Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контроль качества термической обработки сталей

Контроль качества термической обработки стали магнитным методом чаще всего производят с помощью индукционных приборов, сравнивая показания прибора при испытании детали, служащей эталоном, и проверяемой детали. В этих испытаниях эталон и проверяемая деталь выполняют роль сердечников трансформатора.  [c.164]

Для контроля качества термической обработки стали разработаны также приборы, определяющие структуру стали по изменению других магнитных свойств, в частности, коэрцитивной силы. Некоторые из этих приборов описаны в книге Б. Г. Лившица Физические свойства металлов , Металлургиздат, 1946.  [c.165]


Контроль качества термической обработки, контроль прочности, сортировка по маркам стали, контроль твердости  [c.154]

О ВОЗМОЖНОСТИ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ КАЧЕСТВА ТЕРМИЧЕСКОЙ ОБРАБОТКИ И МЕХАНИЧЕСКИХ СВОЙСТВ ВЫСОКОЛЕГИРОВАННЫХ КОРРОЗИОННОСТОЙКИХ, ЖАРОСТОЙКИХ и ЖАРОПРОЧНЫХ СТАЛЕЙ  [c.93]

Известно [5, 13], что состояние современной теории магнетизма не позволяет всегда теоретически предсказать количественную связь между магнитными параметрами и структурным состоянием материала. Поэтому в случае решения вопроса о возможности контроля качества термической обработки каждой конкретной марки стали необходимо тщательное изучение изменения магнитных свойств в зависимости от факто-j OB, влияюш,их на свойства данного материала.  [c.93]

В настоящей работе сделана попытка на основе литературных данных и результатов исследований авторов обобщить и систематизировать имеющиеся исследования в области изучения магнитных и электрических свойств жаростойких, жаропрочных и коррозионностойких сталей, а также имеющийся опыт по применению неразрушающих методов для контроля качества термической обработки и механических свойств этой группы сталей. В табл. 1 приведена их классификация по ГОСТ 5632—72.  [c.94]

Центральным научно-исследовательским институтом технологии и мащиностроения (ЦНИИТМАШ) разработан прибор для анализа аустенитных сплавов по магнитной восприимчивости [24]. Прибором можно пользоваться для научно-исследовательских работ, связанных с изучением упомянутых выше процессов, происходящих в аустенитных сталях, и, кроме того, прибор может быть использован для контроля качества термической обработки.  [c.101]

О возможности неразрушающего контроля качества термической обработки и механических свойств высоколегированных коррозионностойких, жаростойких и жаропрочных сталей. М е л ь г у й М. А.,  [c.258]

О неоднозначности магнитных и электрических свойств этих сталей сообщается в работах [13, 26]. Однако максимум в зависимости коэрцитивной силы от температуры отпуска сдвигается в область более высоких температур, что объясняется замедлением процессов, происходяш,их при отпуске сталей, легированных хромом. Возникновение максимумов, вероятно, объясняется коагуляцией карбидов, протекающей в этих сталях при нагреве выше указанных температур. Для контроля качества термической обработки [26] использован мостовой метод контроля по высоте и форме фигур Лиссажу. В работе [27] предложено использовать  [c.81]


Исследования магнитных и электрических свойств этой группы сталей неизвестны, за исключением стали ЗОХРА, изученной в интервале температур отпуска до 280 °С [52]. Результаты показывают возможность контроля качества термической обработки в этом интервале температур по изменениям коэрцитивной силы и остаточной индукции.  [c.86]

Контроль качества термической обработки хромистой стали. Контроль качества термической обработки проводится путем измерения твердости, осмотра излома и исследования микроструктуры.  [c.597]

Качественная рассортировка сталей по составу для идентичных исходных структур контроль качества термической обработки по структуре обнаружение несплошностей (главным образом на поверхности) измерение толщины покрытий анализ состояния поверхностных слоев (для двухчастотных измерений)  [c.429]

Сортировка по маркам стали, контроль структуры, твердости, качества термической обработки  [c.154]

Для контроля объектов из ферромагнитных сталей (прочностных характеристик, качества термической обработки, твердости и т. д.) разработан управляемый микроЭВМ прибор ВС-17П, работающий в диапазоне частот 3—300 Гц. Он может работать в одном из 18 предварительно установленных с пульта режимов. Для тех же целей применяют установку ЕС-5000 фирмы ЦЖР (Франция). Прибор НДТ-25, предназначенный для контроля ферро- и неферромагнитных объектов, имеет диапазон частот от 60 Гц до 6 МГц, задаваемых с пульта с малой дискретностью. Прибор имеет 16 программ работы.  [c.159]

Магнитный метод применяют для исследования превращений в сплавах. Этот метод основан на зависимости магнитных свойств сплава от структуры или состава. Магнитный метод контроля позволяет также выявлять (главным образом в чугунах и сталях) мелкие трещины, раковины, поры, расположенные близко к поверхности, а также качество термической обработки. Существуют кроме того, и другие методы испытаний самих деталей без их разрушения.  [c.90]

Контролю химического состава подвергается любая сталь контролю по микроструктуре—только некоторые качественные и высококачественные стали, исходная структура которых может оказать значительное влияние на качество термической обработки. Это стали, предназначенные для холодной штамповки, инструмен-тальные стали, шарикоподшипниковая сталь и некоторые другие.  [c.204]

Магнитный вид контроля основан на регистрации магнитных полей рассеяния, возникающих над дефектами. Здесь используют различные методы для контроля деталей, изготовленных только из ферромагнитных материалов. Эти методы предназначены для выявления трещин, волосовин, закатов, расслоений на поверхностном и подповерхностном слоях материала определения структуры материала, качества термической обработки, механических (твердость, прочность) характеристик ферромагнитных сталей и чугунов по изменению их магнитных характеристик измерения толщины немагнитных покрытий (металлов, лаков и т. д.), нанесенных на ферромагнитную основу.  [c.197]

Строгое соблюдение режимов термической обработки — необходимое условие для контроля качества этой стали после изотермической закалки.  [c.114]

Корнишин К. И., Фаерман Б. С., Г е р м а н о в Ф. С., Электромагнитный контроль качества термической обработки стали ЗОХГСА после изотермической закалки, сб. Совещание по вопросам контроля неразрушающими методами . МДНТП, 1958.  [c.262]

Установлено, что у стали ЗОХГСА имеется пролорцно Нальная зависимость между твердостью и показаниями прибора ЭМИД-3 (ио основной гармонике ток 0,6—0, 8 а) при отпуске в диапазоне температур до 450 °С. Если детали из этой стали отпущены при более высокой темие-ратуре, то при надлежащем выборе тока возбуждения и иодмагничивании возможно вести иоилавочный контроль качества термической обработки по амплитуде и фазе  [c.114]

Накоплен значительный опыт по контролю качества термической обработки плунжерны х пар различных агрегатов двигателей (например, топливных насосов) из стали ХВГ (С —0,9-М,05 Мп —0,8-1,1 Si — 0,15- 0,35 W—1,2- 1,6%). Она относится к мартенситным сталям. При низком отпуске этой стали мартенсит закалки переходит в отпущенный мартенсит с решеткой, близкой к кубической, тер мическ ие и фазовые напряжения снимаются. Нарушения режима термической обработки приводят к появлению больших внутренних напряжений и при последующей шлифовке — к трещинам. Общепринятый цикл термической обработки этой стали включает нагрев под закалку при температуре 830 10°С, охлаждение на воздухе или в масле, П1ромывку (иногда пассивирование), обработку холодом до температур—(70— 78 °С) в течение 2,5—3 ч, выдержку на воздухе, низкий отпуск при температуре 200—240 С с выдержкой в течение четырех часов.  [c.118]


СВОЙСТВ. В работе [14] показана возможность использования магнитных методов для проведения контроля качества термической обработки зоны сварного шва изделий котлоагрега-тов из стали Х5М. Для осуществления контроля был применен прибор локального типа, разработанный в ОФНК АН БССР [15J. Производственные испытания прибора показали, что контроль твердости магнитным методом не только дает хорошее совпадение с замерами твердости по Бринеллю, но и позволяет полнее оценить качество термической обработки благодаря участию в замере большей толщины металла, чем при контроле по методу Бринелля. Авторы работы показывают, что при обнаружении брака термической обработки по показаниям прибора ИМА-2А, дополнительно проверив твердость по Бринеллю, можно выяснить причину брака (недогрев или перегрев при отпуске) и рекомендовать режим дополнительной термической обработки для его исправления.  [c.95]

Изменение магнитных свойств стали 1X13 в зависимости от температуры отпуска после закалки с разных температур исследовано авторами данной статьи, и результаты представлены на рис. 2, а (химический состав приведен в табл. 4). Наибольшее изменение структурно-чувствительные характеристики претерпевают в интервале температур отпуска 500— 600 °С. В области же температур, в которых эта сталь обрабатывается по 1 ОСТ, на кривых изменения магнитных свойств наблюдается почти прямолинейный участок, магнитные свойства изменяются очень слабо, в то время как механические продолжают монотонно убывать. Такое изменение магнитных свойств связано с процессами карбидообразования, как и для некоторых конструкционных сталей, для которых наблюдается аномальное изменение коэрцитивной силы в области высокотемпературного отпуска [18]. В интервале температур отпуска 600—770 °С контроль качества термической обработки этой стали по магнитным параметрам затруднителен.  [c.99]

Для контроля качества термической обработки сварного шва и околошовной зоны котлоагрегатов из той же стали 12Х1МФ в работе [32] использован локально-импульсный метод [15].  [c.110]

Неразрушающие испытания механических свойств материалов предполагают наличие корреляционной связи между физическим параметром и контролируемой величиной. Поэтому необходимы тщательное изучение физико-механических свойств каждой марки стали и установление корреляционной связи между ними. Для низкоуглеродистых холоднокатаных сталей такие исследования проведены [1, 2]. Установлены корреляционные связи и на ряде металлургических предприятий страны внедрены иеразрушающие методы контроля механических свойств тонколистового проката [2]. Хорошо изучены свойства подшипниковых сталей и на основе их анализа внедрены неразрушающие методы контроля [3—7]. В работе [8] обобщены результаты исследований свойств жаропрочных, жаростойких и коррозионностойких сталей. Дан анализ методов контроля качества термической обработки и механических свойств этих сталей.  [c.76]

Для контроля твердости поковок коленчатых валов из стали 45Х на Минском тракторном заводе успешно внедрен прибор с накладным датчи1шм НЧГ-1 [30], работающий по методу высших четных гармоник. Прибор применяется для контроля качества термической обработки в области температур отпуска свыше 600°С. Погрешность определения твердости не превышает 10%. Время измерения не более 10 с.  [c.82]

Известны исследования 43] магнитных свойств стали ЗОХГС. Как и для других марок сталей с содержанием углерода более 0,3%, ход изменения магнитных свойств с температурой отпуска рюрмально закаленных образцов позволяет на основании измерений магнитных характеристик осуществить контроль качества термической обработки только сравнительно низкотемпературного отпуска (примерно до 450°С). В интервале температур отпуска 500—650 °С отсутствует однозначный ход зависимости магнитных свойств и твердости. В работе [44] изучены магнитные свойства стали 50ХГ (рис. 3). Все изученные магнитные свойства стали, достигнув некоторого значения при температуре закалки 780 °С, с дальнейшим повышением температуры остаются практически постоянными, что свидетельствует о малой чувствительности стали к перегреву. Изменения магнитных, электрических и механических свойств стали, закаленной от 850 °С и отпущенной при 100—700°С, протекают аналогично рассмотренным выше.  [c.84]

На основе литературных данных обобщены результаты исследований магнитных, электрических и механических свойств сталей с содержанием углерода более 0,3%. Показано, что углеродистые и легированные стали имеют неоднозначность между магнитными и механическими саойства-ми. В интервале температур низкого отпуска (до 400 °С) вопрос о контроле качества термообработки может быть решен методами коэрцитиметрии. Перспективным для решения вопроса об однозначном контроле качества термической обработки этих сталей в широком диапазоне температур отпуска (до 650 °С) может быть импульсно-локальный метод с применением приборов тина ИЛК.  [c.233]

Трубы должны поставляться в термически обработанном состоянии. Контроль качества термической обработки труб из стали марок 12Х1МФ, 15Х1М1Ф и  [c.90]

ВС-10П Проходной 175 р., а л и ф сигнала Электрон- но-лучевая трубка, стрелочный индикатор Выход на внешнее автоматическое устройство Качественная сортировка сталей по маркам. Контроль качества термической обработки То же, кроме того, контроль поверхностно-упрочненных слоев Трубы, пруткн, заготовки, готовые детали из ферромагнитных материалов  [c.439]


В книге приведены сведения о термической обработке сталей, чугунов, цветных металлов и сплавов изложены технологические процессы Гермообработки режущего и мерительного инструмента, а также штампов и пресс-форм, в том числе поверхностной термообработки приведена классификация оборудования термических цехов освещены вопросы контроля качества термической обработки и техники безопасности на предприятиях.  [c.2]

Магнитный метод используется для определения структуры и твердости деталей после обработки. Для контроля качества термической обработки инструмента из углеродистой, легированной и быстрорежущей сталей разработана серия магнитных аустенометров МА-1-5, МА-5-15, МА-15-52, МА-50-80. Цифры указы-  [c.319]

Магнитный метод используют для определения структуры и твердости деталей после обработки. Для контроля качества термической обработки инструмента из углеродистой, легированной и быстрорежущей сталей разработана серия магнитных аустенометров МА-1-5, МА-5-15, МА-15-52, МА-50-80. Цифры указывают интервал диаметров контролируемого инструмента (мм). Магнитные аустенометры применяют для контроля качества отпуска.  [c.282]

Наклеп железных и стальных изделий, как известно, проводится с целью их упрочнения. С другой стороны, при штамповке, изгибе или правке изделия приобретают локализованный наклеп. Естественно, что при применении неразрушающих магнитных или электромагнитных методов контроля качества термической обработки, а также при дефектоскопировании стальных изделий магнитными и электромагнитными методами необходимо учитывать зависимость изменения магнитных свойств сталей при наклепе от степени обжатия.  [c.314]

Метод магнитной дефектоскопии применяется для выявления дефектов, нарушающих сплошность металла в ферромагнитных металлах и главным образом в стали,— мелких поверхностных или внутренних трещин, плен, волосовин, раковин и т. п., а также для контроля качества термической обработки. Преимуществом метода магнитной дефектоскопии по сравнению с металлографическим методом являются возможность производить выявление дефектой без разрушения деталей и быстрота данного метода, что позволяет при необходимости контролировать 100% деталей.  [c.136]

Контроль качества термической обработки конструкционных сталей, применяемых после закалки и высокого отпуска (при 500—600 ), производят индукционными приборами, чувствительно реагирующими на небольшие изменения индукции стали в слабых магнитных полях для этой цели, в частности, псиолъЗ уют дифференциальный структурный анализатор, разработанный под руководством Н. С. Акулова. В слабых магнитных лолях различные структурные составляющие отпущенной и  [c.164]

Сортовой прокат перед поступлением к потребителю проходит контроль качества термической обработки. В зависимости от группы сталей и требова1П1я стандарта (технических условий) контролируют твердость, макро- и микроструктуру, излом, толщину обезуглеро-женного слоя и механические свойства.  [c.248]

В то же время высокие требования к качеству изделий из нержавеющих, жаропрочных сталей часто требуют 100%-ного контроля механических свойств. Однако в силу существующих методик прямых испытаний механических свойств 100%-но можно контролировать только твердость, а предел текучести, предел прочности, относительное удлинение и сужение —только выборочно на образцах по твердости — по специальным таблицам. Но на мноТих изделиях даже твердость, по Роквеллу или Бринеллю, не всегда удается замерить — это детали сложной конфигурации, большие по весу и объему сварные изделия. Тогда прибегают к сравнительным методам (например, по методу Польди). Вот почему для этого класса сталей важны разработка и внедрение неразрушающих методов контроля механических свойств и качества термической обработки.  [c.94]

Большое влияние на режущие свойства инструмента оказывает твердость. Разброс не должен превышать двух единиц твердости по шкале С Роквелла. Нормальная твердость зуборезного инструмента HR 64—66. Опыт показал, что даже такое небольшое изменение твердости (2 единицы) может оказать существенное влияние на режущие свойства инструмента. В настоящее время уже достигнуто регулирование твердости в пределах одной единицы по шкале С Роквелла благодаря тщательному выбору стали и точному контролю процесса термической обработки. Кроме твердости на качество инструмента оказывают влияние другие компоненты отпуск, процент науглероживания и обезуглероживания, размер зерна, размер и распределение карбидов и образование полосчатой структуры. Инструмент должен иметь мелкозернистую структуру, а частицы карбидов распределятся равномерно в массе стали когда карбиды сгруппированы, они образуют хрупкие зоны, которые легко разрушаются. Эти характеристики проверяются путем ыегаллографического анализа.  [c.125]

Магнитными методами контролируют детали и изделия, изготовленные из ферромагнитных сплавов, т. е. главным образом из стали и чугунаМагнитные методы контроля позволяют обнаружить 1) нарушения сплошности металла в виде трудно различимых глазом мелких тре щин, волосовин, а также пор и раковин, расположенных близко от поверхности, и 2) качество термической обработки.  [c.161]

Приборы типа ВС-ЮП применяют для контроля твердости. При низких температурах отпуска (200—450 С) для большинства конструкционных сталей существует однозначная зависимость между показаниями приборов типа ВС-10П и твердостью при предварительной (до термической обработки) подготовке структуры металла и небольших относительных колебаниях размеров детали. Если эти условия не соблюдаются, то отбирают по две одинаковые по минимальным и максимальным показаниям прибора детали, одну из которых подвергают микроанализу, а вторую оставляют в качестве контрольного образца. При большом разбросе показаний детали разбивают на ряд групп и для каждой группы используют свои контрольные образцы. Необходимо иметь не менее двух образцов со средней твердостью, по одному на верхний и нижний пределы сортировки, и одну нетермооб-работанную деталь. Показания прибора при контроле нетермообработан-ной детали должны отличаться от установленных границ сортировки. Для предварительной подготовки структуры металла, в особенности горячекатаного, приходится вводить дополнительную термическую нормализацию заготовок и разбивать детали на группы по показаниям прибора в исходном состоянии.  [c.153]

Термообработка приводит к изменению структуры материала, к появлению в нем напряжений. Для оценки качества деталей после термической обработки применяют макроскопический, микроскопический и рентгено-ст1руктурный и другие методы выборочного контроля. Массовый контроль качества термообработки сталей производится измерением твердости, однако при этом на проверяемой поверхности образуется отпечаток. В чертежах. на детали машин обычно указывается твердость, поэтому в большинстве случаев на производстве приходится решать задачу замены испытаний на твердость не-112  [c.112]

Влияние обезуглероженного слоя на показания прибора (рис. 6-5) может полностью перекрыть полезную информацию о качестве структуры, хотя в большинстве случаев наличие значительного обезуглероженного слоя после термической обработки свидетельствует о плохом качестве термообработки. Имеется достаточное число фактов, свидетельствующих о возможности контроля деталей (например, из сталей типа ЗОХГСА) по этому признаку. При разработке методик контроля на приборе ЭМИД важное значение имеет сила намагничиваюш,его тока. Даже для одной и той же марки материала она зависит от размеров и формы деталей, так как из-за изменения размеров изменяется коэффициент размагничивания и истинное намагничивающее поле. Если конфигурация деталей изменялась, то в большинстве случаев путем изменения тока намагничивания можно добиться такой же закономерности в распределении кривых на экране прибора ЭМИД, как и при испытании образцов другой 8 115  [c.115]



Смотреть страницы где упоминается термин Контроль качества термической обработки сталей : [c.98]    [c.101]    [c.79]    [c.92]    [c.117]   
Смотреть главы в:

Индукционная структуроскопия  -> Контроль качества термической обработки сталей



ПОИСК



Контроль качества обработки

Контроль качества термической обработки

Контроль термической обработки

Обработка Контроль

Обработка термическая сталей

Сталь Контроль

Сталь обработка



© 2025 Mash-xxl.info Реклама на сайте