Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение роботов в сварке

Применение роботов в сварке  [c.144]

Распределение функций между манипуляторами инструмента и изделия манипуляционной системы комплекса зависит от способа осуществления относительного перемещения сварочного инструмента и изделия, который определяется способом сварки, размерами и массой изделия, формой и расположением сварных швов, организацией сварочных операций и всего производственного процесса. В зависимости от способа осуществления относительного перемещения сварочного инструмента и изделия могут быть следующие варианты применения роботов в составе комплекса.  [c.120]


В четвертой главе излагается ряд вопросов дальнейшего развития сварочных роботов перспективы дуговой сварки, возможность создания роботов агрегатной конструкции, введение свойств адаптации, создание системы группового управления роботами. Рассмотрена также технико-экономическая эффективность применения роботов в сварочном производстве.  [c.6]

В сварочном производстве нашли преимущественно применение роботы, перемещающие сварочные клещи для контактной точечной сварки. Это связано с более низкими требованиями к перемещению клещей между точками при контактной сварке по сравнению с перемещением электрододержателя или горелки в процессе дуговой сварки. Роботы, предназначенные для дуговой сварки, должны осуществлять непрерывное движение электрода при регулируемы величинах перемещения, скорости и ускорения. Это усложняет его конструкцию и требует значительно большего объема памяти программирующих устройств.  [c.144]

Сварка. При сварке кузовов применение роботов — обычное явление. Однако японские фирмы наибольшего успеха в обеспечении гибкости производства добились благодаря внедрению специальных многоточечных сварочных машин.  [c.37]

Область возможных и экономически целесообразных применений роботов первого поколения достаточно широка. Эти роботы успешно применяются в РТК и ГАП с программным управлением для обслуживания металлорежущего оборудования (в частности, станков с числовым программным управлением), печей, штампов, прессов, технологических линий, сварочных аппаратов, литейных машин и др. Они осуществляют установку, снятие, транспортировку, упаковку изделий, простейшие сборочные операции, сварку, ковку, литье под давлением, термическую и механическую обработку и т. д.  [c.21]

Появление роботов позволило приступить к решению наиболее сложной задачи дуговой сварки большого количества швов различной длины и различного пространственного расположения в свариваемой конструкции. (До последнего времени эта задача считалась технически невозможной или экономически нецелесообразной.) В данном случае применение роботов возможно в виде автономных роботизированных технологических рабочих мест, участков, линий, цехов. Для начального периода внедрения роботов для дуговой сварки наиболее характерно использование автономных технологических рабочих мест и концентрация их в виде участков.  [c.96]


Существенной особенностью роботизированной сварки по сравнению с ручной или механизированной является необходимость, как правило, более высокой точности подготовки изделий под сварку. Это обеспечивается повышением точности изготовления заготовок и гарантируется применением сборочно-сварочных приспособлений, что требует дополнительных затрат. Следовательно, экономическая эффективность при применении сварочных роботов в значительной степени определяется правильным выбором объектов роботизации. Положительный эффект достигается в следующих случаях  [c.118]

Применение роботов, РТК и гибких систем для дуговой сварки является одним из основных направлений автоматизации производственных процессов в условиях серийного и крупносерийного выпуска конструкций со швами сложной формы и большим числом  [c.146]

Роботы для контактной сварки используются в автомобилестроении в РТК, на участках, линиях сборки и точечной контактной сварки кузова, пола, дверей и др. Роботы для точечной контактной сварки применяют при изготовлении крыш боковин и дверей автобусов, пассажирских железнодорожных вагонов и трамваев, при сварке кабин, бункеров и других тонколистовых сварных конструкций сельскохозяйственных машин, а также корпусов холодильников, стиральных машин, шкафов для электроаппаратуры, при производстве различных каркасных конструкций из стержневых элементов, начиная от сборок телевизионных видиконов и кончая каркасами железобетонных конструкций. Известны случаи применения роботов для роликовой контактной сварки тонколистовых сосудов небольших габаритных размеров, простых загрузочно-разгрузочных роботов для загрузки деталей в ма-  [c.202]

Роботизация точечной контактной сварки в автомобилестроении целесообразна при годовом выпуске порядка 50... 100 тыс. кузовов одной модели, что примерно соответствует длительности цикла более 30 с при двухсменной работе и коэффициенте использования оборудования 0,8. Важ 1ым фактором, способствующим применению роботов для точечной контактной сварки с целью исключения ручного труда, является большая масса сварочного инструмента (клещей) и мощные электромагнитные поля, возникающие вокруг токоведущих элементов вторичной цепи, отрицательно влияющие на здоровье сварщиков. Одним из наиболее серьезных требований к роботам для точечной сварки является минимизация времени перемещения от точки к точке, а это, в свою очередь, требует высоких скоростей и ускорений при перемещениях. Поэтому современные роботы развивают скорость 3...5 м/с при массе перемещаемого инструмента 50... 100 кг и повторяемости заданных положений в пределах 0,3... 1,2 мм.  [c.202]

Применение роботов, комплексов линий, гибких производственных систем является одним из основных направлений автоматизации точечной контактной сварки в условиях серийного, крупносерийного и массового многономенклатурного производства тонколистовых конструкций, особенно в автомобилестроении и производстве бытовой техники. Анализ состояния робототехники для контактной сварки за последние годы позволяет отметить следующие тенденции развития этого направления.  [c.217]

В области практического применения роботов для контактной сварки следует ожидать  [c.217]

Сварка относится к таким видам обработки, в которых операции перемещения инструмента в пространстве и сам технологический процесс органически слиты. Полная автоматизация сварки требует, чтобы сварочный автомат управлял одновременно как режимом, так и инструментом. К автоматам такого типа относится промышленный робот — новое эффективное орудие в арсенале средств автоматизации современного производства. Разработанный для меж-операционных перемещений деталей, промышленный робот уже нашел свое применение в ряде технологических процессов, в том числе в сварке.  [c.5]

Более развитые роботы позволят в ином плане решать задачи автоматизации и освоить новые сферы применения сварочной техники — сварку под водой, в космосе, в агрессивных средах и в других местах, недоступных непосредственно человеку.  [c.9]


Технологические процессы. Для выполнения технологических операций промышленный робот оснащается ручным инструментом, например электродрелью, пульверизатором, сварочными клещами и т. п. Широкое применение роботы нашли на операциях контактной точечной сварки [98, 114], окраски распылением, дробеструйного упрочнения, пескоструйной обработки, дуговой сварки. Применение промышленных роботов для технологических целей только начинается. Каждая конкретная задача в области применения характеризуется определенным сочетанием таких параметров, как скорость, ускорение, точность, нагрузка, рабочая среда, стоимость и т. д., и требует как наиболее подходящей модели промышленного робота, так и специальных вспомогательных средств. Расширение круга технологических задач, отводимых роботам, потребует разработки специализированных моделей промышленного робота.  [c.64]

Сущность применения промышленного робота для сварки состоит в том, что субъективный элемент (человек) исключается и искусство квалифицированного сварщика заменяется последовательностью программируемых элементарных операций, позволяющих с достаточной и воспроизводимой точностью совершить требуемый процесс сварки. При этом необходимо обеспечить сварку при любой конфигурации шва с учетом как геометрии последнего, так и ограничений сварочного процесса.  [c.95]

Следовательно, перед нами стоит задача в кратчайшие сроки добиться резкого расширения объемов применения автоматической дуговой сварки, качественно нового ее технического уровня, в том числе и путем применения промышленных роботов.  [c.155]

Применение промышленных роботов позволит в ряде случаев повысить точность направления электрода по стыку, а следовательно, улучшить качество сварки. Учитывая большую распространенность всех видов шовной дуговой сварки, можно полагать, что широкое применение промышленных роботов в сварочном производстве даст значительный экономический эффект в народном хозяйстве нашей страны.  [c.165]

Существенно изменилось, а в ряде случаев и усложнилось технологическое оборудование, включающее станки с ЧПУ, обрабатывающие центры, контрольные автоматы. Все более широкое применение получают промышленные роботы, которые выполняют не только операции транспортировки, ориентации и загрузки оборудования, складирования, но и технологические контактной и дуговой сварки, лазерной обработки, термообработки и покрытий, контроля, сборки, окраски, упаковки и др. Многие современные виды технологических автоматов и роботов управляются с помощью микропроцессоров. Создаются модули, включающие технологическое оборудование и робот. На заводах с массовым выпуском продукции высокая концентрация технологических операций и производительность достигаются путем создания многономенклатурных автоматических линий, что стало особенно характерным для заготовительных цехов литейных, кузнечных, штамповочных, гальванопокрытий и термообработки. Во многие линии, в том числе металлообрабатывающие, встраиваются ЭВМ и программируемые контроллеры, используемые не только для  [c.3]

В книге изложены принципы, методы и средства конструирования адаптивных робототехнических комплексов (РТК). Рассмотрены вопросы гибкого программирования и адаптивного управления РТК. Описаны различные типы манипуляционных н транспортных роботов, станков и обрабатывающих центров с микропроцессорными системами адаптивного управления. Рассмотрены особенности систем адаптивного контроля и перспективы применения в машиностроении систем искусственного интеллекта. Приведены примеры адаптивных РТК для механической обработки, сварки и сборки, используемых в составе гибких автоматизированных производств.  [c.2]

При сварке сложных изделий возникает необходимость изменять положение или ориентацию одних свариваемых деталей относительно других. Для этой цели часто используется еще один робот, осуществляющий соответствующие вспомогательные операции. Такие сварочные робототехнические комплексы (РТК) имеют единую систему адаптивного управления, обладают высокой гибкостью и широкими адаптационными возможностями. Благодаря этому адаптивные сварочные РТК находят применение в ГАП.  [c.173]

Важную роль при автоматизации процессов сварки играют роботы с АПУ и создаваемые на их основе адаптивные РТК-Конкретные примеры таких РТК (адаптивные РТК дуговой сварки, микросварки и др.), а также особенности их применения в составе ГАП рассмотрены в гл. 5.  [c.316]

Электроконтактная сварка с применением сдавливания относится к термомеханическому классу. В ней используют теплоту, выделяющуюся в зоне контакта свариваемых деталей при пропускании через него импульсов электрического тока. Механизированную сварку выполняют с помощью контактных машин, управляемых оператором установку параметров технологического процесса, подачу и съем сварного изделия, а также включение выполняют вручную. Автоматическую сварку осуществляют сварочными роботами, применяемыми при массовом производстве. Электроконтактную сварку применяют для соединения деталей из углеродистых и легированных сталей, алюминиевых и других сплавов.  [c.79]

С точки зрения аппаратуры и систем управления электросварочное оборудование следует разделить на следующие виды оборудование общего применения, специальные машины и установки, сборочно-сварочные линии, сварочные работы. Существует множество типов архитектуры аппаратных средств, на основе которых можно реализовать различные варианты стратегии управления сварочными процессами и оборудованием — контроллеры автономные (оборудование общего применения — автоматы и полуавтоматы для дуговой сварки, машины контактной сварки и др.), линейные и системные (системы управления с распределенной вычислительной мощностью и распределенной конструкцией в качестве локального регулятора системы управления установками, линиями, роботами).  [c.19]


Более полно комплексная механизация и автоматизация сборочно-сварочных работ разрешается применением поточных линий. Перспективы развития комплексной механизации и автоматизации в сварочном производстве открываются при применении методов и технических средств программного управления и широком использовании ЭВМ. Весьма перспективно создание автоматических линий из установок с ПУ перемещениями рабочих органов и параметрами режима сварки, главным образом, на базе сварочных роботов, соединенных транспортно-загрузочными средствами, использующими приспособления-спутники. Такие линии имеют средства автоматического складирования заготовок и приспособлений и распределения их между установками. Групповое управление линиями осуществляется от ЭВМ.  [c.34]

При дуговой сварке других видов параметры дугового процесса имеют значительную случайную составляющую и выделение информации о положении поверхности изделия существенно усложняется. В ряде случаев для получения приемлемой точности оказывается необходимо применение интеграла измеряемого сигнала и методов, основанных на анализе случайных процессов. Следящие системы для наведения электрода на линию соединения, в которых в качестве датчика используется сварочная дуга, стали интенсивно развиваться только после появления микроэлектронной техники и необходимости создания средств адаптации для сварочных промышленных роботов, применительно к которым преимущества использования сварочной дуги в качестве датчика имеют решающее значение при выборе методов и Технических средств адаптации. В большинстве известных систем рассматриваемого типа для сварки плавящимся электродом в качестве информационного параметра используется сила сварочного тока. При сварке неплавящимся электродом с применением источника питания с крутопадающей характеристикой более информативным параметром оказывается напряжение на дуге.  [c.111]

Специализированные роботы, особенно модульные с более простыми системами управления, наиболее пригодны для крупносерийного и массового производства с редким (один—четыре раза в год) изменением типоразмеров свариваемых изделий. Применение модульных роботов с двумя—четырьмя степенями подвижности целесообразно при сварке изделий со швами простой формы, прежде всего с прямолинейными и круговыми швами, особенно в тех случаях, когда эти швы могут быть ориентированы вдоль направляющих. Во многих случаях для специализированных роботов достаточно иметь простую, например цикловую, систему управления и несложные средства геометрической адаптации 6]. Применение контурных систем управления в модульных роботах делает их более гибкими с минимальной функциональной избыточностью  [c.119]

Широкое применение роботов при сварке предъявляет, особенно к технике управления, повышенные требования. Программирование роботов осуществляется непосредственно на рабочем месте робота вручную или путем обучения через пульт. Для сложных робототехнических комплексов более -перспективным является независимое программирование на основе текстового описания с помощью ориенти-. рованньщ языков. Погрешности установки сварочных деталей в фиксаторах и сварочных аппаратов в направляющих, шероховатость поверхности свариваемых деталей и другие причины приводят к отклонению формы сварочного шва от желаемой. Поэтому при сварке возникает необходи-  [c.266]

В целом применение роботов наиболее целесообразно в мелко-и среднесерийном производстве. В массовом производстве более целесообразны специализированные автоматические установки ввиду их большей производительности, например многоточечные контактные машины при большом объеме сварки. В единичном производстве рациональнее применение pyчнo o управления сварочным процессом.  [c.145]

Гука или кадданной передачи), этот-механизм служит для передачи вращательного движения между валами, оси которых пересекаются, Нешироко применяется в автомобилях, станках, приборах (входное и выходное звенья 1,3 выполнены в виде вилок, звено 2 — в виде крестовины, звено 4 — стойка О — точка пересечения осей) ж — структурная схема основного рычажного механизма одного из видов промышленного робота, это механизм с незамкнутой кинематической цепью AB DEF (звенья I—5 — подвижные, б — стойка, f —охват). Промышленные роботы в настоящее время находят все более широкое применение для выполнения самых различных технологических и вспомогательных операций сборки, сварки, окраски, загрузки и т. п.  [c.28]

Любая система координат переносных движений принципиально пригодна для любого способа сварки. Однако для дуговой сварки чаще всего применяют роботы с угловой системой координат. Это объясняется перечисленными выше преимуществами звеньев с вращательным движением. Наибольшей популярностью пользуются сравнительно небольшие шестикоординатные сварочные роботы с угловой системой координат, перемещаемые с помощью манипуляторов-расширителей зоны обслуживания, имеющих одну, две или три степени подвижности с прямолинейным перемещением. При одной подвижности манипулятора-расширителя робог может устанавливаться в нижнем или потолочном положении. При двух и трех подвижностях, как правило, используется потолочное положение робота. В случае применения поворотных консолей  [c.119]

Изделие выполняет все перемещения, необходимые для сварки, а сварочный инструмент закреплен неподвижно. В общем случае этот способ требует применения манипулятора изделия с пятью—шестью степенями подвижности, т. е. использования промышленного робота в качестве манипулятора изделия. Применение этого варианта ограничено грузоподъемностью современных роботов. Он применим при дуговой сварке достаточно жестких конструкций компактной формы, не требующих крепления в сложных и тяжелых сбо-рочно-сварочных приспособлениях. Сварка выполняется с помощью стационарно закрепленного сварочного аппарата. При этом один и тот же промышленный робот выполняет как загрузочно-разгрузочные операции, так и сварочные и вспомогательные перемещения.  [c.121]

Методы обучения роботов и их комплексов для сварки с использованием дистанционного управления с пульта обучения являются в настоящее время основными. Небольшое применение нашли методы, основанные на обратимой кинематике (роботы типа Apprenti e, MA 2001). Методы обучения отличает наглядность, однако во время обучения не выдается продукция, а при сварке швов сложной формы или большого числа точек, или коротких швов программирование усложняется и требует больших затрат времени. Так, при программировании работы робота в течение 1 мин для дуговой сварки методом обучения требуется 20...80 мин. Следует отметить, что большая часть травм, связанных с использованием сварочных роботов, происходит во время обучения, когда оператор-программист вынужден находиться в зоне действия робота.  [c.131]

Система СУСТ 101 управляет сваркой на переменном токе с применением сварочного трансформатора в подвесных сварочных машинах, установках многоэлектродной сварки и промышленных роботах. Преимущественное применение — управление сварочными клещами со встроенным трансформатором. Система СУСТ 301 работает на постоянном токе с применением сварочного трансформатора и выпрямителя. Преимущественное применение — управление процессом сварки с использованием портальных роботов, выполняющих сварку сварочным пистолетом на медной подкладке, что при сварке на переменном токе удлиняло бы вторичный контур, а следовательно, увеличивало потери энергии из-за значительного индуктивного сопротивления. Число программ сварки в системах типа СУСТ равно 16.  [c.209]


Контактно-точечная сварка применяется при ремонте кузовов и кабин для сборки панелей в сборочные единицы, которые затем целиком присоединяются к корпусу. При точечной сварке соединение панелей выполняется внахлестку с помощью машины МТПП-75. Ширина отбортовки кромок устанавливается исходя из минимального расстояния от центра сварочной точки до края. При сварке двух деталей расстояние до края должно быть равно двум диаметрам точки, а при сварке трех деталей — четырем диаметрам. В случаях, когда невозможен двусторонний подход электродов к месту соединения, могут быть использованы однополюсные распорные пистолеты, присоединенные к трансформатору передвижных сварочных устройств. Повышение проч изводительности процесса контактноточечной сварки панелей кузовов, кабин и оперения осуществляется путем использования роботизированных комплексов. Однако применение роботов связано с большими затратами, поэтому они могут быть использованы только для сварки панелей или сборочных единиц кузовов, которые при КР заменяются в обязательном порядке.  [c.244]

Точечная сварка превратилась в одну из самых широких областей применеш1я промышленньк роботов, особенно в автомобилестроении. Первые роботы для точечной сварки были установлены в конце 1960-х годов на предприятиях по производству автомобиля модели Vega. В настоящее время почти все производители автомобилей используют роботы для точечной сварки кузовов. Парк роботов, применяемых для такой цели, насчитывает свыше 1200 штук. Другие виды применений роботов для точечной сварки-это изготовление рам мотоциклов и велосипедов, кабин грузовиков и различных других вспомогательных изделий в автомобильной промышленности.  [c.290]

Промышленные роботы, способные работать в режиме контурного управления, могут осуществлять несколько видов операций непрерывной дуговой сварки. Примерами служат дуговая сварка с металлическим электродом в среде инертного газа (MIG) и дуговая сварка с вольфрамовым электродом в среде инертного газа (TIG). Традиционно эти операции выполнялись вручную сварщиками, которые часто вынуждены были работать в горячих, дискомфортных, а иногда и опасных условиях. Такие участки производства логично считать перспективными для внедрения промышленных роботов. Однако с дуговой сваркой связан целый ряд проблем, тормозящих широкое применение ботов в этом процессе. Во-первых, дуговая сварка-это такой производственный процесс, который часто используется в мелкосерийном производстве. Поэтому в подобных случаях применение любых средств автоматизации, включая роботы, затруднено в силу экономических причин. Во-вторых, часто цмеет место разброс размеров свариваемых деталей. Человек-сварщик умеет компенсировать изменения размеров, а робот это сделать пока не способен (по крайней мере при существующей технологии). В-третьих, человек-сварщик часто бывает необходим для того, чтобы вьшолнить работу в труднодоступных зонах (внутри резервуаров, танков, корабельных отсеков и т.п.). И наконец, в-четвертых, технологии очувствления роботов, позволяющие справиться с изменениями всех параметров процесса дуговой сварки, еще окончательно не разработаны.  [c.291]

В свете этих проблем применения роботов для дуговой сварки ограничивались операциями в крупно- и среднесерийном производствах, где можно обеспечить удобную подачу свариваемьпс компонентов, а вариации их размеров удается ввести в разумные рамки. Типичная станция роботизированной дуговой сварки может включать в себя следующие составные части  [c.291]

Задачи в области контактной сварки до конца XX в. вытекают из Основных направлений экономического и социального развития СССР на 1986—1990 годы и на период до 2000 года , утвержденных на XXVII съезде КПСС. Основным направлением развития контактной сварки будет увеличение производительности труда на 23—25%, весь прирост выпуска продукции будет получен благодаря росту производительности труда. Значительно повысится технический уровень сварочного производства в результате комплексной автоматизации технологических процессов (в среднем в 2 раза). На основе использования современных достижений науки и техники необходимо обеспечить разработку, производство и внедрение автоматических манипуляторой (промышленных роботов) для сварки и транспортировки деталей в производстве сварных конструкций, систем автоматического управления и контроля с использованием микроЭВМ, гибких переналаживаемых производств сварных узлов (изделий). Необходимо также существенно повысить качество и надежность сварных соединений и сварных конструкций путем разработ ки и применения новых методов контроля непосредственно в процессе получения сварного соединения, а также способов нер.азрушаю-щего контроля готовых сварных узлов (соединений). Это будет достигнуто оснащением сварочных машин системами управления и контроля с применением электронно-вычислительной техники и изысканием новых параметров качества сварки и физических явлений, которые могут стать базой разработки новых методов неразрушающего контроля готовых сварных конструкций.  [c.4]

Создать гамму промышленных роботов для дуговой сварки плавяш,имся и неплавящимся электродами. Они должны быть прежде всего специализированными, а затем и универсальными, с жестким программированием и оптимизацией программирования. Естественно, и в этом случае прежде всего должна быть обеспечена экономическая рентабельность. С учетом социального значения проблемы создание сварочных роботов будет идти быстрыми темпами, хотя в данное время опыт их эксплуатации для дуговой сварки еще очень незначителен. В ближайшие годы для дуговой сварки плавящимся и неплавящимся электродами должны появиться роботы с оптимизацией программирования. Они будут опознавать стыки, надежно находить начало сварных швов, а затем видеть разделку шва. В них будет вводиться ряд программ для сварки различных швов с использованием соответствующих средств вычислительной техники. Такие роботы позволят хранить и воспроизводить опыт и знания самых квалифицированных сварщиков. Все это, несомненно, будет способствовать существенному расширению областей рационального применения автоматической дуговой сварки.  [c.159]

Применение робототехники - универсальный путь автоматизации сварочной технологии не только в серийном, но и мелкосерийном производстве, так как при смене изделия можно использовать тот же робот, изменяя лишь его программу. Роботы позволяют заменить монотонный физический труд, повысить качество сварных изделий, увеличить их выпуск. Один робот может заменить труд четырех человек. При изготовлении сварных изделий следует иметь в виду, что сравнительно просто применять роботы для контактной точечной сварки на-хлесточных соединений, сложнее - для электродуговой сварки угловых и тавровых соединений и крайне сложно - для электродуговой сварки стыковых соединений.  [c.323]


Смотреть страницы где упоминается термин Применение роботов в сварке : [c.294]    [c.370]    [c.370]    [c.66]    [c.158]    [c.69]    [c.171]    [c.36]   
Смотреть главы в:

Основы сварочного производства  -> Применение роботов в сварке



ПОИСК



ОСОБЕННОСТИ ПРОЦЕССОВ СВАРКИ С ТОЧКИ ЗРЕНИЯ ПРИМЕНЕНИЯ ПРОМЫШЛЕННЫХ РОБОТОВ

Робот

Роботы Применение

Сварка Применение



© 2025 Mash-xxl.info Реклама на сайте