Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магнитные изделия

При применении двухчастотного метода возможно решение двух типов задач 1) контроль магнитных изделий 2) измерение нелинейными магнитными элементами переменного магнитного поля, частота которого отличается от частоты поля возбуждения самого элемента, или одновременное измерение постоянного и переменного магнитных полей.  [c.5]

J (У т S S S X Карбон ильный Термическая диссоциация карбонилов, т. е. химических соединений типов Ме (СО) под давлением 300—40о am и 200— 300° С Железо, никель, кобальт Наиболее высокая чистота металла, получение порошка со сферической формой частиц Фильтры и магнитные изделия  [c.322]


Магнитные изделия 109 Магнитные материалы — Состав и свой-, ства 109  [c.866]

Третью группу изделий представляют магнитные изделия. Часть из них можно изготовлять путем отливки, но порошковая металлургия обеспечивает более высокое качество изделий. Сплавы не загрязняются элементами, попадающими из футеровки печей, не насыщаются газами.  [c.145]

Основным критерием для выбора параметров сварки является постоянство магнитных характеристик системы. Для этого до и после сварки измеряют кривую размагничивания сплава на баллистической установке БУ-3, подсчитывают максимальную магнитную энергию и определяют значения Вг и Н . Коэрцитивная сила магнитных изделий измеряется в открытой цепи соленоида. Напряженность поля в воздушном зазоре в магнитных системах измеряется холловским датчиком прибора ИМИ-3 или калиброванной измерительной катушкой, подключенной к баллистическому гальванометру.  [c.186]

Определение магнитных характеристик Стандартные методы определения магнитной проницаемости, коэрцитивной силы, остаточной индукции Магнитные изделия  [c.69]

Опрессовка, заливка в металл и другие методы изготовления армированных изделий применяют для создания в них неоднородных участков, например с различными диэлектрическими и магнитными свойствами, а также для лучшего использования материала в силовых конструкциях.  [c.261]

Магнитный контроль основан на намагничивании сварных или паяных соединений и обнаружении полей магнитного рассеяния на дефектных участках. Изделие намагничивают, замыкая им магнито-провод электромагнита или помеш,ая его внутрь соленоида. На поверхность соединения наносят порошок железной окалины или его масляную суспензию. Изделие слегка обстукивают для облегчения подвижности частиц порошка. По скоплению порошка обнаруживают дефекты, залегающие на глубине до 6 мм.  [c.244]

Пример 6.6. Управление технологическим процессом на основе текущего регрессионного анализа. Рассмотрим технологический процесс производства магнитоуправляемых контактов (МК). Основная задача производства МК — получение изделий с заданными величинами напряженности магнитного поля 0 и зазора S между контактами.  [c.301]

Между изделием и искателем акустический контакт создают путем введения слоя воды или незамерзающей магнитной жидкости. Если акустический контакт невозможен, то применяют бесконтактный ввод ультразвуковых колебаний с помощью электро-  [c.125]


Закалка с индукционного нагрева. Индукционный нагрев происходит вследствие теплового действия тока, индуктируемого в изделии, помещенном в переменное магнитное поле.  [c.220]

Для увеличения плотности энергии в луче после выхода электронов из первого анода электроны фокусируются магнитным полем в специальной магнитной линзе 4. Сфокусированные в плотный пучок летящие электроны ударяются с большой скоростью о малую, резко ограниченную площадку (пятно нагрева) на изделии 6, при этом кинетическая энергия электронов, вследствие торможения превращается в теплоту, нагревая металл до очень высоких температур. Для перемещения,луча по свариваемому изделию на пути электронов помещают магнитную отклоняющую систему 5, позволяющую устанавливать луч точно по линии стыка.  [c.16]

Магнитные методы контроля основаны на обнаружении полей магнитного рассеяния, образующихся в местах дефектов при намагничивании контролируемых изделий. Изделие намагничивают, замыкая им сердечник электромагнита или помещая внутрь соленоида. Требуемый магнитный поток можно создать пропусканием тока по виткам (3— витков) сварочного провода, заматываемого на контролируемую деталь. В зависимости от способа обнаружения потоков рассеяния различают следующие методы магнитного контроля метод магнитного порошка, индукционный и магнитографический.  [c.149]

При методе магнитного порошка на поверхность намагниченного соединения наносят магнитный порошок (окалина, железные опилки и т. д.) в сухом виде (сухой способ) или суспензию магнитного порошка в-жидкости (керосине, мыльном растворе, воде — мокрый способ). Над местом расположения дефекта создадутся скопления порошка в виде правильно ориентированного магнитного спектра. Для облегчения подвижности порошка изделие слегка обстукивают. С помощью магнитного порошка выявляют трещины, невидимые невооруженным глазом, внутренние трещины на глубине не более 15 мм, расслоение металла, а также крупные поры, раковины и шлаковые включения на глубине не более 3—5 мм.  [c.149]

При индукционном методе магнитный поток в изделии наводят электромагнитом переменного тока. Дефекты обнаруживают с помощью искателя, в катушке которого под действием поля рассеяния индуктируется э. д. с-., вызывающая оптический или звуковой сигнал на индикаторе.  [c.149]

Сварочная цепь электрод — дуга — изделие вместе с подводящими проводниками образует сварочный контур, магнитное поле которого может отклонять дугу в ту или иную сторону.  [c.82]

Все сказанное выше о магнитном дутье относится в основном к дуге постоянного тока. При сварке дугой переменного тока в металле изделия создается система замкнутых вихревых токов. Вихревые токи создают собственную переменную магнитодвижущую силу, сдвинутую почти на 180° по фазе по отношению к сварочному току. Результирующий магнитный поток контура оказывается значительно меньшим, чем при постоянном токе.  [c.83]

Вращающаяся конусная дуга применима для сварки кольцевых швов малого диаметра (рис. 2.42). По оси труб располагается неплавящийся электрод. С помощью соленоида создается магнитное поле, параллельное оси электрода. При горении дуги электрод — кромка столб ее оказывается направленным поперек поля Н, что и вызывает вращение дуги. Частота вращения п пропорциональна напряженности поля и току дуги и практически достигает обычно нескольких тысяч оборотов в минуту. Сварка изделия происходит за несколько секунд, что соответствует  [c.86]

Применяют также не стержневой, а фигурный неплавящийся электрод, соответствующий по форме конфигурации свариваемой кромки. Сдвиг электрода относительно кромок изделия должен обеспечить взаимодействие столба дуги с поперечным магнитным полем. Фигурным медным электродом удается сваривать детали произвольной формы, что весьма перспективно при массовом производстве таких изделий, как конденсаторы, герметизированные изделия автоматики и т. д.  [c.86]

Создавая при помощи специальной магнитной системы (магнитной линзы) по оси электронного луча магнитное поле определенной формы, можно обеспечить сходимость траекторий электронов в одной точке (фокусировку) и изменять ее в широких пределах. При этом изменяется концентрация энергии на обрабатываемом изделии, что представляет значительный интерес с технологической точки зрения.  [c.111]


Поверхность объекта очищают от загрязнения, окалины, шлака, продуктов коррозии наносят суспензию или порошок на контролируемую зону намагничивают изделие. Под действием магнитного поля частицы ферромагнитного порошка перемещаются по поверхности детали, скапливаются в виде валиков над дефектами. Последующий осмотр позволяет судить об их контурах. Затем объект размагничивают.  [c.212]

Магнитная дефектоскопия позволяет выявлять поверхностные трещины в деталях и заготовках без их разрушения. Однако этот метод применим только для ферромагнитных материалов, способных намагничиваться. Наиболее широко применяется для контроля стальных изделий шестерен, болтов и крупных изделий - гильз цилиндров, коромысел клапанов.  [c.371]

Настоящая книга состоит из четырех глав, в которых рассматриваются некоторые перспективные для производства изделий электронной техники полупроводниковые, магнитные, диэлектрические и лазерные материалы. В каждой главе описаны физические процессы, происходящие в конкретных материалах, свойства, основные методы получения и области применения. Особое внимание уделено зависимости свойств материалов от их состава, структуры и технологии получения.  [c.3]

Для производства ферритов с ППГ характерны высокая температура окончательного обжига (до 1400 С) и воздушная закалка после него. Закалкой фиксируются фазовые соотношения компонентов, получаемые при высокой температуре обжига, и ферриты предохраняются от окисления на воздухе. Вместе с тем при закалке появляются дополнительные напряжения, что делает изделия хрупкими. Кроме того, неизбежные отклонения температуры закалки приводят к различию магнитных свойств материалов. Чтобы избежать этого, используют вакуумные печи или печи с инертной атмосферой, в которых изделия можно медленно охлаждать, не опасаясь окисления.  [c.28]

Для неразрушающего контроля качества ферромагнитных изделий и в измерительной технике часто возникает необходимость применения наряду с переменным полем заданной частоты двух переменных магнитных полей различной частоты. Новые результаты получаются, если учитывать нелинейность кривой пере-магничивания материала, т. е. аттестовывать объект не по суммарному эффекту, а по высшим гармоническим составляющим. Так, в работе [1] даны теоретические основы статического метода контроля качества магнитных изделий по высшим гармоникам эдс измерительного преобразователя проходного типа. В рассмотренной задаче учитываются подмагничивание постоянным полем и статическая гистерезисная петля ферромагнетика, перемагничиваемого переменным магнитным полем синусоидальной формы. Установлены количественные закономерности связи гармоник эдс датчика с магнитными параметрами коэрцитивной силой, остаточной и максимальной магнитной индукцией материала.  [c.5]

По технологическим особенностям и по материалу, из которого получают магнитные изделия, их можно подразделить на металлокерамические, металлопластические,  [c.427]

При разделительной резке изделие устанавливают в положение, в котором наиболее благоприятны условия для вытекания расплавлеппого металла из места реза. При вертикальных резах резку ведут сверху вниз, для того чтобы выплавляемый металл не засорял выполненный разрез. Для отклонения дуги магнитным дутьем в направлении реза второй сварочный кабель присоединяют сверху у начала разреза. Разделительную резку начинают с кромки или с середины листа. В последнем случае вначале прорезают отверстие. Затем, наклонив электрод так, чтобы кратер был расположен на торцовой кромке реза, оплавляют ее (рис, 64). Если  [c.76]

В рассмотренных случаях перемещения дуги в магнитном поле ее скорость зависит от величины сварочного тока, напря-шеипости внешнего магнитного поля, металла изделия и ряда других условий сварки. Используя бегущее магнитное поле, такое же как в статорах электродвигателей переменного тока, можно управлять скоростью вращения дуги.  [c.82]

Параметры электронного луча, соответствующие технологическому процессу сварки, определяют основные требования к конструкции электронной пушки (табл. 34). В сварочных установках электронная пушка состоит из следующих основных э.гсементов катод—источник электронов анод — электрод с отверстием в середине для пропускания луча к изделию, подключенный к положительному полюсу силового выпрямителя фокусирующий ири-катодныл. . .летстрод (модулятор), регулирующий силу тока в луче фокусирующая магнитная линза отклоняющая магнитная система.  [c.159]

Плотность тока в луче можно регулировать, меняя его диаметр на изделии без изменения величины общего тока, с номондью магнитной линзы. Такая линза представляет собой катушку с тот ом, ось которой совпадает с осью луча. Для повынюния эффективности работы ее помещают в ферромагнитный экран. В этом случае магнитное поле концентрируется в узком немагнитном зазоре. Фокусное расстояние липзы (/, см) — расстояние от середины этого зазора д,о минимального сечения прошедшего сквозь линзу пучка —  [c.160]

Специальные установки разрабатывают для микросварки в производстве модульных элементов и различного рода твердых радиосхем. Особенности заключаются в первую очередь в точном дозировании тепловой энергии, перемещении луча по изделию с помощью отклоняющих электрических и магнитных полей, совмещении нескольких технологических функций, выполняемых электронным лучом в одной камере. Поскольку вакуумные камеры и вакуумные системы стоят наиболее дорого, рациональности выбора их конструкций уделяется бо.льшое внимание.  [c.162]

В установках для электромно-лучевой сварки электроны эмит-тируются на катоде / электронной пушки формируются в пучок электродо.м 2, расположенным неносредственно за катодом ускоряются под действием разности потенциалов между катодом и анодом 3, составляющей 20—150 кВ и выше, затем фокусируются в виде луча и направляются специальной отклоняющей магнитной системой 5 па обрабатываемое изделие в. На формирующий электрод 2 подается отрицательный или нулевой по отношению к катоду потенциал. Фокусировкой достигается высокая удельная мощность (до 5-10 кВт/м и выше). Ток электронного луча невелик (от нескольких миллиампер до единиц ампер).  [c.203]


Сварочные генераторы. Это специальные генераторы постоянного тока, внешняя характеристика которых позволяет получать устойчивое горение дуги, что достигается изменением магнитного потока генератора в зависимости от сварочного тока. Сварочный генератор постоянного тока состоит из статора с магнитными полюсами и якоря с обмоткой и коллекторами. При работе генератора якорь вращается в магнитном поле, создаваемом полюсами статора. Обмотка якоря пересекает магнитные линии полюсов генератора, и поэтому в витках обмотки возникает переменный ток, который с помощью коллектора преобразуется в постоянный. -Вращение якоря сварочного генератора обеспечивается в сварочных преобразователях электродвигателем, а в сварочных агрегатах — двигателем внутреннего сгорания. К коллектору прижаты угольные щетки, через которые постоянный ток подводится к клеммам. К этим клеммам присоединяют сварочные провода, идущие к электрододержа-телю и изделию.  [c.61]

Боковой распор магнитных линий, сконцентрированных внутри угла, образованного электродом и токопроводящей частью пластины, буТкет выжимать дугу наружу (рис. 2.36). Меняя место подвода тока, можно регулировать отклонение дуги. Отклонение дуги можно регулировать также изменением угла наклона электрода к поверхности изделия (рис. 2.37).  [c.82]

При проведении диагностики используются индикатор механических напряжений ИМНМ-1Ф, индикаторы концентрации напряжений ИКНМ-2Ф, ИКН-1М. Метод основан на регистрации напряженности магнитного поля рассеяния Нр, характеризующей распределение остаточной намагниченности, на контролируемой поверхности изделия. При этом на поверхности вблизи стыков и на самом шве специальной зачистки не требуется. Для этого производится сканирование датчика прибора вдоль поверхности сварного стыка по всему периметру наружного диаметра конструктивного элемента аппарата и записываются полученные значения напряженности магнитного поля рассеяния Нр.  [c.215]

Токовихревой контроль. Поверхностные и внутренние дефекты могут определяться с помощью вихревых токов, индуцируемых в изделии внесением его в электро.магнитное поле. Контроль вихревыми токами не целесообразен, если изделия имеют сложну ю конфигурацию.  [c.185]

Магнитиые методы контроля качества основаны на создании в ферромагнитных материалах магнитного потока, образующего поля рассеивания над дефектами, и регистрации данных полей с помощью магнитного поропша, магнитной ленты или определении магнитных свойств контролируемых изделий.  [c.190]

TOK iMH в магнитное поле, которые регистрируются прибором 4 и отображаются на цифровом табло 5. Обычно метод вихревых токов базируется на расчете параметров индукционной катушки — ее активного и реактивного сопротивления. При этом рассматривается закон, по которому изменяется сопротивления катушки при выявлении дефектов изделия. Например, треищны влияют на полное сопротивлении катушки как уменьшение электропроводности.  [c.199]

По типу датчиков вихретоковые дефектоскопы разделяют на приборы с накладной системой, когда катушка располагается непосредственно на объекте (для плоских изделий при выявлении преимущественно поверхностных дефектов) (рис.6.40, а) и проходной катушкой, когда объект контроля (или сама катушка) входит в объект (для труб, сосудов, цилиндрических деталей) (рис. 6.40, б). При этом вихревые токи возбуждаются переменным магнитным полем Ф . Информацию о свойствах изделия даттак пол ает через маг нитный поток Фд, создагшый вихревыми токами с плотностью 5. Векторы напряженности возбуждающего поля Hq и поля вихревых токов направлены нгшстречу друг другу. ЭДС в обмотке датчика пропорциональна разности потоков Фп-Ф .  [c.199]

Новые ТК создаются в МЭК по мере того, как возникают новые направления в электротехнике и радиоэлектронике в связи с расширением номенклатуры изделий и материалов, включаемых в сферу международной торговли. Так, были созданы ТК68 Магнитные стали я сплавы и ТК69 Электромобили .  [c.163]


Смотреть страницы где упоминается термин Магнитные изделия : [c.398]    [c.42]    [c.159]    [c.13]    [c.54]    [c.140]    [c.221]    [c.83]    [c.197]    [c.108]   
Справочник технолога машиностроителя Том 1 (1963) -- [ c.109 ]



ПОИСК



Изделия из жаростойких магнитные

Металлокерамические изделия из антифрикционных из магнитных материалов

Металлы, сплавы и металлические изделия, Магнитные материалы

Порошковые материалы и изделия, детали электротехнические и магнитные

Приборы для измерения сил резани для контроля пористости металлокерамических изделий магнитны

Приборы для контроля пористости металлокерамических изделий магнитные



© 2025 Mash-xxl.info Реклама на сайте