Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газовые Термодинамические циклы

Схема простейшей ГТУ со сгоранием топлива при постоянном давлении изображена на рис. 13.1. Компрессор 1, приводимый в движение газовой турбиной 2, подает сжатый воздух в камеру сгорания 5, в которую через форсунку 6 впрыскивается жидкое топливо, подаваемое насосом 7, находящимся на валу турбины. Продукты сгорания расширяются в сопловом аппарате 4 и частично на рабочих лопатках 3 и выбрасываются в атмосферу. При сделанных в начале главы допущениях термодинамический цикл га-  [c.162]


Термодинамический цикл состоит из двух циклов — пароводяного и газового.  [c.590]

Особенностью термодинамических циклов паротурбинных установок является изменение агрегатного состояния рабочего тела в течение цикла, что позволяет осуществить теплообмен между рабочим телом и внешними источниками теплоты в процессах парообразования и конденсации при постоянных значениях температур. Таким образом, имеется практическая возможность реализации цикла Карно, который, как отмечалось, состоит из двух изоэнтропных и двух изотермических процессов. Реализация изотермических процессов подвода и отвода теплоты в газовых циклах (циклы ДВС и ГТУ) связана с непреодолимыми трудностями.  [c.163]

По курсу Техническая термодинамика приведены задачи на темы газовые смеси и теплоемкости термодинамический цикл.  [c.446]

Полный термодинамический цикл комбинированной парогазовой установки (см. рнс. 8.11,6) состоит из двух циклов — газового 1—2—3—4—1 и парового 5—6—7— —8—9—5. Эти циклы были рассмотрены выше каждый в отдельности.  [c.214]

Таким образом, полный термодинамический цикл парогазовой установки (см. рис. 7.13, б) состоит из двух циклов газового (а-Ь-с-б) и парового 1-2-3-4-5). Расчеты показывают, что термический к. п. д. комбинированного цикла увеличивается по сравнению с отдельно взятыми к. п. д. парового и газового циклов и дает экономию топлива до 15 %.  [c.127]

Далее примем, что по линии -d-d происходит не сгорание топлива, связанное с химическим изменением состава газа (меняется газовая постоянная), а обратимым путем подводится извне теплота Qj, такая же, какая выделяется топливом при его сгорании. Также примем, что теплота, уносимая отработавшими газами в атмосферу, может быть заменена теплотой Q , обратимым путем отводимой от газов. При таких предпосылках можно принять, что двигатели внут- реннего сгорания работают по обратимым термодинамическим циклам. Процессы сжатия и расширения будем считать происходящими по обратимым адиабатам, а обратимость изохорных и изобарных процессов, заменяющих действительные процессы сгорания топлива и выхлопа продуктов сгорания, осуществляется с помощью любого числа точечных источников и приемников теплоты. Такого рода идеализация действительных процессов в двигателях является общепринятой, и в данном случае мы ей последуем. Более подробное изучение действительных процессов, происходящих в цилиндре двигателя, является делом специального курса двигателей внутреннего сгорания.  [c.234]


При рассмотрении термодинамических циклов газовых турбин часто вместо степени сжатия в пользуются параметром ш р /Ри  [c.291]

С созданием паровых турбин паровые поршневые машины практически полностью пере- стали использоваться, поэтому их работа здесь не рассматривается. Однако необходимо от-> метить, что существуют мнения о возможности их применения в качестве автомобильного двигателя, Турбина позволила перейти на более высокие температуры, а соответственно повысить КПД и производительность. В конце XIX — начале XX вв. в условиях интенсивного развития техники применение турбин совершило переворот в области создания корабельных двигателей и в энергетике. Несколько позднее появилась новая отрасль промышленности — авиация, которая также остро нуждалась в, легких и мощных двигателях. Паровая турбина в этом случае не могла стать выходом из положения большая масса, большие расходы воды и топлива, необходимость конденсации отработанного пара, медленный темп изменения частоты вращения делали ее непригодной для авиации. Эти требования и проблемы привели к созданию высокоскоростной авиационной газовой турбины. Недавно были сделаны попытки использовать газовую турбину в качестве автомобильного двигателя. Процессы, протекающие в газовой и паровой турбинах, существенно отличаются. Рассмотрим термодинамический цикл газовой турбины, а затем особенности ее влияния на окружающую среду.  [c.76]

Термодинамические циклы 10 — 391 Газовые турбины АК—Установка Эшер-Висс  [c.42]

Восьмая глава посвящена газовым турбинам. Она включает основные схемы н термодинамические циклы газовых турбин даёт обобщённый тепловой расчёт последних и освещает некоторые осуществлённые типы турбин.  [c.411]

В паровом цикле это отклонение достигает наибольшей величины. Эта особенность, вызывающая большие отклонения при общепринятых параметрах пара действительного к. и. д. от к. и. д. цикла Карно, в то же время содержит в себе возможности более значительного усовершенствования парового цикла по сравнению с газовым циклом, т. е. возможность приближения к. п. д. парового цикла к величине к. и. д. цикла Карно при еще не нашедших применения в современной теплотехнике параметрах пара в еще недостаточно изученной области давлений и температур пара. Поэтому для оценки развития возможных параметров реальных тепловых циклов необходимо перед рассмотрением сравнительной эффективности циклов определить свойства рабочего тела в том интервале давлений и температур, в котором предполагается рассматривать соответствующие термодинамические циклы (р> >300 кг см и >700° С). Рассмотрим свойства рабочих тел реальных циклов.  [c.16]

Распространение малых возмущений в двухфазной среде сопровождается комплексом значительно отличающихся физических процессов, описание которых является задачей различных разделов физики 1) термодинамики (термодинамические процессы в волновом фронте, термодинамические циклы, приводящие к диссипации энергии, и т.д.) 2) газовой кинетики (фазовые превращения, явления переноса, явления релаксации и др.) 3) общей теории волн (дифракция, интерференция, отражение, преломление и т. д.) 4) акустики (распространение малых возмущений, явления резонанса)  [c.80]

Развитие суперсплавов — отклик на потребность в материалах, обладающих необходимым сопротивлением ползучести и усталости при высоких температурах. В истории техники эта потребность была наиболее острой при создании реактивных авиадвигателей и прочих видов газовых турбин, хотя материалы с подобными свойствами находят применение и в теплообменниках мощных тепловых двигателей с другим термодинамическим циклом. В данной главе дано описание экономических выгод от перехода к более высоким температурам работы тепловых двигателей. Показано, что реализация этих выгод через повышение к.п.д. становится возможной, благодаря применению суперсплавов, хотя последние и отличаются более высокой стоимостью. Описание жаропрочных деталей реактивных авиадвигателей и промышленных газовых турбин дано совместно с описанием разнообразных отказов (разрушения) и необходимыми сведениями о материалах, позволяющими рассчитывать долговечность деталей.  [c.49]


В истории теплоэнергетики можно заметить своеобразное соревнование между паровыми и газовыми установками и их термодинамическими циклами. Отсутствие соответствующих технологий в прошлом не позволяло использовать продукты сгорания в качестве рабочего тела, и водяной пар применялся как промежуточное рабочее тело. Параллельное развитие газовых и паровых циклов, однако, не привело к их антагонизму. Напротив, наметилась тенденция максимально использовать их положительные свойства, создав комбинированную парогазовую установку. В ней теплота выходных газов ГТУ используется почти полностью в нижней паровой части объединенного цикла Брайтона—Ренкина, что значительно повышает экономичность ПГУ  [c.11]

Термодинамический цикл Брайтона ГТУ можно охарактеризовать двумя важнейшими параметрами степенью повышения давления рабочего тела, которая определяет начальное давление газов перед газовой турбиной и начальной температурой этих газов  [c.89]

Рис. 8.68. Сравнение термодинамических циклов Брайтона—Реи-кина ПГУ с КУ и применением промежуточного перегрева газов в газовой турбине (/) или дожигания топлива (2) Рис. 8.68. Сравнение <a href="/info/19066">термодинамических циклов</a> Брайтона—Реи-кина ПГУ с КУ и применением промежуточного перегрева газов в <a href="/info/884">газовой турбине</a> (/) или дожигания топлива (2)
Идеальные термодинамические циклы парогазовых теплофикационных установок приведены на рис. 9.1, й и б. На них отражено принципиальное отличие этих циклов от аналогичных для паросиловых ТЭЦ. Применение теплофикации в схемах ПГУ не изменяет работу газовой ступени цикла, но заметно уменьшает полезную работу в паровой ступени. Теплота отработавшего пара не теряется в конденсаторе, а передается тепловым потребителям, что позволяет экономить топливо в энергосистеме. Образцовые циклы теплофикационных ПГУ изображены на рис. 9.1, в и г Они отражают объективность процессов, в которых (в отличие от идеальных) невозможно  [c.383]

Оптимизация профилей проточных частей компрессоров и газовых турбин осуществляется при рассмотрении трехмерного течения рабочего тела, аэродинамическом исследовании и соответствующем расчете профилей. Совершенствование термодинамического цикла Брайтона связано с повышением степени сжатия в компрессорной группе до = 50—70, для чего потребуются сложные компрессоры с большим числом пропусков. Более перспективно, в том числе и в отношении парогазовой технологии, повышение начальной температуры газов, которая на современных энергетических ГТУ приблизилась к 1500 °С. При ее увеличении возникают определенные противоречия с одной стороны, необходима высокая экономичность КС, а с другой — низкая концентрация вредных выбросов N0 и СО. Ведущие фирмы-производители ГТУ снижают эмиссию вредных газов путем отработки системы предварительного смешения топлива с воздухом в КС ГТУ для создания обедненных смесей в сочетании с системой каталитического горения.  [c.541]

В зависимости от рода применяемого рабочего агента тепловые турбины разделяются на газовые и паровые. В данном параграфе рассмотрим газовые турбины. Для изучения термодинамического цикла газотурбинного двигателя вводятся, как и для цикла поршневых двигателей, некоторые допущения, заключающиеся в следующем.  [c.175]

В книге Андрющенко Термодинамические расчеты оптимальных параметров тепловых электростанций (1963) гл. 4 тоже посвящена парогазовым циклам. В этой главе, называемой Основы термодинамического расчета циклов парогазовых электростанций , рассматриваются следующие вопросы рациональное построение циклов парогазовых установок сравнение термодинамической эффективности различных схем парогазовых установок расчеты оптимальных параметров газовой части цикла выбор параметров паровой части цикла рациональные циклы и схемы теплофикационных парогазовых установок.  [c.324]

Такой же термодинамический цикл имеет и турбокомпрессор-ный реактивный двигатель. В нем лишь адиабатное сжатие возду.ха осушествляется в диффузоре и компрессоре, а адиабатное расширение происходит сперва в соплах газовой турбины, а затем в сопле двигателя.  [c.462]

В разделе Двигатели рассматриваются паровые машины, паровые турбины, локомобили, двигатели внутреннего сгорания, газовые турбины, ветряные двигатели. Приведены рабочие процессы, схемы и термодинамические циклы, тепловые расчёты, важнейшие характеристики и параметры работы двигателей, методология испытания двигателей и сравнительные данные по расходу топлива.  [c.7]

На возможный выход БЭР в газовой промышленности оказывает влияние комплекс таких факторов, как зависимость удельного количества утилизируемого тепла от типа ГТУ и термодинамического цикла, резерв установленной мощности, переменный режим работы газопровода и ГТУ, температура окружающего воздуха, температура газа на выходе из теплообменника-утилизатора. Для регенеративных турбин удельные показатели возможной выработки тепловой энергии, за счет выхлопных газов составляют около 2,2 ГДж/ч на 1 МВт рабочей мощности, а для безрегенеративных — около  [c.256]

Физико-химические свойства N2O4 на линии насыщения (температура конденсации 30—40°С при 1,5— 2,5 атм) позволяют осуществить термодинамический цикл по конденсационному принципу (газожидкостный цикл), в котором промежуточный регенератор обеспечивает подогрев теплоносителя до газового состояния, что позволяет -в такой схеме иметь газоохлаждаемый реактор.  [c.4]


Все разобранные схемы составлены применительно к использованию турбомашин, но с достаточным основанием могут характеризовать и установки с поршневыми двигателями или генераторами газа. Так, в схеме по рис. 1-3, е паросиловая часть установки сохранит все свои характеристики, если утилизируемые отработавшие газы будут поступать не из ГТУ, а из глушителя двигателя внутреннего сгорания. Установка с использованием в паровой турбине пара, генерируемого в зарубашечном пространстве дизеля, совершает термодинамический цикл, сходный с циклом парогазовых установок по схеме рис. 1-3, б. Камеру сгорания в схемах с предвключенными газовыми турбинами (рис. 1-3, г) можно заменить свободнопоршневыми генераторами газа.  [c.24]

Рассматриваются термодинамические циклы энергетических уртановок, использующих неводяные пары, требования к рабочим телам, особенности конструкций основных элементов энергетических установок (паровых и газовых турбин, парогенераторов, ядер-ных реакторов), а также особенности основных рабочих процессов в таких установках (теплоотдача к однофазному потоку, при кипении и конденсации, гидравлические сопротивления).  [c.2]

Химически реагирующая газовая смесь N2O4 достаточно полно исследована [53], позволяет организовать термодинамический цикл с конденсацией рабочего тела и сжатием его в жидкой фазе. При температуре конденсации 18—22° С давление составляет (1,2- 1,4) 10 Па. Благодаря эндотермическим реакциям средне-термодинамическая температура подвода тепла при заданной максимальной температуре цикла получается более высокой по сравнению с недиссоциирующими газами. Экзотермические реакции при охлаждении соответственно понижают температуру отвода тепла.  [c.32]

Закрученные лопатки и элементарные методы расчета пространственного потока в ступенях паровых турбин начали применяться лишь в 30-х годах нынешнего столетия, значительно позже, чем в гидромашиностроении. Уже успешно работали, в частности, свирские гидротурбины с лопатками, закрученными по методу с г = onst, а лишь в 1929 г. появилась первая работа Г. Дарье [35], в которой обсуждался этот вопрос применительно к тепловым турбинам. Это связано, с одной стороны, с исторически более поздним развитием механики сжимаемой жидкости (газовой динамики), с другой —с относительной простотой реализации термодинамического цикла паротурбинной установки, вполне работоспособной и при невысоком к. п. д. турбины.  [c.189]

Термодинамический цикл описанной парогазовой установки представлен в fs-flHarpaMMe на рис. 12-30. Как видно из этой диаграммы, он состоит из двух циклов— газового цикла (фиг.  [c.232]

После рассмотрения принципа работы газотурбинного двигателя изучим его диаграмму. Термодинамический цикл начинается в компрессоре 2, где происходит адиабатическое сжатие воздуха, поступившего из окружающей среды. На гу-диаграмме этот процесс отображается адиабатой АС (рис. 9.4, а). Далее в камере 3 при сгорании происходит подвод теплоты. В двигателях с подводом теплоты Q, при постоянном давлении (цикл Брайтона) это осуществляется по изобаре Z], а в двигателях с подводом теплоты Q, ( при постоянном объеме (цикл Гемфри) — по изохоре Z . Затем в турбине происходят адиабатический процесс расширения газа по линии Z E (или ZiE) и условный изобарический процесс отвода теплоты Q,i — выброс газовой смеси продуктов сгорания (линия ЕА на рис. 9.4, а).  [c.112]

График изменения давления в жидкостно-реактивном двигателе (см. рис. 9.5, в) повторяет аналогичный график на рис. 9.5, а от сечения II — II до сечения IV— IV. Вместе с тем на участке от I — I до II — II он отсутствует, так как цикл начинается при давлении р . Поэтому точка С на /Jti -диаграмме жидкостно-реактивного двигателя смещена влево и находится вблизи оси давления (точка Сг на рис. 9.6, а). Далее термодинамический цикл рассматриваемого двигателя протекает по контуру iZE. Процесс отвода теплоты Q,2 вместе с газовой смесью продуктов сгорания принимают изобарическим (горизонтальная линия EAj на рис. 9.6, а). Для данного двигателя эту линию проводят практически до оси давлений (точка Aj). Точки А2 и С2 условно соединяют для замыкания цикла. Линия, соединяющая Aj и j, находится в области малых величин tu, по-  [c.116]

Выход в свет этой книги, посвященной новой, имеющей в настоящее время большое значение области теплосиловой техники, является весьма своевременным. В книге содержатся следующие главы общие сведения, термодинамические циклы и тепловые схемы установок определение термодинамически панвыгоднейших параметров парогазовых циклов расчет экономически наивыгоднейших параметров рабочих тел парогазовых установок теплофикационные парогазовые установки, работающие на парогазовой смеси высокотемпературные парогазовые установки с охлаждаемыми газовыми турбинами.  [c.324]

В ней имеется несколько глав, в которых рассматриваются следующие вопросы условия работы атомных электростанций анализ оптимальных условий осуществления термодинамических циклов АЭС при изменении тепловой монгности реактора влияние температурных характеристик реактора на выбор оптимальных параметров термодинамического цикла АЭС термодинамический анализ процессов теплообмена в парогенераторе и конденсаторе регенеративный подогрев воды на АЭС термодинамические циклы АЭС с реакторами с водяным или паровым теплоносителем термодинамические циклы АЭС с реакторами с органическими теплоносителями термодинамические циклы АЭС с реакторами с жпдкометаллическими теплоносителями термодинамические циклы АЭС с реакторами с газовыми теплоносителями оптимальный расход энергии на циркуля-  [c.326]

В установке СПГГ-ГТ удается генерировать для газовой турбины рабочий газ при больших значениях давления и температуры в цилиндре дизеля. В то же время рабочий газ перед турбиной ИхМеет умеренные параметры. В газовой турбине этой установки происходит термодинамический цикл полного расширения, который неосуществим в обычных двигателях внутреннего сгорания.  [c.6]

Целесообразность включения дополнительной камеры сгорания в обычную схему установки СПГГ-ГТ можно обосновать следующими соображениями. Особенность термодинамического цикла такой установки состоит в том, что температура газа перед турбиной не превышает 500—550 °С, Эта особенность, весьма ценная в первые годы после появления СПГГ, когда технологические ограничения для газовой турбины были более жесткими, теряет свое прежнее значение. В настоящее время допустимая температура газа на входе в турбину, обеспечивающая длительную работу ее лопаток, поднялась до 700—750 °С, и работа с температурой 500— 550 °С хотя и дает достаточно высокий к. п. д., может оказаться нерациональной, если удельный вес установки имеет решающее значение.  [c.58]

Воздух, сжатый в компрессоре, подается в камеру сгорания парогенератора, работающего на газовом или жидком топливе при постоянном (повышенном по сравнению с атмосферным) давлении р. Образующийся в парогенераторе водяной пар поступает в пароперегреватель и затем в паровую турбину. Продукты сгорания, температура которых снижена за счет отдачи теплоты на парообразование до приемлемой величины, подаются в газовую турбину, а из последней — в газоводяной подогреватель, служащий для подогрева питательной воды. Термодинамический цикл состоит из двух циклов — пароводяного и газового.  [c.169]


Подобно тому как термодинамический цикл парс турбины отличается от цикла поршневой паровой маш в основном только величиной абсолютного давления ко расширения (0,1—0,2 ата у поршневых машин и 0,С 0,05 ата у паровых турбин), и цикл газовой турбины личаетсЯ от цикла двигателя внутреннего сгорания ) можностью вести расширение газа до атмосферного дз1 ния (1,0 ага), тогда как поршневые д. в. с. производят хлоп при давлении, значительно превышающем атмоо4 ное (до 2,5 ата).  [c.408]


Смотреть страницы где упоминается термин Газовые Термодинамические циклы : [c.119]    [c.309]    [c.7]    [c.30]    [c.44]    [c.3]    [c.7]    [c.310]    [c.27]    [c.219]   
Машиностроение Энциклопедический справочник Раздел 4 Том 10 (1948) -- [ c.391 ]



ПОИСК



Цикл термодинамический



© 2025 Mash-xxl.info Реклама на сайте