Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условия равновесия и устойчивости термодинамических систем

УСЛОВИЯ РАВНОВЕСИЯ И УСТОЙЧИВОСТИ ТЕРМОДИНАМИЧЕСКИХ СИСТЕМ  [c.119]

Основное уравнение термодинамики для квази-статических процессов позволяет, как мы видели, ввести ряд термодинамических потенциалов, с помощью которых можно исследовать поведение термодинамических систем при этих процессах. Покажем теперь, что основное неравенство термодинамики для нестатических процессов с помощью введенных термодинамических потенциалов позволяет установить общие условия термодинамического равновесия и устойчивости различных систем. С точки зрения термодинамики эти условия являются достаточными. Однако, допуская в соответствии с опытом существование флуктуаций в системах (и, следовательно, выходя за рамки исходных положений термодинамики), можно доказать, что они являются также и необходимыми.  [c.119]


На основе такого представления, рассматривая выход системы из состояния равновесия как результат виртуальных отклонений внутренних параметров от их равновесных значений, можно, пользуясь основным неравенством термодинамики (3.59) для нестатических процессов, получить общие (т. е. для любых систем) условия термодинамического равновесия и устойчивости. При этом, поскольку состояние термодинамических систем определяется не только механическими параметрами, но и специально термодинамическими (температура, энтропия и др.) и другими параметрами, вместо одного общего условия равновесия для механических систем (6.2) для термодинамических систем их будет несколько в зависимости от отношения системы к внешним телам (адиабатная система, изотермическая система и др.).  [c.100]

Условия устойчивости термодинамического равновесия. Чтобы вывести систему из состояния устойчивого термодинамического равновесия, необходимо затратить извне работу. Таким образом, с энергетической точки зрения условие устойчивости равновесия любой из термодинамической систем есть не что иное, как требование максимума той полезной внешней работы, которая должна быть затрачена для того, чтобы сместить систему из состояния равновесия обратимым образом (и которая ранее была обозначена через Р т-щ)-Согласно уравнению (2.97) минимальная полезная внешняя работа при виртуальном изменении состояния системы  [c.112]

Таким образом, наличие флуктуаций в системах приводит к необходимости максимума энтропии при равновесии и, следовательно, всякий раз, когда это условие не выполнено, система не находится в устойчивом равновесии. Поэтому общее условие (6.4) является необходимым и достаточным условием устойчивости, а общее условие 5 5 < О является лишь достаточным условием устойчивости изолированных термодинамических систем.  [c.122]

Таким образом, общие условия устойчивого равновесия термодинамических систем в различных случаях определяются экстремальными значениями соответствующих термодинамических потенциалов. Эти условия являются не только достаточными, но и необходимыми, если обеспечены все другие условия для установления равновесия (поскольку найденные нами условия не являются единственными для возможности протекания процессов) .  [c.124]

Общие условия устойчивости равновесия термодинамических систем приводят к тому, что внешнее воздействие, выводящее систему из состояния равновесия, вызывает в этой системе такие процессы, которые ослабляют это воздействие. Это положение было установлено Ле Шателье в 1884 г. и обосновано Брауном в 1887 г. и названо принципом Ле Шателье — Брауна.  [c.131]


Рассмотрение условий равновесия различных термодинамических систем мы начнем со случая изолированной системы. В такой системе внутренняя энергия U и общий объем ее V имеют неизменное значение. Будучи выведена из состояния устойчивого равновесия, система через некоторое время возвращается в это состояние, причем вследствие необратимости релаксационных процессов энтропия системы по мере приближения к состоянию равновесия будет возрастать до тех пор, пока не достигнет максимума. Из этого вытекает следующее условие термодинамического равновесия изолированной системы в состоянии устойчивого равновесия энтропия изолированной системы имеет максимальное значение, т. е.  [c.116]

Исследование состояний устойчивого равновесия тел, каждое из которых определяется экстремумом соответствующей данным условиям характеристической функции, указывает на существование следующего совершенно общего правила под воздействием внешних сил, выводящих термодинамическую систему из равновесия, в ней развиваются такие процессы, которые всегда стремятся ослабить результаты внешнего воздействия. Это правило носит название п р и н ц и п а смещения равновесия Ле-Шателье — Брауна.  [c.150]

Среди равновесных состояний термодинамических систем следует различать устойчивые и неустойчивые состояния. Под устойчивым равновесным состоянием понимается такое равновесие термодинамической системы, при котором всякое (совместимое G, наложенными условиями) бесконечно малое воздействие вызывает только, бесконечно малое изменение состояния системы. В противоположность этому под неустойчивым равновесным состоянием понимается такое равновесное состояние термодинамической системы, при котором бесконечно малое воздействие (совместимое с наложенными условиями) может вызывать конечное изменение термодинамического состояния системы.  [c.30]

Рассмотрение условий равновесия различных термодинамических систем мы начнем со случая изолированной системы. В такой системе внутренняя энергия и и общий объем ее У имеют неизменное значение. Будучи выведена из состояния устойчивого равновесия, система через некоторое время возвращается в это состояние, причем 5  [c.67]

ЭКСТРЕМАЛЬНЫЕ СВОЙСТВА ТЕРМОДИНАМИЧЕСКИХ ПОТЕНЦИАЛОВ, УСЛОВИЯ ТЕРМОДИНАМИЧЕСКОГО РАВНОВЕСИЯ И ТЕРМОДИНАМИЧЕСКОЙ УСТОЙЧИВОСТИ СИСТЕМ  [c.109]

Рассмотрим сначала однокомпонентную систему, находящуюся при заданных термодинамических условиях в двухфазном состоянии. Считая эти фазы пространственно разделенными, мы в соответствии с выводами предыдущего пункта будем считать каждую из них пространственно однородной и термодинамически устойчивой системой. Исследуем поэтому только условия равновесия такой двухфазной системы.  [c.126]

Термодинамическая устойчивость системы определяется второй вариацией какого-либо термодинамического потенциала, если она не равна нулю. Найдем вначале общее выражение устойчивости системы, а потом исследуем и вторую вариацию соответствующего термодинамического потенциала. Рассмотрим закрытую систему, находящуюся в термостате с температурой Т под постоянным давлением Р. Общим условием устойчивости равновесия такой системы является минимум ее энергии Гиббса G = = Е—rS-f-PV. Это означает, что состояние системы в термостате при данных Р и Г с координатами (экстенсивными параметрами) У и S является устойчивым, если при небольшом спонтанном изменении координат ее энергия Гиббса G возрастает AG = = Gi — G>0, т. е.  [c.105]

Состояние равновесия, устойчивое в малом и неустойчивое в большом, аналогично относительно устойчивому, так называемому метастабильному состоянию многочастичных (например, молекулярных) систем ). Метаста-бильными являются пересыщенное состояние пара, полученное путем его охлаждения или сжатия, аморфное (стеклообразное) состояние переохлажденной жидкости сложного химического строения, состояние смеси веществ, химическая реакция между которыми задержана низкой температурой, и т. п. Наиболее устойчивым при данных внешних условиях является другое состояние системы, для достижения которого требуется преодоление более или менее высокого энергетического барьера. Можно представить себе, что в простейшем случае при данных условиях соответствующая термодинамическая функция Е каждой частицы системы имеет график, показанный на рис. 18.68, а в роли функции Е выступает свободная энергия, если заданы температура и объем системы, или термодинамический потенциал, если заданы температура и давление. Минимум функции Е в точке А соответствует метастабильному состоянию, а более глубокий минимум в точке В — наиболее устойчивому состоянию. Частица системы ввиду того, что ее энергия имеет случайные отклонения от среднего значения (флуктуации), может преодолевать барьер между состояниями А к В и переходить из одного состояния в другое. Поскольку АЕ < АЕ (см. рис. 18.68, а), то вероятность перехода частиц из состояния А в состояние В выше вероятности обратного перехода. Таким образом, при данных условиях имеется тенденция к переходу многочастичной системы из относительно устойчивого состояния в наиболее устойчивое. Все же метастабильное состояние может существовать довольно продолжительное время, а иногда и практически неограниченно долго. Так, для многих полимеров образование кристаллической фазы из переохлажденной жидкости связано с преодолением столь высоких барьеров, что аморфное состояние сохраняется без видимых изменений десятки лет.  [c.406]


Кинетика фазовых переходов, так же как и кинетика любых иных явлений, выходит за рамки собственно квази-стационарной термодинамики. В вопросах изменения агрегатных состояний термодинамика ограничивается рассмотрением равновесных систем, которые включают в себя уже сформировавшуюся новую фазу. Сам же ход формирования как микро-, так и макроскопических частиц вновь образующейся фазы, их роста и накопления остается за пределами анализа. В границах термодинамических представлений, как указывает Я- И. Френкель [Л. 50], под температурой агрегатного перехода (при заданном давлении) понимается не та температура, при которой фактически начинаются фазовые превращения, а та, при которой микроструктурные изменения, приводящие к возникновению новой фазы, прекращаются и система приходит в стабильное состояние. Очевидно, что и в стабильной системе изменение количественного соотношения между газообразной и конденсированной фазами возможно лишь при некотором нарушении взаимного равновесия элементов системы. Квазистационарная термодинамика допускает такие отклонения, однако каждое из них должно быть исчезающе мало. Это означает, что изменения макроскопического масштаба могут происходить лишь на протяжении бесконечно больших отрезков времени, во всяком случае по сравнению со временем восстановления нарушенного равновесия. В действительности же, как это отмечалось ранее, в быстротекущих процессах (например, при движении в условиях больших продольных градиентов давления) скорость изменения состояний среды, вызываемая внешними воздействиями, оказывается вполне сопоставимой со скоростью развития внутренних процессов, ведущих к восстановлению равновесия системы. Следует отметить, что особенно значительные нарушения равновесного состояния происходят в период зарождения новой фазы и начала ее развития. Мы здесь рассмотрим некоторые элементы процесса формирования конденсированной фазы, во-первых, ввиду его большого практического значения, во-вторых, для того, чтобы несколько осветить физическую картину явлений, приводящих в конечном счете к термодинамически устойчивому двухфазному состоянию.  [c.121]

При отыскании равновесных состояний какой-либо термодинамической системы приходится, наряду с полным равновесием, рассматривать также и мало от него отличающиеся неполные равновесия, энтропия которых меньше равновесной. На первый взгляд может показаться, что случай изолированной системы при таком исследовании существенно отличается от случая системы, связанной с другими термическими системами, и что условие максимальности энтропии в первом случае менее жестко, чем во втором. Ведь для изолированной системы требуется только, чтобы ее энтропия была больше, чем энтропия неполных равновесий с той же энергией и с теми же значениями механических параметров, что и в равновесии. Если же система входит как часть в более обширную систему, ее энергия и механические параметры могут, как и для изолированной системы, оставаться постоянными, но могут и меняться. Можно сказать, что равновесие изолированной системы должно быть устойчивым только относительно внутренних нарушений равновесия, а неизолированной  [c.108]

Исследование состояний устойчивого рав-, новесия тел, каж1Дое из которых определяется экстремумом юоответ сгв ующей данным условиям характеристической фуикции, указывает на существование следующего совершенно общего прав1ила под воздействием внешних сил, в ы в о д я щ-и х термодинамическую систему из равновесия, в системе развиваются такие процессы, к -о т о р ы е всегда стремятся о с л а б и ть р е-3 у -л ь т а т ы в и е ш я е г о воздействия. Это правило носит название -принципа ом еще ни я равновесия Ле-Ша-телье— Брауна.  [c.86]

В сформулированных в предшествующем разделе критериях равновесия термодинамических систем также не в полной мере использованы следствия второго закона о максимальности энтропии изолированной системы или о минимальности термодинамических потенциалов при тех или иных условиях равновесия. Действительно, знаки неравенств для вариаций первого порядка в (11.1), (11.13) и других критериях соответствуют виду экстремума энтропии, внутренней энергии и т. д., но эти знаки, как отмечалось, относятся к особому случаю граничного экстремума характеристической функции. Если же последняя имеет в равновесии стационарное значение, то вопрос о виде экстремума (минимума, максимума или точки пЬрегиба) при использовании (11.1), (11.13), (11.31) и других остается открытым и для ответа на него надо дополнить указанные критерии соответствующими условиями устойчивости равновесия  [c.115]

Таким образом, равенство 55 =О определяет общее условие равновесия, а неравенство 5"5<0 — общее условие устойчивости равновесия изолированных термодинамических систем. Эти условия являются достаточными, так как если бы система, имея максимальную энтропию, не находилась в устойчивом равновесии, то при приближении к нему ее энтропия начала бы расти, что противоречит предположению о ее максимальности. Доказать необходимость максимальной энтропии при устойчивом равновесии изолированной системы исходя из основного неравенства (6.3) нельзя, так как из него не следует, что равновесие невозможно при немаксимальной энтропии. Однако, принимая во внимание молекулярную природу термодинамических систем и наличие обусловленных ею флуктуаций внутренних параметров, видим, что состояние равновесия без максимума энтропии невозможно, так как благодаря этим флуктуациям в системе возникают неравновесные процессы, сопровождающиеся ростом энтропии и приводящие систему к равновесию при максимальной энтропии.  [c.122]

Это значит, что первая вариация энтропии равна нулю, а вторая меньше нуля. Равенство нулю первой вариации является лишь необходимым условием экстремума и не обеспечивает того, чтобы энтропия имела именно максимум. Достаточным условием максимума энтропии является отрицательное значение ее второй вариации, которое и обеспечивает устойчивость равновесия. Если же при 65 = 0 вторая вариация энтропии положительна (минимум энтропии), то соответствующее состояние системы будет равновесным, но совершенно неустойчивым , так как благодаря флуктуациям в ней начнутся неравновесные процессы, которые и приведут ее в равновесное состояние с максимумом энтропии. Так как дальше энтропия расти не может, то это равновесие будет устойчивым. Таким образом, равенство б5 = 0 определяет общее условие равновесия, а неравенство 6 5<О — общее условие устойчивости равновесия изолированных термодинамических систем. Эти условия являются достаточными, так как если бы система, имея максимальную энтропию, не находилась в устойчивом равновесии, то при приближении к нему ее энтропия начала бы расти, что противоречит предположению о ее максимальности. Доказать необходимость максимальной энтропии при устойчивом равновесии изолированной системы исходя из основного неравенства (6.3) нельзя, так как из него не следует, что равновесие невозможно при немаксимальной энтропии. Однако принимая во внимание молекулярную природу термодинамических систем и наличие обусловленных ею флуктуаций внутренних параметров, видим, что состояние равновесия без максимума энтропии невозможно, так как благодаря этим флуктуациям в системе возникают неравновесные процессы, сопровождающиеся ростом энтропии и приводящие систему к равновесию при максимальной энтропии.  [c.101]


Однако, если предположить, что обе фазы, находясь в точках а и 6, могут взаимодействовать между собой, образуя термодинамическую систему, находящуюся при постоянных р а Т, то выяснится, что состояние Ь, в котором потенциал выше, чем в состоянии а, является лишь относительно устойчивым — метастабильным, ибо переход вещества из состояния два приведет к уменьшению потенциала ф. Аналогичные заключения можно сделать относительно точек с н d. То же относится н к рис. 2-4. На основании этого частки изобар и изотерм на рис. 2-3 и 2-4, относящиеся к состоянию устойчивого равновесия, изобрал<ены сплошными линиями, а участки, относящиеся к метастабильным состояниям,—пунктирными. Как уже отмечалось, реальные термодинамические системы могут находиться в метастабиль ных состояниях, если приняты меры к тому, чтобы они не подвергались заметным возмущениям извне, и если возмущения, связанные с естественными флуктуациями, малы по сравнению с порогами устойчивости. Так, например, очень чистую жидкость, находящуюся при некотором постоянном давлении, меньшем критического, можно нагреть до температуры, заметно превосходящей температуру насыщения при данном давлении Т з(р), без того, чтобы йачался процесс парообразования. Такое состояние жидкости аналогично точке d на рис. 2-4,а. Наоборот, пар можно изобарно охладить до точки Ь (рис. 2-4,а) без того, чтобы он начал конденсироваться. Однако можно показать, что существуют определенные границы существования метастабильных состояний. Эти границы определяются тем, что для метастабильных состояний должны выполняться условия устойчивости, поскольку, как отмечалось, мета--стабильные состояния по отношению к малым возмущениям устойчивы, т. е. для близкой окрестности точки метастабилшого равновесия должны выполняться условия (2-37) и (2-38)  [c.36]

Уравнения (4-33) — (4-37) имеет смысл привлекать к расчету процесса, начиная от тех сечений канала, в которых возникает интенсивное образование устойчивых зародышей, сопровождающееся заметным выпадением конденсата, и кончая местом, где завершается скачок конденсации и система жидкость—пар переходит в термодинамически равновесное состояние. С момента восстановления термодинамического равновесия в потоке перестают быть действительными уравнения (4-36), (4-36 ), а также выражения для определения скорости зародышеобразования, относящиеся к явлениям, происходящим в перенасыщенном паре. Уравнения же (4-33) — (4-35) без дополнительных связей, характеризующих междуфазовый обмен массой, не образуют замкнутой системы. В условиях фазового равновесия и совпадения скоростей паровой и конденсированной составляющих потока можно парожидкостную среду рассматривать как единую систему. Процесс изоэн-тропийного течения такой термодинамически равновесной системы полностью описывается приведенными в 3-3 уравнениями (3-7) — (3-9), к которым следует присоединить уравнение кривой упругости Т = f (р). Заметим, что система уравнений (3-7) — (3-9) свободна от такого допущения, заложенного в основу вывода зависимости (4-33) — (4-35), как отождествление свойств пара и идеального газа.  [c.155]

Термодинамическая устойчивость отдельной фаза. Рассмотрим однородную систему (т. е. такую, в которой любая из интенсивных переменных Т, р имеет одно и то же значение во всех точках системы) из п молей одной компоненты пусть энтропия и объем системы остаются постоянными. Фазы аир будем указывать нижними индексами, а начальное (невозмущенное) состояние — индексом (0). Первоначально система полностью находится в фазе а. Возмущение состоит в том, что б молей переходят в фазу р, лишь слабо отличающуюся от фазы а. Условие равновесия в такой системе при постоянных S и i (причем допускаются диффузионные процессы) состоит в том, что ) dUid )s, р > О, т. е. внутренняя энергия U должна быть минимальна. Это условие эквивалентно условию Т д8/д1)ц, р < О, т. е. энтропия S должна быть максимальна [1, 2], как это следует из второго закона термодинамики (см. условие задачи 1.22). Чтобы упростить вычисление частных условий устойчивости фазы, будем поступать следующим образом  [c.225]

Дальнейшее развитие теории связано с проблемой построения термодинамики нелинейных процессов, рассматривающей системы, далекие от состояния термодинамического равновесия. В последние годы в этой области достигнут заметный прогресс. Плодотворная разработка ведется в направлении построения вариационных принципов либо обобщающих принципы линейной термодинамики (Дьярмати [9], Бахарева [10]), либо представляющих новые вариационные формы (Био [8], Пиглер [11], Глансдорф и Пригожин [12]). Основополагающей в этом направлении явилась монография Глансдорфа и Пригожина [12], где сформулирован универсальный критерий эволюции термодинамических систем и разработан аппарат локальных термодинамических потенциалов, обладающих экстремальными свойствами и в условиях сильных отклонений систем от состояния равновесия. Фундаментальный результат, полученный в этих теоретических исследованиях, связан с установлением возможности самопроизвольного появления в сильно неравновесных системах устойчивых структур, упорядоченных в пространстве и времени.  [c.8]

Рассмотрим сначала однокомпонентную систему, находящуюся при заданных термодинамических условиях в двухфазном состоянии. Считая эт>1 фазы пространственно разделенными, мы в соответствии с выводами предыдущего пункта бушем считать каждую из них пространственно однородной и термодинамически устойчивой подсистемой, характеризуемой общим значением температуры и давления (условие термодинамического равновесия системы в целом — отсутствие гепловых потоков и механических перемещений между отдельными частями системы). В связи с этим нам остается исследовать условие равновесия такой двухфазной  [c.104]

В гл. 18 показано, что, когда система приходит в состояние, далекое от равновесия, устойчивость термодинамической ветви больше не обеспечивается. В разд. 18.3 с использованием второ11 вариации энтропии было получено необходимое условие (18.3.7) неустойчивости системы. Вдали от области, близкой к равновесию, приходится стгипкиваться с множественностью состояний и отсутствием предсказуемости. Чтобы понять точные условия неустойчивости и последующее поведение системы, необходимо привлекать такие характеристики системы, ка.к кинетические и гидродинамические уравнения. Некоторые общие особенности систем, далеких от равновесия, суммированы далее.  [c.405]

Использование синергетических принципов при разработке новых неравновесных технологий открыло поистине фантастические возможности формирования профилей изделий и сварки путем управления тепловыми потоками при воздействии на металл концентрированными потоками энергии (КПЭ). Следует отметить, что КПЭ для обработки и сварки металлов используется уже несколько десятилетий, но при разработке технологических процессов не учитывались особые свойства системы КПЭ—металл, находящейся вдали от термодинамического равновесия. Их использование позволяет оптимизировать процессы путем доведения их до самоорганизующихся. Эти возможности связаны с тем, что при воздействии на. металл КПЭ (струи плазмы, лазерные, электронные и другие лучи) теплофизические процессы, происходящие в нем, целиком определяются температурным полем [571]. Однако вид пространственно-временной структуры при воздействии КПЗ зависит от технологических параметров. Самоорганизующиеся процессы отвечают условиям воздействия, при которых переходы устойчивость—неустойчивость—устойчивость определяются внутренними динамическими взаимодействиями между подсистемами, контролируемыми автоколебаниями. Последние относятся, как известно, к нелинейным процессам. Существенной особенностью воздействия внешней периодической силы на автоколебательную систему является существование областей синхронизации автоколебаний внеигаим периодическим сигналом.  [c.359]


Следовательно, есла свободная энергия имеет минимум, то система находится в состоянии устойчивого равновесия, так как если бы какое-нибудь превращение могло увеличить свободную энергию, то это противоречило бы (ИЗ). В случае механических систем устойчивое равновесие устанавливается при минимальной потенциальной энергии. Поскольку условием устойчивого равновесия термодинамической системы, заключенной в жесткий ре-эервуар и имеющей температуру окружающей среды, является  [c.73]

ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ -- состояние термодинамич. системы, когда ее параметры состояния не меняются с течением времени и когда в системе отсутствуют потоки любого тина. С микросконич. точки зрения такое состояние есть состояние динамического (или подвижного) равновесия (между отдельными частями системы возможен, напр., обмен частицами), так что равновесные значения термодинамич. параметров пе фиксированы строго во времени, а соответствуют статистическим средним величинам, около к-рых возможны флуктуации. В термодинамике полагают, что состояние Т. р. обладает след, свойствами если система, помещенная в неизменные внешние условия (напр., изолированная или находящаяся в термостате), достигла состояния Т. р., то она не может самопроизвольно выйти из этого состояния (свойство устойчивости, самоненарушаемости Т. р.) если система А находится в равновесии порознь с системами В и С, то две последние нри тепловом контакте также будут находиться в Т. р. друг с другом (свойство транзитивности Т. р.). Первое свойство ограничивает круг рассматриваемых в термодинамике систем теми, в к-рых флуктуации их характеристик несущественны и для описания к-рых можно отвлечься от молекулярной структуры вещества. Второе нозьо-ляет ввести общую макроскопич. характеристику систем, находящихся в равновесии — темп-ру, одииа-ковую для любой части равновесной системы.  [c.162]


Смотреть страницы где упоминается термин Условия равновесия и устойчивости термодинамических систем : [c.108]    [c.121]    [c.89]    [c.186]    [c.91]    [c.90]    [c.27]    [c.29]    [c.189]   
Смотреть главы в:

Термодинамика и статистическая физика  -> Условия равновесия и устойчивости термодинамических систем



ПОИСК



Равновесие системы тел

Равновесие термодинамическо

Равновесие термодинамическое

Равновесие термодинамической системы

Равновесие условие равновесия

Равновесие устойчивое

Система Устойчивость

Система устойчивая

Термодинамическая система

Условие равновесия системы пар

Условие равновесия устойчивого

Условие устойчивости

Условия равновесия

Условия равновесия и устойчивости термодинамических систем Общие условия термодинамического равновесия и устойчивости

Условия равновесия термодинамических систем

Условия равновесия. Устойчивость

Условия устойчивости термодинамического равновесия

Устойчивость равновесия

Устойчивость равновесия системы

Экстремальные свойства термодинамических потенциалов, условия термодинамического равновесия и термодинамической устойчивости систем



© 2025 Mash-xxl.info Реклама на сайте