Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вода в газовой среде, влияние

Влияние содержания в газовой среде воды на распространение трещины  [c.287]

Дисперсность распыливания. В [18] приведены опытные данные по влиянию на дисперсность распыливания таких факторов, как относительная скорость воды в газовом потоке диаметр сопла форсунки отношение длины сопла /с к диаметру с, давление среды, в которой происходит распыливание вязкость распыливаемой жидкости.  [c.114]


Опытным путем установлено, что а) выделение газов из воды происходит главным образом за счет диффузии через слой жидкости в греющий пар б) в той части деаэраторной колонки, где температура воды достигает температуры кипения, в водяных струях или пленках образуются мельчайшие газовые пузырьки, выделяющиеся в последующем в паровую среду в) в верхней части деаэраторной колонки содержание растворенных в воде газов снижается незначительно, так как при высоком начальном содержании их в дегазируемой воде относительно большая концентрация в паре газов, выделившихся в нижней части колонки, затрудняет диффузию газов из воды в паровую среду г) существенное влияние на эффективность удаления мельчайших газовых пузырьков, находящихся в нерастворенном состоянии, оказывает продолжительность пребывания воды в баках-аккумуляторах чем она больше, тем меньше остаточное содержание кислорода в воде на выходе из деаэратора, главным образом за счет продолжающегося в баке-аккумуляторе выделения газовых пузырьков обычно емкость баков-аккумуляторов принимается равной 20—30-минутному расходу питательной воды.  [c.354]

С созданием паровых турбин паровые поршневые машины практически полностью пере- стали использоваться, поэтому их работа здесь не рассматривается. Однако необходимо от-> метить, что существуют мнения о возможности их применения в качестве автомобильного двигателя, Турбина позволила перейти на более высокие температуры, а соответственно повысить КПД и производительность. В конце XIX — начале XX вв. в условиях интенсивного развития техники применение турбин совершило переворот в области создания корабельных двигателей и в энергетике. Несколько позднее появилась новая отрасль промышленности — авиация, которая также остро нуждалась в, легких и мощных двигателях. Паровая турбина в этом случае не могла стать выходом из положения большая масса, большие расходы воды и топлива, необходимость конденсации отработанного пара, медленный темп изменения частоты вращения делали ее непригодной для авиации. Эти требования и проблемы привели к созданию высокоскоростной авиационной газовой турбины. Недавно были сделаны попытки использовать газовую турбину в качестве автомобильного двигателя. Процессы, протекающие в газовой и паровой турбинах, существенно отличаются. Рассмотрим термодинамический цикл газовой турбины, а затем особенности ее влияния на окружающую среду.  [c.76]

В качестве газовых сред, применяемых при горении потока топлива в присутствии других сред, могут быть использованы водяной пар, воздух, продукты горения или их смеси с водяным паром и т. д. Кроме того, могут применяться и такие жидкие среды, как вода, жидкие топлива или их эмульсии или суспензии. Влияние на процесс горения азота, двуокиси углерода, аргона и гелия, вводимых непосредственно в зону горения, изучали многие исследователи. Такого рода присадки вводились для предотвращения взрыва горючих смесей. Было установлено, что инертные среды, сужая границы воспламенения, мало влияют на нижнюю границу воспламенения и заметно снижают его верхнюю границу.  [c.116]


Для количественной оценки влияния коррозионных факторов на долговечность элементов конструкций газодинамические стенды оборудуют системами введения в газовый поток коррозионно-активных компонентов заданного программой состава и концентрации. Применительно к элементам транспортных газотурбинных двигателей принципиальное значение имеют системы для моделирования сред с солями морской воды и соединениями серы, попадающими в газовоздушный тракт турбины вместе с воздухом и топливом при эксплуатации в морских условиях.  [c.332]

Температура сырой (обводненной и обезвоженной) нефти — многообразный по проявлению фактор коррозии внутри резервуаров. Она определяет растворимость в этих средах основных коррозионных агентов (воды, кислорода, сероводорода и СО , а также, согласно химической кинетике, скорость коррозионного процесса. На развитие коррозии металлов в емкостях оказывает влияние не столько температура углеводородных жидкостей, сколько разность температур между нефтью и окружающей резервуар атмосферой. Значительная разность температур между стенками резервуара и контактирующей с ними газовой средой (при полной насыщенности ее влагой и парами углеводородов) является движущей силой процесса непрерывной конденсации жидкости на кровле и внутренних стенках резервуара и, следовательно, причиной не только дополнительного обводнения хранящейся в резервуаре нефти и нефтепродуктов, но и насыщения конденсирующихся капель воды и нефтепродуктов компонентами газовой атмосферы (кислородом и сероводородом).  [c.16]

Влияние концентрации Н23 в газовой фазе (например, углеводородной) над вызывающей наводороживание стали электролитической коррозионной средой (например, дренажной водой) показа-  [c.46]

По принципу действия различают золоуловители механические инерционные сухие, в которых частички уноса отделяются от потока продуктов сгорания под влиянием сил инерции механические инерционные мокрые, в которых для улавливания частиц уноса и удаления их из золоуловителя служит вода электростатические, работа которых основана на ионизации газовой среды и притяжении заряженных частиц уноса к электродам. К механическим относят ци-  [c.185]

Антифрикционные пластичные смазки применяют в узлах трения, работающих в глубоком вакууме, в окислительных и восстановительных газовых средах, в контакте с водой при радиационном облучении и во многих других специфических условиях, оказывающих влияние на долговечность. Многообразие условий применения явилось причиной разработки и применения большого числа пластичных смазок, различающихся по составу, назначению и эксплуатационным свойствам.  [c.4]

Влияние газовой среды. Для сварки находят применение дуги с плавящимся и неплавящимся электродами, горящие в среде или в струе защитных газов Аг, Не, СОг и др. Эти газы влияют на состав плазмы столба и, следовательно, на ее о, Qe, -от которых зависят температуры столба, напряженность и плотность тока в нем [см. формулы (2.59), (2.62), (2.63)]. При малых скоростях и ламинарном течении струи газов вносимые ею изменения незначительны. Например, для сварки плавящимся электродом свойства столба при 1 атм могут определяться потоками паров электродов и мало зависеть от состава защитной атмосферы. Тогда в расчет вводятся константы щ, Qe, а для паров электродов. Опыты Лескова Г. И. показали, что обдувание Ме-дуги при / = 200 а струей аргона, углекислого газа или воздуха при. малой скорости течения (около 1 м/сек) практически не изменило ее характеристики. Однако в вакууме и в парах воды Е меняется значительно от 2 в/см в первом случае до 80 в/см — во втором.  [c.75]

На скорость восстановления окислов металлов при обычном количестве газов-восстановителей основное влияние оказывает количество кислорода, попадающего в камеру пайки из других источников (недостаточная чистота газовой среды, подсос воздуха, выделение адсорбированного кислорода металлом и элементами печи и т. д.), и скорость удаления продуктов восстановления. Если в камеру не будет поступать свежий поток газовой смеси, не содержащей кислорода и продуктов восстановления, то концентрация последних может достигнуть такого предела, что процесс восстановления окислов прекратится и реакция пойдет в обратном направлении с образованием окислов. Даже сравнительно небольшие добавки паров воды и углекислого газа (2—3%), которые не могут повысить интенсивность обратной реакции, т. е. процесса окисления восстанавливаемого металла, вызывают сильное торможение процесса восстановления.  [c.64]


Большое влияние оказывают примеси. Загрязнение воздуха СО2, SO2, парами воды вызывает повышение скорости газовой коррозии низкоуглеродистой стали в 1,3-2,0 раза. При увеличении содержания оксида углерода (II) — СО — скорость окисления стали понижается. Это явление связывают с тем, что при большом содержании СО на границе сталь-газ устанавливается равновесие 2СО С + СО2. Образующийся при этом атомарный углерод диффундирует в сталь с образованием карбида железа — цементита. Происходит науглероживание стали. Аналогичный процесс при высоких температурах может иметь место и в атмосфере углеводородов. Например, в среде метана устанавливается равновесие  [c.58]

На скорость химической коррозии наиболее существенное влияние оказывает состав газовой фазы и температура. При повышении температуры и наличии в атмосфере внешней среды паров воды коррозия усиливается. График изменения скорости коррозии (рис. 70)  [c.224]

Рабочий потенциал цинка по отношению к катодно защищаемой стали равен 200— 250 мВ, что значительно меньше потенциала магния (700 мВ). Такая величина потенциала цинка идеальна для морской воды нли других электролитов с низким удельным электрическим сопротивлением, но применение цинка в средах с более высоким удельным сопротивлением не всегда оправдано. Например, использование цинка не даст, по-видимому, существенного эффекта при защите больших подземных систем в почвах с высоким удельным сопротивлением. В то же время цинк оказался полезным материалом для защиты небольших подземных конструкций (таких как резервуары), помещенных в почву с удельным сопротивлением менее 3000 Ом см. В работе Оливе [19] обсуждается применение цинковых анодов для защиты подземного оборудования на бензоколонках в США. Более крупные системы, насчитывающие значительное число цинковых анодов, созданы для защиты стальных газовых магистралей в Хьюстоне и Новом Орлеане [20]. Из общего числа защитных анодов, равного 1200, почти 1000 — цинковые. Это является хорошим примером, показывающим, что при соответствующих почвенных условиях цинковые аноды можно использовать для защиты крупных подземных сооружений. Цинк довольно широко применяют для защиты труб малого диаметра, не имеющих защитных покрытий, а в последнее время его начинают все чаще использовать для защиты труб большого диаметра с покрытиями в зонах плотной застройки, что позволяет уменьшить взаимное коррозионное влияние соседних подземных коммуникаций. Цинковые аноды применяют также для защиты оцинкованных резервуаров для холодной воды.  [c.168]

Влияние закалочной среды на коробление определяется скоростью отвода тепла от охлаждающей поверхности, равномерностью смачивания изделий, способностью образовывать паровую или газовую оболочку на поверхности изделия, а иногда и взаимодействием охлаждающей среды с поверхностью детали, особенно с окалиной. Тепло от детали отводится главным образом за счет конвекции и нагревания охладителя, а иногда и его парообразования. На парообразование расходуется тепла значительно больше, чем на нагрев жидкости до кипения. Например, для нагрева 1 кг (литра) воды до 100° расходуется 100 ккал, а для испарения 1 кг — 538,7 ккал. В случае неравномерного разрущения при закалке паровой или газовой оболочки можно получить неравномерное  [c.1058]

Бэдворта — Пиллинга отношение 29 Видерхорна кривая 125 Вода в газовой среде, влияние на распространение трещины 287 Водород, влияние на пластичность 69  [c.484]

Ковочные штампы больших размеров, изготовленные из стали марок К12—К14 с 3—5% Сг, хорошо азотируются в аммиачной газовой среде со степенью диссоциации около 30 7о- Под влиянием термической обработки (12 ч при 500°С+12 ч при 520° С) образуется азотированный слой толщиной приблизительно 0,2—0,25 мм (толщина пленки химического соединения 10—15 мкм), имеющий поверхностную твердость НУб= lOOO-f-1200, Поверхностная твердость сталей типа NK не превышает HV 550. Расходы на азотирование в газовой среде в течение относительно продолжительного периода времени составляют 2—8% от стоимости инструмента. Продолжительность азотирования в газовой среде может бьиъ сокращена путем повышения температуры обработки. Однако с точки зрения оптимальности свойств более целесообразно начинать азотирование при низких температурах и заканчивать при несколько больших (но более низких, чем температура отпуска) температурах. В процессе азотирования, осуществляемого при низких температурах, твердость сердцевины не (иеняется и, если меняется, то совершенно незначительно, однако при этом в небольшой степени (5—25% ) уменьшается вязкость. Ударная вязкость образцов с азотированным слоем вследствие образования хрупкого поверхностного слоя убывает в значительной степени. Инструмент ковочных штампов, обработанный азотированием, чрезвычайно стоек к износу. Одинаковый износ (0,1—0,3 мм) инструмента, подвергшегося азотированию, наблюдается после штамповки приблизительно в 2,5—3 раза большего количества деталей по сравнению с неазотированным инструментом. Однако азотирование не увеличивает долговечность инструмента, имеющего склонность к разрушению и образованию трещин, так как еще сильнее увеличивает хрупкость инструмента. Поэтому инструмент с азотированным поверхностным слоем нельзя быстро охлаждать, например в воде, потому что под влиянием такого охлаждения азотированная поверхность растрескивается.  [c.253]

На основании изучения гетерофазного взаимодействия титана с расплавами стекол системы ЗЮа—А1,0,—В,О,—7пО(СиО) с ПОМОЩЬЮ комплекса электрохимических методов исследования установлено большое влияние состава газовой среды на величину и кинетику установления стационарного потенциала Т1-электрода, электропроводность изученных расплавов. Показано, что доминирующим на первой стадии взаимодействия титана с расплавом стекла-матрицы в нейтральной атмосфере является процесс окисления металла за счет растворенных в расплаве паров воды, дополняемый окислительно-восстановительным взаимодействием с образованием в зоне контакта силицидов титана. Присутствие иона меди в расплаве изменяет характер взаимодействия. Восстановление меди сопровождается образованием купротитанатов вследствии гетеродиффузии в металлический титан и растворением прочих продуктов в расплаве. Методом вращающегося титанового диска изучалась кинетика процесса. Лит. — 9 назв., ил. — 3.  [c.270]


Несомненно также, что термостойкость всех материалов уменьшается с ростом максимальной температуры цикла. Это можно объяснить не только возрастанием напряжений с повышением температуры, но и большей порчей материала при более высоких температурах, главным образом в поверхностных слоях. Замечено, что трещины термической усталости возникают не только в тех зонах и сечениях детали, которые подвергаются нагреву и охлаждению с наибольшей скоростью (например, в зонах, соответствующих границе действия потока горячих газов или, наоборот, охлаждающего потока), а также в зонах действия максимальных температур и поэтому, как правило, с наиболее окисленной поверхностью. Наблюдаемое значительное влияние среды на термостойкость подтверждает значение состояния поверхности так, долговечность турбинных лопаток при теплосме-нах 1050ч 600°С с вводом в газовой поток солей морской воды уменьшилась примерно в 10 раз по сравнению с результатами испытания в обычных условиях [81]. Отсюда становятся понятными причины положительного влияния на термостойкость защитных поверхностных слоев.  [c.162]

На многих высокопрочных алюминиевых сплавах наблюдается почти одинаковый рост трещин, независимо от того, испытываются они в газовой атмосфере с относительной влажностью 100% или в дистиллированной воде. Таким образом, кривые, показанные на рис. 40 для влажного воздуха, применимы и для случая роста трещины в дистиллированной воде, за исключением сплава 7079-Т651. Это очевидно из сравнения рис. 40 и 46. На рис. 46 показаны скорости коррозионных трещин в зависимости от коэффициента интенсивности напряжений для двух широко используемых высокопрочных алюминиевых сплавов в дистиллированной воде. В то время как плато скорости для сплава 7075 в дистиллированной воде и влажном воздухе находится на одном уровне, кор розионная трещина на сплаве 7079 имеет существенно более высокую скорость при погружении в воду. На область I среда значительного влияния не оказывает.  [c.198]

Принципы коррозионностойкого легирования, разработанные для водных сред, можно применить для паровых фаз. С точки зрения электрохимической коррозии следует также рассматривать и влияние внешних и внутренних факторов при коррозии в паровых средах. Можно полагать, что только при очень низких давлениях пара коррозионные процессы будут протекать по механизму газовой коррозии. При постоянной температуре давление воды не влияет на кинетику электродных процессов. На рис. 1-10, 1-11 представлены анодные и катодные кривые, снятые в автоклаве для электрохимических исследований при комнатной температуре с образцов из стали 1Х18Н9Т.  [c.33]

Ранее мы отмечали, что при промежуточных температурах различные газовые среды оказывают ускоряющее влияние на рост трещин ползучести и усталости. Согласно ряду наблюдений поведение трещин при более высоких температурах нередко совпадает с поведением трещин при более низких температурах в водной среде. Например [И], у сплава X-750 характер коррозии под напряжением в паро-водородной смеси при 399 °С совпадал с таковым в водной среде реактора на сжатой воде при более низких температурах. Очень важно понять природу и особенности повреждающего действия  [c.317]

Влияние атмосферного воздуха на процесс трения и износа связывают, главным образом, с воздействием на контактные поверхности трущихся лар кислорода и паров воды. Наиболее полно исследована роль воздуха в процессах трения и износа в вакуумных машинах трения, позволяющих получать разрежение газовой среды в зоне рабочего узла трения в диапазоне ЫО — 1 10 Па [13, 15, 24]. Общепризнанным результатом этих исследований является то, что воздух оказывает значительное влияние на процессы трения и износа и что оно существенно за1ви ит от условий трения и свойств трущихся пар. В большинстве реальных случаев работы узлов трения деталей машин избыточное количество воздуха может приводить к возрастанию износа за счет интансификации окисления поверхностей, недостаток же — к увеличению износа и возрастанию сил трения за счет усиления явлений схватывания и адгезии. Оптимум содержания воздуха соответствует давлению б-Ю —5 Па. Смазочное действие большинства углеводородных смазок и ири-садок высокого давления [1] в большой маре зависит от участия в процессе взаимодействия с трущимися поверхностями составляющих атмосферного воздуха.  [c.55]

Гипохлорит натрия незадолго до употребления получают при взаимодействии хлора с едким натром. Едкий натр растворяют в воде в стальном баке, снабженном змеевиком. Из бака центробежным стальным насосом раствор перекачивают в напорный мерник, корпус и змеевик которого также выполнены из обычной углеродистой стали. Разбавление едкого натра до рабочей концентрации 8—10% производится отдельно в стальном сосуде с мешалкой. Хлор поступает на производство в стальных баллонах. Для ускорения подачи газа баллоны перед употреблением устанавливают в ванну с горячей водой. Из баллонов газ по стальному хло-)оороводу направляется в инжектор, где он смешивается с водой. Инжектор изнутри защищен двухслойной обкладкой. Нижний слой состоит из жесткой резины марки 1814 (полуэбонит), обладающей после вулканизации высокой адгезией к металлу, а верхний— из мягкой резины марки 1976, хорошо противостоящей (свыше 5 лет) влиянию коррозионных сред и эрозионному действию жидкостных и газовых потоков. Образующаяся в инжекторе  [c.14]

В настоящей статье изложены результаты изучения влияния глубины вакуума в интервале 1 10 —1 Ю " мм рт. ст. на состояние поверхности никеля и бериллиевой бронзы при различных температурах отжига. В литературе по этому вопросу существуют разноречивые данные [5—7]. Нами были получены сравнительные данные о свойствах и степени окисления никеля и бериллиевой бронзы БрБ2 при отжиге их в воздухе, парах воды и вакууме при величине остаточного давления от 1 10 до 1 10 < мм рт. ст., а также в защитных газовых средах. В качестве защитных сред применяли те.книче-ский водород из баллонов и экзотермический газ следующего состава 8—10% Нг 6—8% СОг,- 6—8%С0 остальное азот н пары воды. Температура точки росы 4-25° С.  [c.54]

На цирконий двуокись и окись углерода оказывают более сильное коррозионное воздействие, чем кислород, но слабее, чем водяной пар (600—1000° С Хейс, Роберсон и Робертсон [855]). Максимальная скорость корродирования под влиянием окпси углерода достигается при 750—800° С прн более высоких температурах сила коррозионного действия окиси углерода меньше, чем у двуокиси углерода, паров воды или кислорода. При давлении 0,6 мм рт. ст. и температуре 986° С газовые среды по своему коррозионно.му действию нужно расположить в следующей очередности (Дравникс [556]) кислород, воздух, пары воды, двуокись и окись углерода. Скорость корродирования в атмосфере окиси углерода в этих условиях меньше скорости окисления в атмосфере кислорода в 6 раз.  [c.380]

В данной книге рассматриваются строение и свойства сталей, используемых для изготовления паровых и водогрейных котлов, трубопроводов пара и горячей воды, а также сосудов, работающих под давлением, описываются применяемые в энергетике стали и влияние технологических процессов и условий эксплуатации на структуру и показатели прочности металла. Значительное внимание уделяется строению и свойствам сварных соединений, сообщаются основные результаты исследований высокотемпературной газовой коррозии экранов, щирмовых пароперегревателей и конвективных поверхностей нагрева мощных паровых котлов помещена информация о коррозионных процессах в водной среде и низкотемпературной сернистой коррозии, излагаются мероприятия, позволяющие защитить трубную систему котлов от интенсивных коррозионных поражений, основные положения нормативных методов расчета на прочность элементов котлов, трубопроводов и сосудов, работающих под давлением.  [c.7]


Опытным путем установлено, что а) выделение газов из воды в греющий пар происходит главным образом, за счет десорбции б) в той части деаэраторной колонки, где температура воды достигает температуры кипения, в водяных струях или пленках образуются мельчайшие газовые пузырьки, выделяющиеся в последующем в паровую среду. Существенное влияние на эффективность удаления мельчайших газовых пузырьков, находящихся в нерастворенном состоянии, оказывает продолжительность пребывания воды в баке-аккумуляторе чем она больше, тем меньше остаточное содержание кислорода в воде на выходе из деаэратора, главным образом за счет продолжающегося в баке-аккумуляторе выделения газовых пузырцков обычно емкость бака-аккумулятора принимается равной 20—30-жын расходу питательной воды.  [c.202]

Серия 3. Испытывали модели лопаток из сплавов ЭП220 с шликерным покрытием Сг-Al-Si с Y и без покрытия, ЖСбУ с шликерным покрытием r-Al-Si с Y и электронно лучевым Со-Сг--A1-Y покрытиями и без покрытия и сплавов ЭИ765 и ЭИ827, без покрытий [259]. Восстановительная термообработка после нанесения покрытия и диффузионного отжига не проводилась. Установлено, что шликерное покрытие r-Al-Y снижает число циклов до образования трещин при испытании в газовом потоке без солей морской воды, в то время как при повышенной коррозионной активности среды в условиях впрыска морской воды это покрытие оказывает положительное влияние на долговечность (табл. 6.12).  [c.427]

Р асширение продуктов взрыва в воде приводит к образованию в среде газового пузыря, который совершает ряд колебаний относительно среднего диаметра. При взрыве на глубине пузырь из-за плавучести газообразных продуктов всплывает. Наибольшая скорость всплытия пузыря наблюдается при его минимальных размерах. Колебательные движения газового пузыря вршывают образование серии волн сжатия, распространяющихся в радиальных направлениях. Несмотря на то что максимальное давление в первой волне сжатия много меньше давления в основной ударной волне, их импульсы сравнимы, поэтому при рассмотрении взаимодействия поля течения с преградой влияние пульсации необходимо учитывать.  [c.127]

Повышенное содержание серы в жидком топливе вызывает зат руднения в эксплуатации, связанные с высоко- и низкотемпературной коррозией поверхностей нагрева котлов и с загазованностью ок-ружаюш,ей среды. К жидкому топЛ1ву, используемому для газотурбинных установок (ГТУ), предъявляются повышенные требования в отношении содержания воды, механических примесей и ряда химических элементов (ванадия, натрия, калия, кальция и свинца), так как продукты сгорания этого топлива проходят через проточную часть газовых турбин и оказывают большое влияние на надежность работы и сроки служ.бы горячих деталей. Повышенное содержание указанных выше химических элементов определяет условия работы топливной системы и системы регулирования.  [c.8]

Особенности этих неустаповившихся процессов зависят от упругих свойств пластов и насыщающих их жидкостей. Хотя коэффициенты сжимаемости воды, нефти и пористой среды очень малы (ро = 4,59-10-< м2/Н, р = (Уч-ЗО) IO- o м7Н, рс = = (0,3-i-2) 10 м /Н), упругость жидкостей и породы оказывает огромное влияние на поведение скважии и пластов в процессе их зксплуатаг1ии, так как объемы пласта и насыщающей его жид юсти могут быть очень велики. Поэтому при подсчете запасов нефти (и газа), при проектировании разработки нефтяных и газовых месторождений, при эксплуатации, при исследовании скважин, при создании подземных хранилищ газа приходится учитывать сжимаемость жидкости и пористой среды.  [c.127]

ТЕРМОСТАТ (от греч. 1Ьёгшё — тепло и з1а1бз — стоящий, неподвижный), прибор для поддержания пост, темп-ры. Представляет собой сосуд (металлич., стеклянный и др.), тщательно защищённый тепловой изоляцией от-влияния окружающей среды. Постоянство темп-ры в Т. обеспечивается либо терморегуляторами, либо осуществлением фазового перехода (таяния льда, кипения воды, затвердевания эвтектики и т.п.), происходящего при определ. темп-ре. В условиях, когда перепад между темп-рой окружающей среды и темп-рой в Т. невелик (диапазон ср. темп-р), постоянной поддерживается темп-ра рабочего в-ва (газа, жидкости), заполняющего Т. Тело, св-ва к-рого исследуются при заданной темп-ре, находится в тепловом контакте с рабочим в-вом и имеет его темп-ру. Т., заполняемые рабочим в-вом, обычно снабжены малоинерционным нагревателем (холодильником), автоматич. терморегулятором, устройством для энергичного перемешивания рабочего в-ва с целью быстрого выравнивания темп-ры в Т. К жидкостным Т. такого типа относятся спиртовой (с диапазоном от —60 до +10°С), ВОДЯНО (10 — 95Х), масляный (100—300°С), солевой или селитровый (300—500°С). Газовые Т. в этих диапазонах темп-р применяются реже из-за трудности осуществить в них хороший тепловой контакт с исследуемым телом.  [c.756]


Смотреть страницы где упоминается термин Вода в газовой среде, влияние : [c.19]    [c.20]    [c.2]    [c.16]    [c.183]    [c.79]    [c.367]    [c.463]    [c.6]    [c.5]    [c.259]    [c.75]    [c.734]    [c.518]    [c.57]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.0 ]



ПОИСК



Влияние pH среды

Влияние воды

Вода в газовой среде, влияние распространение трещины

Газовые среды



© 2025 Mash-xxl.info Реклама на сайте