе необходимых объемов аспирации для разных технологических процессов резания следует учесть направление движения стружки и пыли от резца. Как известно [106], указанное направление зависит от физикохимических свойств обрабатываемого материала, характера обработки, режима резания, геометрических параметров режущего инструмента. Располагая данными о направлении и скорости движения пылевых частиц и стружки, их размере, плотности, коэффициенте лобового сопротивления 106,108,110], корректируя уравнение движения (2.34) и задавая соответствующие начальные условия для полета пыли и стружки, можно изложенный метод применять для определения необходимых объемов аспирации от различных токарных, сверлильных, шлифовальных, фрезеровальных, деревообрабатывающих и других станков с вращающимися цилиндрическими деталями.  [c.529]

Принципиальная схема технологического процесса выражает состав и последовательность этапов (укрупненных операций) обработки и сборки изделия. Проектирование операций включает определение состава технологических переходов, планов или маршрутов обработки поверхностей последовательности выполнения переходов обработки разных поверхностей расчет технологических параметров (припусков, режимов резания, норм времени, погрешностей обработки и др.). В проектирование технологического процесса входит также выбор заготовки, баз, оборудования, технологической оснастки (приспособлений, инструмента и др.).  [c.70]


Расчет оптимальных параметров (режимов резания, параметров качества и др.) технологического процесса или операции при за данной структуре с позиции некоторого критерия называют параметрической оптимизацией.  [c.109]

Параметр — численная характеристика основных размеров (шаг резьбы), режимов или состояний продукции (мощность двигателей), технологических процессов (обработка типовых деталей резанием), физических явлений (температура образования льда).  [c.8]

Технологические параметры (допуски на размеры, точность и чистота обработки поверхностей, марки материалов и т. п.) служат ограничениями при построении технологического процесса и выбора соответствующего оборудования. Например, средняя точность механической обработки на станках зависит от вида обработки (резание, сверление, шлифование, фрезерование и т. п.) и приводится в справочниках. Следовательно, заданная точность. ограничивает возможности выбора тех или иных станков. Причем с повышением точности себестоимость возрастает по гиперболическому закону. А если также учесть, что механической обработке подвергаются почти все детали и узлы ЭМП для получения требуемой геометрической конфигурации и обеспечения заданных технологических параметров, то нетрудно представить, к каким отрицательным последствиям приводит завышение требований к  [c.180]

Для этой цели предусмотрены датчики, которые контролируют все основные факторы, влияющие на нормальный ход технологического процесса. Контролируются параметры станка и технологического процесса — силы резания, кинематические параметры, износ инструмента, вибрации, износ направляющих и др., измеряются параметры обработанной детали (в первую очередь ее геометрия и качество поверхности) средствами активного контроля, оцениваются параметры заготовки. Кроме того, осуществляется  [c.464]

И если прикладное направление базируется главным образом на законах механики, сопротивления материалов, теории резания, то научно-теоретической основой проблемных исследований являются положения теории производительности, надежности, технико-экономической эффективности. Поэтому не случайно Г. А. Шаумян явился основоположником нового направления науки о машинах — теории производительности рабочих машин, которая в настоящее время получила широкое развитие в самых различных отраслях производства. Он неустанно подчеркивал, что теория производительности — это не просто подсчет производительности или количества выпущенной продукции. Она прежде всего инструмент анализа и синтеза машин, их оптимального построения и эксплуатации. Математическую основу теории производительности составляют уравнения, связывающие показатели производительности с технологическими, конструктивными, структурными и эксплуатационными параметрами машин и систем машин. Тем самым делается возможным сравнение вариантов машин с различными сочетаниями параметров, оценка прогрессивности технологических процессов и их стабильности, конструктивного совершенства машин, надежности механизмов и инструмента, мобильности при переналадке и т. д.  [c.6]

Повышение производительности труда и снижение себестоимости технологических операций при обработке металлов резанием в значительной степени зависят от применяемого режущего инструмента, его конструкции, материала и способа использования. В справочнике приводятся общие сведения о процессе резания, элементах режущего инструмента, механических свойствах и областях применения инструментальных материалов, а также о конструктивных параметрах, назначении и эксплуатационных свойствах резцов, сверл, фрез, протяжек, зуборезного инструмента и абразивов.  [c.3]

Технологическим процессом предусматривается сохранение обработки металла резанием в качестве основного метода, обеспечивающего получение размерных и точностных параметров сверл.  [c.321]

Рассмотрим один из возможных вариантов системы автоматической оптимизации для управления технологическим процессом токарной обработки. Целевая функция процесса резания (функциональная зависимость себестоимости обработки или производительности от параметров режима резания) достигает экстремума в области R допустимых значений управляемых параметров v, и s. Значения параметров v,t is, при которых достигается этот экстремум, находится в процессе функционирования системы, поэтому автоматический поиск является наиболее характерным признаком автоматической оптимизации. Величина экстремума целевой функции Q и соответствующие ей значения управляющих параметров могут существенно изменяться в зависимости от условий протекания технологического процесса. Однако устройство автоматического поиска находит новое значение экстремума независимо от причин, вызывающих его смещение в процессе работы.  [c.252]


Расчет оптимальных параметров (режимов резания, параметров качества и др.) технологического процесса или операции при заданной структуре с позиции некоторого критерия называют параметрической оптимизацией, которая предусматривает определение таких значений параметров. х, при которых некоторая функция Г (х), называемая целевой функцией, или функцией эффективности (например, приведенные затраты, технологическая себестоимость, штучное время, штучная производительность, технологическая производительность, вспомогательное время и др.), принимает экстремальное значение.  [c.219]

К параметрам процесса резания относят основное технологическое время обработки, время, затрачиваемое непосред-  [c.300]

Автоколебания (незатухающие само-поддерживающиеся) технологической системы создаются силами, возникающими в процессе резания. Возмущающая сила создается и управляется процессом резания и после прекращения его исчезает. Причины автоколебаний изменения сил резания, трения на рабочих поверхностях инструмента и площади поперечного сечения срезаемого слоя металла образование наростов упругие деформации заготовки и инструмента. Автоколебания могут быть низкочастотными (f= 50. .. 500 Гц) и высокочастотными (f= 800. .. 6000 Гц). Первые вызывают на обработанной поверхности заготовки волнистость, вторые - мелкую рябь. Возникновение автоколебаний можно предупредить, изменяя режим резания и геометрические параметры инструмента, правильно устанавливая заготовку и инструмент на станке, а также  [c.315]

К технологическим параметрам механической обработки резанием относят скорость резания, подачу и глубину резания. Глубина резания обычно предопределяется геометрией заготовки и технологическим маршрутом. Поэтому проблема состоит в совместной оптимизации скорости и подачи с обратной связью по скорости с учетом технологического процесса, металлорежущих станков, режущего инструмента, заготовки и других не упомянутых технологических факторов.  [c.101]

Параметры износа и стойкости режущего инструмента характеризуют степень допустимого износа инструмента и время его работы до замены или переточки. Они относятся к основным технологическим параметрам процесса резания.  [c.579]

Параметры S и t называются технологическими (производственными), параметры й и а — физическими, так как они непосредственно влияют на физические показатели процесса резания (температуру, силу резания и т. д.). Толщина и подача, ширина срезаемого слоя и глубина резания связаны следующими зависимостями  [c.443]

Выявление технологических возможностей различных методов модификации поверхности, обеспечивающих улучшение необходимых выходных параметров процесса резания в рассматриваемых условиях эксплуатации инструмента.  [c.89]

В случае, когда в ходе технологического процесса параметр точности обработки изменяется сначала медленно, а затем с ростом числа заготовок ускоренно, распределение соответствует закону треугольника (закону Симпсона). На практике такое положение соответствует интенсивному износу режущего инструмента в первый период его стойкости и увеличению сил резания в конце периода стойкости. Закон проявляется при обработке заготовок по 8-му и 7-му квалитетам (редко по 6-му).  [c.32]

Технологический процесс механической обработки ПМ [3, с. 90 4-6] принципиально не отличается от соответствующего процесса механической обработки металлов. Ему сопутствуют образование стружки, тепловыделение, возникновение силовых полей и т. д. Однако специфические свойства ПМ (см. раздел 2) оказывают влияние на выбор параметров режущего инструмента, режимов резания и технологической оснастки.  [c.120]

Это следует из того, что при недостаточно жесткой технологической системе и сильно затупленном режущем инструменте подача исполнительных органов станка по лимбу не равна фактической толщине слоя металла, снимаемого с детали за один проход. В этих условиях процесс резания в значительной степени осуществляется вследствие силовых деформаций технологической системы, которые тем самым определяют и параметр г".  [c.559]

Режимы резания оказывают большое влияние на качество, производительность и себестоимость работ по восстановлению деталей. При разработке технологических процессов очень важно выбрать оптимальные значения параметров резания (скорости, подачи, глубины и др.). Рекомендуется после выбора и расчета режимов резания проводить их проверку и корректировку на опытной партии деталей.  [c.248]

Шероховатость поверхности зависит от большого количества факторов, к числу которых относятся свойства обрабатываемого материала, в частности схемы армирования для ВКПМ, режимы резания, геометрические параметры режущего инструмента, износ инструмента, вид обработки, вибрации при резании и т. п. Учет влияния всех перечисленных факторов сложен. Однако, если учесть, что производят обработку конкретного материала, инструментом оптимальной геометрии, на определенном оборудовании, то количество влияющих факторов, определяющих уровень параметров шероховатости, можно свести к минимуму. Это основные параметры технологического процесса, определяющие параметры щероховатости — режимы резания (скорость резания, подача и глубина резания).  [c.47]

Производительность шлифования, качество поверхностного слоя, стойкость круга, силы резания и температура в- зоне резания зависят от зернистости круга, вида связки, ширины круга, концентрации (для алмазных и эльборовых кругов), свойств обрабатываемого материа а и режимов резания [12, 29, 39, 68, 70, 110 и др.]. Следовательно, для полного исследования процесса шлифования необходимо учитывать влияние всех этих факторов на выходные параметры технологического процесса — точность и качество поверхности. В то же время анализ требований к точности и качеству изделий из ВКПМ, обработанных шлифованием, показывает, что требуемая точность (11-й квалитет) невелика для шлифования, поэтому в качестве основного критерия оценки полезности процесса принимают качество обработанной поверхности.  [c.141]


Если задана стойкость инструмента, то скорость резания можно принять производной от глубины резания и подачи. Следовательно, два последних параметра и определяют многовариантный характер рассматриваемой 2 адачи. Глубина резания на первом переходе теоретически может принимать значения от максимального тах, равного общему максимальному припуску на рассматриваемую поверхность, до минимального щш, допустимого физикой процесса резания. Каждое последующее значение глубины резания может отличаться от предыдущего на величину /, характеризуемую возможностью устойчивого регулирования при данной конструкции настроечного устройства. Таким образом, на первом переходе глубина резания выражается величиной тах—/Т, где / = 0, 1, 2,. .., р. Каждая из указанных глубин резания может образовывать новый вариант первого перехода в сочетании с различными величинами подач, принимающими значение от Хтах до щщ. В результате образуется определенное множество вариантов выполнения первого перехода, неравноценных как по получаемой точности обработки, так и по затратам (например, технологической себестоимости).  [c.107]

Проектирование теоретической точностной диаграммы и расчет числовых значений ее параметров оа, b i), Ок, ао, l(t), аь и т. д.) должны производиться при проектировании технологического процесса или анализе действующего процесса, исходя из имеющихся сведений об аналогичных и ранее изученных процессах, стойкости и износе инструмента, режиме резания, технических условиях на заготовки, точности и жесткости станка, тепловом режиме, погрешностях работы оборудования при типичных технологических процессах и т. д. Расчет ведется теоретиковероятностным методом.  [c.36]

Технологический процесс обработки на металлорежущих станках как объект управления представляет собой нелинейную систему с несколькими управляющими воздействиями. Поэтому управление отдельными параметрами процесса резания без учета их совместного влияния на основной показатель качества технологического процесса не дает желаемого эффекта от применения систем автоматического управления, основанных на прямых и косвенных методах. Эта проблема может быть решена путем создания систем автоматической оптимизации. Задача, которую осуществляют эти системы, совпадает с задачей математического программирования. Действительно, задача математического програм-. мирования, как известно, заключается в нахождении условий экстремума некоторой функции многих переменных. В общем случае при этом могут иметь место ограничения или связи, наложенные на переменные. Поэтому систему автоматической оптими-  [c.250]

На качество готовой детали влияют не только размерногеометрические параметры заготовок, но и параметры станка (жесткость системы, режимы резания, износ инструмента и т. д.). Примем, что исследуемый технологический процесс состоит из п многомерных операций (рис. 24). На входе технологического процесса действует с случайных величин (i=l, 2,. .., с), а выход первого процесса имеет d случайных величин Х(Л (у = = 1, 2,. .., d), являющихся входами для второго процесса, и т. д. Выход всего технологического процесса характеризуется случайными величинами Х (/п=1, 2,. .., q). На каждой операции  [c.85]

При выборе и назначении режимов резания необходимо производить соответствующее согласование значений всех параметров с возможностями их реализации на станках. Необходимость учета большого числа взаиморлияющих факторов при назначении режимов резания обусловила использование метода постепенного приближения. На практике некоторым параметрам задают предварительные значения, а затем их корректируют с учетом других параметров до тех пор, пока не получат окончательные значения, которые могут быть использованы для реализации данного технологического процесса обработки (см. гл. 3). Кроме того, следует  [c.52]

При диагностировании на стадии проектирования станочных систем большое внимание уделяется точностной надежности, которая во многих случаях ограничивает ресурс машины. При этом исследуются не только динамические нагрузки, но и тепловые деформации, а также процессы резания и стружкообразования [3]. Для этого применяются системы не только функционального, но и тестового диагностирования [2], в том числе по виброакустическйм показателям. При создании технологического оборудования с небольшим удельным весом времени выполнения технологических операций точечной сварки, штамповки, упаковки и др. - большое внимание уделяется отработке. механизмов холостых ходов, которые определяют надежность оборудования [7]. Здесь наиболее широко используются методы расчета механизмов, разработанные в механике машин, и одновременно регистрируются при стендовых испытаниях большое число кинематических, динамических и точностных параметров.  [c.196]

Все это говорит о том, что одной из основных задач в обеспечении качества поверхностного слоя деталей при механической обработке является строжайший контроль за соблюдением теэшологической дисциплины. Для устранения влияния случайных отклонений условий механической обработки на качество изготовляемых деталей с успехом используют различные системы адаптивного управления технологическими процессами. Эти системы базируются на получении информадаи, характеризующей истинное состояние процесса (контроль сил резания, температуры, силы тока и мощности двигателей, давления в гидроцилиндрах, точности обрабатываемого размера и параметров шероховатости и др.), и соответствующих оперативных, как правило, автоматических изменениях режимов резания.  [c.333]

Две последние составляюшие Д кол и ДЯ р определяют не только величину погрешности, но и вообще возможность реализации процесса резания с запроектированными технологическими параметрами. Учитывая, что резание без колебаний, вообще говоря, невозможно, на практике принимается положение, что колебания в системе допустимы, если их амплитуда постоянна, т. е. имеет место предельный цикл, а величина ее не превышает 10... 15 % от поля допуска, т. е. лежит в пределах высоты микронеровностей поверхности.  [c.123]

Сложилась довольно странная ситуация. С одной стороны, предприняты значительные усилия и достигнут значительный прогресс в понимании явления разрушения, в создании научно-обоснованных методов выбора материалов и конструктивных параметров, гарантирующих безопасность конструкции в течение расчетного срока ее эксплуатации. С другой же стороны, было предпринято гораздо меньше попыток исследования факторов, облегчающих разрушение в технологических процессах, создания методов оптимизации формы инструмента, режимов обработки, выбора активных сред и т. д. Это направление не вызывает должного интереса у специалистов по механике и физике разрушения, а поэтому инженеры-прак-тики здесь пока идут вперед в эмпирических потзмках. А ведь экономические итоги, связанные с повышением эффективности дробления, резания, перемешивания, перемалывания или металлообработки, составляют миллиарды рублей.  [c.229]

Развертка - инструмент для повышения точности формы и размеров предварительно изготовленного отверстия и снижения шероховатости обрабатываемой поверхности. Применение разверток позволяет добиться точности изготовления отверстия по 7,8 квалитетам. Параметры шероховатости поверхности отверстий, обработанных при чистовом развертывании, достигают RaO,S для отверстий 7 и 8 ква-литетов и Ra, 6 для отверстий 9. .. II квалите-тов. При условии тщательного изготовления и доводки и соответствующего построения технологического процесса, применения оптимальных параметров процесса резания и СОЖ развертки могут обеспечивать точность обработки отверстия до 6 квалитета и шероховатость обработанной поверхности до Ra0,4.  [c.233]


Из приведенного выше сопоставления ясно, насколько может быть улучшено функционирование системы резания после того, как удастся в полной мере овладеть методами управления процессами образования вторичных структур на плош,адках трения за счет при менения искусственных сред, тем или иным способом (подаваемых в зону резания. Уместно, однако, еще раз отметить то обстоятель ство, что проблема создания эффективных искусственных технологических сред осложняется тем, что, по-видимому, в принципе невозможно создать широко универсальное средство, в равной мере пригодное для всех операций обработки резанием различных металлов. Объясняется это, с одной стороны, громадным разнообразием технологической обстановки (факторов состояния системы резания) и требований к среде на различных операциях (параметров функционирования системы резания), а с другой стороны — тем, что в условиях граничного трения смазочное действие зависит не только от свойств смазочного вещества, что характерно для гидродинамического трения, но и от свойств трущихся металлических поверхностей и обстановки в зонах их контакта. В условиях граничного трения с.мазочное вещество возникает при осуществлении самого процесса трения. Образуется ли требуемое вещество и, если образуется, то какие оно имеет свойства, зависит от всех переменных факторов системы резания.  [c.33]

Под термином технологические свойства СОЖ следует понимать шх влияние на главные параметры функционирования системы резания, существенно важные для оценки хода производства или используемые при подготовке производства (см. рис. 2). В соответствии с этим влияние СОЖ на износ л стойкость, на точность и шероховатость обработанных поверхностей является показателем их технологических свойств. В то же время влияние СОЖ, например, на температуру в зоне резания, составляющие силы резания не следует рассматривать в качестве показателя технологических свойств. Однако знание дополнительных параметров функционирования системы резания обеспечивает более полную оценку влияния СОЖ на процесс резания и уменьшает вероятность ошибочного заключения на стадиях предварительных испытаний и экспресс-испытаний технологических свойоств СОЖ. Из этого можно сделать несколько важных для дальнейшего обсуждения выводов.  [c.86]


Смотреть страницы где упоминается термин Параметры технологического процесса резания : [c.75]    [c.242]    [c.493]    [c.34]    [c.197]    [c.493]   
Смотреть главы в:

Материаловедение и технология металлов  -> Параметры технологического процесса резания



ПОИСК



678 — Параметры технологические

Процесс Параметры



© 2025 Mash-xxl.info Реклама на сайте