Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние циклических напряжений на процесс КР

Влияние циклических напряжений на процесс КР  [c.33]

По вопросу совместного влияния циклических напряжений и ползучести распространение получили следующие концепции. Ползучесть можно рассматривать как результат действия двух противоположных процессов упрочнения при деформации и термического восстановления при высоких температурах [14]. Циклические напряжения влияют на процессы упрочнения и восстановления различным образом, что объясняется различиями механизмов этих явлений.  [c.103]


Выше было рассмотрено влияние концентраторов напряжений на усталость сплавов при малоцикловом нагружении. Однако малоцикловая долговечность зависит не только от наличия концентраторов напряжений в значительно большей степени она изменяется в результате совместного влияния коррозионной среды, условий нагружения, состояния металла, концентрации напряжений, внешней поляризации и пр. Действие этих факторов на долговечность сплавов может проявляться по-разному в зависимости от их химического состава, структурного состояния, а также состояния поверхностных слоев металла. Циклическое нагружение в коррозионной среде при большой общности с процессами коррозионного растрескивания имеет свою специфику.  [c.113]

Универсальная машина для испытания на усталость при различных видах напряженного состояния — изгибе, кручении, растяжении и сжатии, а также сложно-напряженном состоянии при совместном действии изгиба и кручения содержит два направленных вибратора, угол между которыми можно изменять от О до 90°. Разработана машина, позволяющая проводить испытания образцов или тонкостенных элементов конструкций при программном нагружении в условиях чередования статической ползучести и циклического нагружения [76]. Для исследования влияния переменных циклических напряжений на процесс ползучести разработано устройство [120], позволяющее регистрировать деформацию ползучести в указанном режиме нагружения. Установка позволяет проводить испытания плоских образцов на усталость при знакопеременном изгибе и кручении.  [c.176]

Известно большое число публикаций, посвященных исследованию влияния механических напряжений на магнитные свойства ферромагнетиков при статическом нагружении [1 — 4]. Исследования магнитоупругого эффекта при циклическом нагружении могут дать результаты, представляющие интерес для контроля процесса усталости.  [c.124]

Изложенные закономерности сопротивления термоциклическому нагружению относятся к однородным напряженным состояниям растяжения — сжатия или чистого сдвига. Они являются основой для определения малоцикловой несущей способности неоднородно напряженных элементов конструкций. Эта циклическая напряженность находится в упругопластической области, являясь при стационарном внешнем нагружении нестационарной в силу процессов перераспределения деформаций и напряжений при повторном деформировании. Анализ полей деформаций в зонах наибольшей напряженности элементов, особенно в местах концентрации, связан с решением достаточно сложных краевых задач, о чем далее будут изложены некоторые данные. Применительно к задачам концентрации напряжений и деформаций представилось возможным применить решение Нейбера [23], связывающее коэффициенты концентрации напряжений и деформаций Ке, в упругопластической стадии с коэффициентом концентрации напряжений а в упругой стадии. Анализ ряда теоретических, в том числе вычислительных, решений и опытных данных о концентрации деформаций позволил [241 усовершенствовать указанное решение путем введения в правую часть соответствующего выражения функции F (5н, а, тп), отражающей влияние уровня номинальных напряжений Он, отнесенных к пределу текучести, уровня концентрации напряжений а и показателя степени т диаграммы деформирования при степенном упрочнении. Зависимость Нейбера в результате введения этих влияний выражается следующим образом  [c.16]


Дальнейшие исследования показали, что на величину предельного циклического напряжения значительное влияние оказывает состав среды, применяемой в процессе латунирования [17]. Была найдена концентрация раствора соляной кислоты в глицерине, при которой предел выносливости латунированных образцов диаметром 12 мм с напрессованными втулками возрос до 206 МПа, а величина давления прутка при латунировании снизилась до 70 МПа.  [c.150]

Кривые изменения интенсивности напряжений (рис. 4.63) в наиболее нагруженной зоне цилиндрических оболочечных корпусов характеризуют влияние циклического упрочнения материала на процесс циклического упругопластического деформирования в оболочечных корпусах при термомеханическом нагружении, причем штриховые кривые для цилиндрического корпуса типа II характеризуют влияние временных эффектов на этапах вьщержки.  [c.232]

Многие металлы и сплавы, например нержавеющие стали, титановые и алюминиевые сплавы и др., обладают высоким сопротивлением коррозионной усталости из-за образования на их поверхности стойких к воздействию коррозионных сред оксидных пленок. Можно предположить, что постоянное или периодическое разрушение этих пленок, обеспечивающее доступ коррозионной среды к деформируемому металлу, должно активизировать процесс его коррозионно-усталостного разрушения. На практике очень многие детали машин подвергаются одновременному воздействию циклических напряжений, контактирующих элементов и коррозионной среды. Такие условия реализуются, например, при свободной посадке деталей, в узлах трения, болтовых и прессовых соединениях, бурильной колонне, гребных и турбинных валопроводах и т.п. Поэтому изучение влияния внешнего трения на процесс коррозионно-усталостного разрушения металлов представляет собой важную научно-практическую задачу.  [c.29]

Три знакопеременной нагрузке влияние сварочных напряжений на прочность конструкции зависит от ряда факторов. Они практически не влияют на циклическую прочность конструкции в том случае, если материал находится в вязком состоянии и если в изделии отсутствуют конструктивные и технологические концентраторы напряжений. Сварочные напряжения могут снижать циклическую прочность при наличии повышенной концентрации напряжений, особенно в конструкциях из материала с пониженными пластическими свойствами. В то же время усталостная прочность может быть повышена созданием в конструкциях при помощи различных технологических процессов благоприятных остаточных напряжений. При анализе условий работы конструкции со сварочными напряжениями необходимо также учитывать, что в наиболее распространенных сварных соединениях из малоуглеродистой и низколегированных перлитных сталей участки шва и прилегающей к нему зоны термического влияния, где действуют напряжения растяжения., являются более прочными.  [c.60]

На процесс разрушения при циклических нагрузках существенное влияние оказывают концентраторы напряжений. Концентраторы напряжений могут быть конструктивными (резкие переходы от сечения к сечению), технологическими (царапины, трещины, риски от резца), металлургическими (поры, раковины, неметаллические включения). Независимо от своего происхождения концентраторы напряжений в той или иной степени снижают предел выносливости при одном и том же уровне переменных напряжений. Для оценки влияния концентратора напряжений на усталость испытывают гладкие и надрезанные образцы при симметричном цикле напряжений. Надрез на образце выполняется в виде острой круговой выточки. Отношение предела выносливости, определенного на гладких образцах о , к пределу выносливости, определенному на надрезанных образцах , называют эффективным  [c.49]


При микроскопическом исследовании шлифов, изготовленных из образцов, циклически нагружавшихся в коррозионной среде, было выявлено значительное количество трещин коррозионной усталости, перпендикулярных к поверхности образца и направлению силового потока. Эти трещины были обнаружены как у образцов, разрушившихся под влиянием коррозионно-усталостного процесса, так и у образцов, не разрушившихся после 100 млн. циклов нагружений при напряжениях, равных напряжений, вызывающих разрушения (см. диаграмму на фиг. 42, образец б). Таким образом, микроскопические исследования подтверждают описанную выше избирательность в образовании трещин коррозионной усталости.  [c.102]

Таким образом, коррозионно-усталостное разрушение во многих средах может происходить принципиально отличными путями в зависимости от величины амплитуды напряжений. При больших амплитудах напряжения в кислых средах или при некоторых видах заш,иты (например, при катодной защите) решающим для прочности является возникновение водородной усталости стали. При меньших амплитудах напряжения, когда коррозионные процессы на анодных участках успевают развиться, а также в коррозионных средах,в которых невозможно наводороживание, трещины усталости растут вследствие действия циклических и коррозионных напряжений, а также напряжений от адсорбционного расклинивания, в сумме больших предела циклической текучести. Если же сумма перечисленных напряжений меньше предела циклической текучести, трещины усталости развиваются под влиянием анодного процесса, разрушающего металл в этом случае интенсификации процесса способствуют циклические напряжения, вызывающие снижение электродного потенциала в местах их концентрации, а также разрушающие окисную пленку, которая затрудняет коррозию.  [c.175]

О соотношении модулей упрочнения при однородном и неоднородном напряженных состояниях для некоторых из исследованных материалов можно судить по данным, приведенным в табл. 19. Существенное влияние градиента напряжений на интенсивность протекания процессов пластического деформирования в поверхностных слоях циклически деформируемых образцов из различных металлов отмечено также в работе [208], в которой было найдено, что при изгибе при одном и том же напряжении относительное число зерен, охваченных пластической деформацией, уменьшается с увеличением градиента напряжений. На рис. 125 выполнено сравнение результатов исследования площади петли гистерезиса D, измеренной на стадии стабилизации процесса неупругого деформирования по методике, описанной в параграфе  [c.171]

Величина может быть принята в качестве характеристики влияния градиента напряжений на процесс циклического деформирования. Для некоторых из исследованных материалов численные значения могут быть найдены с использованием результатов, приведенных в табл. 25. В общем случае величина будет зависеть от свойств материала, градиента напряжений и числа циклов наработки.  [c.214]

В соответствии с электрохимической теорией коррозионной усталости, развитой Г. В. Акимовым [75], на поверхности металла появляются местные изъязвления, на дне которых, вследствие концентрации напряжений, возникает более положительный потенциал, чем у стенок или у внешней поверхности металла. Поэтому дно изъязвлений становится анодным участком, способствуя этим дальнейшей коррозии и углублению изъязвлений. Процесс коррозии идет до тех пор, пока под влиянием циклического нагружения, усиленного концентрацией напряжений в данном месте металла, не будет  [c.137]

На процесс пластической деформации при ползучести большое влияние оказывают возврат и рекристаллизация. Рекристаллизация ускоряет ползучесть вследствие уменьшения внутренних напряжений. При циклическом нагружении процессы рекристаллизации еще более ускоряются.  [c.15]

Перемещение зоны контакта по поверхности деталей вызывает циклические изменения напряжений во всех микрообъемах материала вблизи траектории контакта. Это имеет место, когда материал работает в упругой области и в нем отсутствуют остаточные напряжения, вызванные процессами механической обработки деталей. При уточнении процессов контактного разрушения необходимо учитывать возможность образования и соответствующее влияние остаточных напряжений и накапливающихся пластических деформаций, изменяющих исходные свойства материала [216].  [c.290]

За последнее время большое внимание уделялось изучению процесса усталости в области малой долговечности, т. е. при напряжениях, вызывающих значительную пластическую деформацию стали. В работах [31-—34] рассмотрено влияние циклической нагрузки в области пластической деформации на критическую температуру хрупкости малоуглеродистой стали (0,13—0,27% С). В этих работах также отмечали повышение критической температуры в процессе усталости. Был сделан вывод, что в области малоцикловой усталости повышение критической температуры хрупкости определяется в первую очередь степенью пластической деформации [31, 33]. При наложении процесса старения критическая температура повышается еще значительнее [32].  [c.99]

Как было указано, в процессе нагрева и охлаждения сварных соединений из разнородных сталей происходит изменение поля остаточных напряжений. В зоне сплавления перлитной стали с аустенитным швом, где напряжения скачкообразно меняют знак и где, следовательно, действуют высокие скалывающие напряжения, циклические температурные изменения могут приводить к появлению разрушений типа усталостных. При наличии в этой зоне местных ослаблений, вызванных развитием переходных прослоек диффузионного характера, неблагоприятное влияние остаточных напряжений может проявиться наиболее резко. Поэтому принятие мер для устранения указанных прослоек является непременным условием повышения работоспособности сварных соединений разнородных сталей и в первую очередь тех из них, которые работают в диапазоне температур выше 450 -ь 500° С при наличии большого количества температурных циклов.  [c.179]


Однако этот механизм не рассматривает влияния раствора на протекание разрушения металла при приложении циклических напряжений. Нужно учесть, что циклические напряжения при коррозионной усталости искажают структуру сплава, поэтому почти каждая коррозионная среда может при этих условиях ускорять его разрушение. Для объяснения этих процессов служит указанный ранее адсорбционный эффект Ребиндера, выражающийся в том, что в ультра-  [c.101]

В предыдущей главе на основании разработанных методов были рассмотрены подходы к оценке циклической прочности элементов сварных конструкций было показано, что технологические напряжения, обусловленные процессом сварки, в ряде случаев оказывают значительное влияние на долговечность элементов конструкций. В настоящей главе будет рассмотрено влияние технологических напряжений (несварочного происхождения) на длительную прочность конструкций. Как и в предыдущей главе, для решения такой задачи задействован комплекс методов анализа деформирования и повреждения материала, изложенный в главах 1 и 3. В качестве примера выбран коллектор парогенератора ПГВ-1000.  [c.327]

Сопоставляя циклические свойства двух рассмотренных сталей в исследованном диапазоне температур, можно отметить, что для аустенитной стали 1Х18Н9Т, характеризуемой отсутствием превращений и слабым взаимным влиянием уровней напряжений и времени деформирования на процесс циклического деформирования, эффект времени циклического деформирования и времени выдержки идентичен, в то время как для теплоустойчивой стали, характеризуемой склонностью к образованию трещин, время выдержки слабо влияет, а время деформирования может существенно влиять на циклические свойства.  [c.98]

Предварительно изучали влияние статических напряжений на скорость коррозии трубной стали на деформированных изгибом (по трехточечной схеме) образцах стали 17ГС в термостатированных условиях и перемешиваемой среде, представляющей смесь нефти с 3%-пым хлоридом натрия в отношении 1 1. Скорость коррозии определяли по потере массы за 720 ч выдержки. Как следует из рис. 104, с увеличением напряжений до предела текучести (350 МПа) скорость коррозии увеличивается, а затем при достижении текучести уменьшается вследствие наступления стадии легкого скольжения и релаксации напряжений, обусловленной выбранной схемой нагружения с заданной величиной деформации. Это указывает на возможность усиления коррозионного взаимодействия трубной стали с рабочей средой даже при нагружении в упругой области с возникновением коррозионных поражений, которые в дальнейшем могут стать концентраторами напряжений и после инкубационного периода инициировать возникновение коррозионно-механических трещин. Если в концентраторе отсутствуют условия для существенной релаксации напряжений, что обычно имеет место при циклическом (повторно-статическом) нагружении с накоплением микроискажений решетки, процесс коррозионного взаимодействия будет ускоряться на протяжении всей стадии деформационного упрочнения, как это указывалось в гл. П.  [c.230]

Пример релаксации термических напряжений в жестко закрепленном стержне при его нагреве и выдержке в течение 10,7 мин и схема процесса развития деформаций приведены на рис. 39. Процесс циклического термического нагружения, при котором каждый цикл осуществляется с выДержкой при максимальной температуре, сопровождается процессом циклической ползучести, однако значительно более сложным, чем циклическая ползучесть при изотермическом нагружении. Наиболее существенно то, что в каждом цикле при охлаждении материал деформируется нагрузкой противоположного знака (в рассматриваемом случае — растяжением), которая вызывает пластическую деформацию. Если принять, что процессы развития деформаций ползучести при релаксации напряжений и постоянном напряжении — процессы одного типа, при которых большое значение имеет степень искажения решетки кристаллов, то влияние холодного наклепа, происходящего в каждом цикле термонагру-жения, должно быть значительным. Оно проявляется в уменьшении числа циклов до разрушения (см. тл. III) подобно тому, как при предварительном пластическом деформировании снижаются длительная статическая прочность (время до разрушения) и пластичность. В табл. 12 приведены значения этих характеристик, полученные при испытании сплава ХН77ТЮР по режиму, соответствующему техническим условиям на сплав /=750°С 0=350 МПа. Величина наклепа определялась степенью пластического деформирования образцов  [c.103]

Nrnne KHx напряжений, механических циклических напряжений, температур и др.) позволяет выявить их влияние на процесс накопления повреждений в материале и его разрушения.  [c.340]

Экспериментально установлено, что циклическое нагружение ускоряет процессы релаксации макронапряжений и может вызвать полное снятие их при температурах, при которых степень термически активируемого возврата незначительна. Так, например, снятие макронапряжений, создаваемых поверхностным наклепом в образцах из стали 50, практически начинается при напряжениях, превышающих 0,7 r i (где — предел выносливости гладкого поверхностно наклепанного образца). При циклических напряжениях 0,9a j снимается преобладающая часть макронапряжений [38]. При большом градиенте напряжений изгиба и кручения (образцы малого диаметра) макронапряжения полностью снимаются при напряжениях, превышающих предел выносливости. На образцах большого диаметра (малый градиент изгибающих напряжений) возможно полное снятие макронапряжений при напряжениях, равных пределу выносливости. Основная часть релаксируемых в заданных условиях нагружения остаточных макронапряжений снимается в первый период циклической наработки —до 1 млн. циклов. Поэтому чем выше уровень циклических напряжений, тем меньше роль и значимость остаточных макронапряжений в их влиянии на усталостную прочность при прочих равных условиях.  [c.143]

Коррозионная выносливость более крупных образцов с насадками практически не зависит от марки стали и ее статической прочности. Исследования образцов из стали 35 с насадками из нормализованной стали 45, латуни Л62, фторопласта Т4, а также с резиновыми сальниками показали [121, с. 7-10], что при всех этих насадках имеет место дополнительное снижение коррозионной выносливости образцов из стали 35. Так наличие фторопластовой втулки и резинового сальника снижает условный предел коррозионной выносливости соответственно с 95 МПа (без насадки) до 60 и 50 МПа, что примерно соответствует значению условного предела коррозионной выносливости образцов во стальными и латунными насадками. Отмечено, что на коррозионную усталость деталей с насадками влияют три фактора концентрация напряжений, циклическое трение в сопряжении вал-втулка и щелевая коррозия. В связи с тем, что влияние концентрации напряжений на уменьшение коррозионной выносливости с увеличением диаметра образца уменьшается,.а также учитывая, что существенное снижение коррозионной выносливости может иметь место и при наличии насадок из мягких материалов, не вызывающих больших контактных давлений, сделан вывод, что при испытании образцов с насадками в коррозионной среде фактор концентрации напряжений не играет решающей роли, определяющими являются циклическое трение и щелевая коррозия. Повышение коррозионной выносливости стальных образцов с увеличением их диаметра связано с влиянием относительного разупрочнения поверхности образца под действием коррозионной среды. Чем меньше диаметр образца, тем при всех прочих равных условиях сильнее влияние разупрочнения. Это положение еще в большей степени характерно для образцов с насаженными втулками, когда процессы разупрочнения усиливаются циклическим трением и щелевой коррозией.  [c.145]


В условиях повышенных температур фактор наличия выдержки на экстремумах нагрузки оказывает свое влияние на параметры процесса деформирования, причем его степень зависит от типа материала, уровня температур, длительности выдержек и уровня приложенных напряжений. На рис. 4.8 показаны экспериментальные данные по кинетике циклической 6 ) и односторонне накопленной пластических деформаций для стали Х18Н10Т при 450° С и различных формах цикла мягкого режима нагружения, включая простое нагружение треугольной формой цикла и трапецеидальной с выдержками как в полуциклах растяжения и сжатия, так и с односторонними выдержками в каждом из этих полуциклов, причем время выдержки во всех случаях 5 мин.  [c.74]

Влияние циклической деформации. В случае периодического использования эффекта памяти формы циклически повторяется процесс восстановления формы при нагреве, затем вновь происходит деформация в процессе охлаждения. При этом в зависимости от приложенного напряжения степень восстановления формы уменьшается при увеличении числа циклов деформации. Кроме того, в случае использования эффекта псевдоупругости деформация осуществляется при более высоких напряжениях, чем при использовании эффекта памяти формы. Условия в этом случае также неблагоприятны с точки зрения сохранения сплавом стабильных свойств.  [c.113]

В лаборатории Института машиноведения и автоматики АН УССР В. Т. Степуренко [148] провел исследование влияния сероводородной воды на циклическую усталость стали 45, при частоте нагружения 3000 циклов в минуту, в различном структурном состоянии, а также с различным состоянием приповерхностного слоя этой стали. Наво-дороживание стали происходило в процессе циклического нагружения. Под влиянием циклически изменяющихся напряжений в различных зернах образца происходила микропластическая деформация с различной интенсивностью, причем в случае деформации катодных зерен происходило их интенсивное наводороживание за счет водорода, появившегося в результате диссоциации сероводорода и взаимодействия H2S с металлом.  [c.97]

Описанные опыты дают возможность предположить, что в таких поликристаллических металлах, как сталь (которая имеет на разделе двух фаз среда — металл огромное количество микрокатодных и. микроанодных участков), в процессе ее деформации при одновременной коррозии с водородной деполяризацией происходит достаточно быстрое наводороживание пластически деформируемых катодных участков. Очевидно, эти участки будут слабыми местами, в которых может возникнуть хрупкое разрушение. Такое разрушение возможно, например, при больших амплитудах циклических напряжений, если оно происходит вскоре после нагружения образцов. Это объясняется тем, что другие слабые места еще не возникли, так как времени в этом случае еще недостаточно для значительного коррозионного поражения анодных участков, т. е. для возникновения слабых мест в стали под влиянием уменьшения ее прочности вследствие коррозионного поражения..  [c.173]

Более однозначные выводы о возможности описания закономерностей проявления эффекта масштаба, чувствительности к концентрации напряжений, влияния, а также вида напряженного состояния на предел усталости на основе учета влияния градиента напряжений на процесс циклического деформирования металлов и о возможности определения степени этого влияния по характеристикам механических свойств можно будет сделать после накоп-  [c.174]

Механизм распространения усталостной трещины зависит от разнообразных и сложных факторов и является сложным взаимодействием таких процессов, как циклическое скольжение и накопление очагов повреждения впфеди распространяющейся трещины. Большинство предложенных теорий роста трещин удовлетворяет лишь ограниченному интервалу длины трещины и скорости ее роста. Поэтому скорость распространения усталостной трещины не может быть просто описана любь(м из существующих законов во всем диапазоне циклических напряжений. При этом дополнительные трудности возникают из-за влияния приложенного напряжения, температуры, окружающей среды, а также размеров и формы деталей и конструкций, Однако в довольно широких предепах изменения условий нагружения и геометрии трещины экспериментальные данные по наблюдению за распространением усталостной трещины могут быть описаны с использованием размаха коэффициента интенсивности напряжений. Размах коэффициента интенсивности напряжений является достаточно удобной базой для проведения различных исследований, обобщения и анализа эксп зиментальных данных, получаемых исследователями на образцах различной формы и с разнообразными по длине и геометрии трещинами.  [c.162]

При этом вклад каждого из слагаемых в формуле (1.37) в конкретных усталостных и коррозионных условиях может быть различным. Действительно, если значение коэффициентов интенсивности напряжений вьнне порогового для системы матергшл-среда, то коррозионный рост трещины при статическом нагружении приводит к разрушению уже через очень короткое время. Влияние циклического нагружения в этом случае лучше характеризовать как усталостно ускоренный рост коррозионной трещины. Но даже в этом случае (при достаточно большой частоте нагружения) усталостные эффекты могут опережать коррозионные процессы, и скорость роста трещины будет определяться только процессами усталости. Если же значение коэффициента интенсивности напряжений ниже порогового.  [c.37]

Процесс усталости развивается во времени и сопровождается вполне определенными изменениями структуры и свойств металла [38—39]. В этой связи представляется целесообразным при исследовании влияния циклических нагрузок на критическую температуру хрупкости использование диаграммы усталости, предложенной В. С. Ивановой [40] и содержащей помимо кривой разрушения [АоАВСО] еще две кривые линию начала образования субмикроскопических трещин (Л1В1С1Й1) и линию (Л1С) начала образования микроскопических трещин, являющихся концентраторами напряжений (рис. 68). Впоследствии [41] положение линии микроскопических трещин было уточнено и показано, что она соответствует прямой, соединяющей точки В и С. Соответственно процесс усталости делится на три основных периода инкубационный, период разрыхления (образование субмикроскопических трещин) и пе-жод развития микроскопических трещин до критического размера. Червый период характеризуется накоплением искажений кристаллической решетки в результате постепенного увеличения плотности дислокаций. При достижении критической плотности дислокаций (насыщение локального объема металла предельной энергией) происходит образование субмикроскопических трещин (начало второго периода усталости). Дальнейшее увеличение числа циклов сопровождается ростом количества субмикроскопических трещин и их развитием до микротрещин (начало третьего периода усталости). Третий период характеризуется развитием микротрещин до критического размера. Таким образом, каждый период усталости характеризуется специфическими изменения-  [c.102]

Учет влияния остаточных напряжений на усталостную прочность соединений затрудняется тем, что их уровень существенно изменяется в процессе циклического нагружения в зависимости от действующих нагрузок, асимм етрии цикла и вица соединения. При этом основные изменения происходят при первых циклах нагружения. В дальнейшем изменения остаточных напряжений за каждый последующий цикл уменьшаются и после 20 нагружений их уровень можно считать практически постоянным [318].  [c.320]

Скорости процессов старения при постоянных и циклически меняю1 хся температурах существенно различаются. Так, исследования влияния циклических термических упругопластических напряжений на процессы дисперсионного старения сплава ХН77ТЮ, выполненные B. . Ермаковым, показали, что процессы дисперсионного твердения ускоряются в десятки раз.  [c.262]


Смотреть страницы где упоминается термин Влияние циклических напряжений на процесс КР : [c.34]    [c.22]    [c.87]    [c.79]    [c.158]    [c.163]    [c.137]    [c.80]    [c.91]    [c.113]    [c.157]    [c.189]   
Смотреть главы в:

Прогнозирование и диагностика коррозионного растрескивания магистральных трубопроводов  -> Влияние циклических напряжений на процесс КР



ПОИСК



Влияние N-процессов

Влияние напряжений

Напряжение циклическое

Циклические процессы

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте