Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фосфор Определение в стали

В сталях всех марок присутствуют постоянные примеси. Некоторые примеси (марганец, кремний) необходимы в металле по условиям технологии выплавки стали, другие (вредные) примеси (сера, фосфор) не поддаются полному удалению. Постоянный характер носят также так называемые скрытые примеси (кислород, водород, азот), содержание которых мало. К специальным примесям относят легирующие добавки для придания стали определенных свойств (никель, молибден, ванадий, титан и др.), а также углерод, марганец, кремний. В марках легированных металлов и сплавов указывается наличие тех или иных элементов буквами русского алфавита (табл. 2, стр. 5—6).  [c.11]


Наряду со специально добавляемыми элементами, промышленные стали обычно содержат примесные или сопутствующие элементы. Всегда присутствуют в стали сера и фосфор, попадающие из руды, топлива или шлаков, используемых для очистки стали. Некоторые руды содержат кроме того значительное количество мышьяка, сурьмы и висмута, а олово и медь попадают в сталь из скрапа. Влияние этих элементов, являющихся соседями в периодической системе, почти без исключения вредное. При определенных обстоятельствах они могут мигрировать к границам зерен и резко ухудшать прочностные характеристики стали. Примесные элементы уменьшают сопротивление стали разруше-  [c.52]

Для дисков всех категорий обязательно должны быть оговорены нормы химического состава. Как правило, химический состав определяют на заводе-поставщике дисков по пробе, отбираемой при разливке стали химический состав контролируют на турбинном заводе. Пробы отбирают по ГОСТу 7565—66, а химический анализ выполняют по ГОСТам 12344—12365—66 и 2331—63. Допускается применение других методов химического анализа, обеспечивающих необходимую точность определения. В нормах химического состава указывается допускаемое отклонение процентного содержания каждого элемента. Для вредных примесей (серы, фосфора) или элементов, вредных для стали данной марки, приводится только верхний предел содержания данного элемента. Путем химического анализа различных зон поковки (это относится в первую очередь к крупным поковкам) должна быть получена гарантия отсутствия ликвации особенно вредных элементов, а также легирующих элементов. Желателен контроль также с помощью спектрального анализа [74, 123].  [c.429]

Химический анализ стали осуществляется в соответствии со следующими стандартами определение в углеродистой стали углерода — ГОСТ 22536.1-77, серы — ГОСТ 22536.2-87, фосфора — ГОСТ 22536.3-77, кремния ГОСТ 22536.4-77 и др. определение в легированной стали углерода — ГОСТ 12344-78, кремния — ГОСТ 12346-78, марганца — ГОСТ 12348-78 и др.  [c.316]

Однако отпускная хрупкость может в значительной степени развиваться в процессе термической обработки, поскольку скорость охлаждения крупногабаритных массивных деталей после окончательного отпуска с целью предупреждения развития термических напряжений ограничивают в соответствии с технологическими инструкциями весьма малым значением. Для того чтобы в результате охрупчивания при медленном охлаждении критическая температура хрупкости не превысила установленное техническими условиями значение, концентрации фосфора и никеля в стали должны быть ограничены определенными соотношениями.  [c.202]


Металл перед эмалированием должен находиться в равновесном состоянии без напряжений с нормальной (отожженной) структурой и с определенной величиной зерна (балл 5—7 для стали) металл должен быть также чистым от вредных примесей и включений (фосфор, сера и шлаки в стали и чугуне). При невыполнении этих условий на стальных изделиях, помимо указанных выше пороков, часто появляется еще рыбья чешуя , представляющая собой отколы эмали в виде чешуи. Этому пороку особенно подвержены стали горячего проката. Поэтому для эмалирования предпочитают холоднокатанные стали. Это объясняется тем, что стали горячего проката часто имеют волокнистую структуру (деформированная структура). Однако полный отжиг такой стали устраняет волокнистость строения и делает ее устойчивой против появления в эмалевом слое рыбьей чешуи . Так как изделия для  [c.69]

По качеству стали подразделяют на обыкновенные (только углеродистая), качественные (углеродистая и низколегированная), высококачественные (низко- и высоколегированная). При определении качества стали в первую очередь учитывается предельное содержание серы и фосфора. Высококачественные и качественные стали характеризуются также более однородной структурой и меньшим содержанием неметаллических включений. Для этих сталей гарантируются химический состав и механические свойства.  [c.77]

В сталях качественных допустимое содержание серы и фосфора несколько ниже, чем в сталях обыкновенного качества, но главное их отличие состоит в том, что в них гарантируются одновременно и определенные механические свойства и химический состав.  [c.240]

В технических условиях на углеродистую сталь оговаривается содержание пяти основных элементов углерода, марганца, кремния, фосфора и серы. В большинстве стандартов на углеродистую сталь, кроме того, оговорено предельно допустимое содержание никеля и хрома, которые попадают в сталь из стального скрапа при ее выплавке. В углеродистой стали присутствие хрома и никеля нежелательно. Углеродистая сталь должна обладать определенными механическими и технологическими свойствами, которые под влиянием этих элементов могут быть изменены в нежелательном направлении. Так, например, повышенное содержание никеля и хрома в углеродистой стали снижает ее очень важное технологическое свойство — штампуемость в холодном состоянии.  [c.245]

При плавке в кислом конвертере кет условий для удаления из металла фосфора и серы из чугуна они полностью переходят в сталь. В процессе продувки воздухом в металле растворяется до 0,012— 0,025% азота в стали содержится также повышенное количество неметаллических включений. Вследствие особенности технологического процесса в кислом конвертере можно перерабатывать только чугун определенного химического состава. Полученную сталь применяют там, где она соответствует требуемым техническим условиям. При низком содержании углерода (0,1—0,2 о) ее используют для изготовления сварных труб, болтов, винтов, тонкой жести, профилей сложного сечения. Сталь с содержанием углерода до 0,50—0,70%о используют для прокатки рельсов, строительных балок и т. д.  [c.53]

Присутствие в стали закиси железа делает сталь хрупкой. Поэтому в процессе производства сталь раскисляют, т. е. у окислов железа отбирают кислород. Для этого в конце плавки в конвертер вводят определенное количество ферромарганца, ферросилиция и алюминия. Этим способом можно перерабатывать чугуны, содержащие мало фосфора и серы. При большом содержании в чугуне этих примесей конвертирование производят по томасовскому способу. В качестве огнеупорного материала используют доломитовый кирпич, который не разъедается флюсом (окисью кальция), необходимым для переработки фосфористых чугунов. Во время плавки в конвертер засыпают обожженную известь, которая переводит фосфор в шлак. Бессемеровский и томасовский способы были впервые предложены англичанами Бессемером (1856 г.) и Томасом (1878 г.).  [c.48]

К железоуглеродистым сплавам относятся сплавы, в которых основными компонентами являются железо и углерод. В зависимости от содержания углерода железоуглеродистые сплавы делятся на две группы чугуны (при содержании угле юда более 2%) и стали (при содержании углерода до 2%). Помимо железа и углерода, железоуглеродистые сплавы обязательно содержат марганец, кремний, серу и фосфо], а также могут содержать и ряд других компонентов, называемых легирующими, которые специально вводятся в эти сплавы. Чугуны и стали, содержащие только железо, углерод, марганец, кремний, серу и фосфор, называются у г л е род и с т ы м и. Чугуны и стали, которые содержат легирующие компоненты (в количествах, изменяющих какие-либо свойства сплава), называются легированными. В том случае, когда содержание марганца и кремния превышает определенные количества, эти компоненты также считаются легирующими. Так, марганец становится легирующим компонентом при содержании в стали более 1%, а кремний — при содержании в стали более 0,8%.  [c.41]


В зависимости от требований, предъявляемых к этим сталям, они делятся на две группы — А и В. Сталь группы А соответствует требованиям определенных механических свойств, а сталь группы В—требованиям определенного химического состава. Углеродистая сталь обыкновенного качества характеризуется повышенным содержанием серы и фосфора, поэтому ее не применяют для изготовления аппаратов ответственного назначения.  [c.90]

Режим окисления углерода. Как отмечалось выше, в процессах производства стали обезуглероживание металла не представляет сложности, для его проведения необходимо обеспечить подвод в металл требуемого количества кислорода, а это относительно просто при использовании кислородного дутья. Поэтому, в принципе, окисление углерода при непрерывных процессах можно было бы провести в одну стадию. Однако в общем случае такой режим обезуглероживания металла неприемлем. Во-первых, углерод неизбежно окисляется во время окисления кремния, марганца и фосфора. Поэтому в общем случае обезуглероживание должно проводиться, по крайней мере, в двух реакторах в первом — во время окисления кремния, марганца и части фосфора во втором—при завершении дефосфорации. Во-вторых, в непрерывных процессах, как в любом кислородном процессе, реакция окисления углерода удобна для регулирования температуры ванны. В стадиях дефосфорации металла нежелательно иметь высокую температуру ванны, так как при высокой температуре возможны высокий износ футеровки реактора и меньшая степень дефосфорации металла. Поэтому требуемую наивысшую температуру нагрева металла желательно достигать в следующем реакторе после окончания дефосфорации металла путем окисления определенного количества углерода газообразным кислородом.  [c.365]

Впервые искусственные радиоактивные изотопы ( меченые атомы) были применены во второй половине. ЯО-х годов при проведении экспериментальных физических и химических исследований. Метод меченых атомов теперь широко используется для изучения структуры молекул, прослеживания некоторых физических превращений (явлений самодиффузии при плавлении и застывании кристаллических веществ, деформации и рекристаллизации металлов, разупрочнения сплавов при высоких температурах), выявления внутреннего механизма химических реакций и т. д. Этот же метод успешно применяется в практике биологических и физиологических исследований, внося существенные коррективы во многие ранее сформировавшиеся представления о динамике процессов, протекающих в живых организмах. Несколько позднее он все более широко стал использоваться в прикладных научно-технических исследованиях при изучении процессов доменного и сталеплавильного производств, износа деталей машин, качества красителей в текстильном производстве и пр. Столь же широко проводятся различные агрохимические исследования с применением меченых атомов (определение усвоения растениями долей азота, фосфора и других питательных веществ из почвы и из вносимых в нее удобрений, выяснение действия ядохимикатов). Наконец, по величинам радиоактивного распада элементов горных пород — природных изотопных индикаторов — осуществляются геологические исследования.  [c.189]

Определение фосфора [5, 21, 7, 13, 2]. Фосфор в стали находится преимущественно в виде твёрдогв раствора в феррите, в сером чугуне он, кроме того, образует химические соединения — фосфиды.  [c.96]

В качестве шихтовых материалов доменной плавки используются кокс, агломерат, окатыши, руда, известняк. В иастояш,ее время железорудная часть шихты доменных печей СССР состоит из 74 % агломерата, 22 % окатышей и 4 % руды. Шихтовые материалы необходимо загружать в доменную печь в кусках определенного размера (40—60 мм). При использовании крупных кусков длительность Протекания процессов восстановления и офлюсования увеличивается. Мелкие куски заб1 вают проходы для газов и нарушают равномерное опускание матерь алов в доменной печи. Куски кокса, агломерата должны быть прочными, хорошо сопротивляться истиранию. Под действием веса столба шихты в шахте доменной печи непрочные материалы превращаются в мелочь и пыль, которые засоряют проходы между крупными кусками то же происходит и при истирании шихты. Кокс и агломерат должны иметь достаточную пористость. Это ускоряет сгорание топлива и восстановление оксидов железа. В шихтовых материалах должно быть минимальным содержание вредных примесей фосфора, серы, мышьяка, свинца и др., которые переходят в состав чугуна, а из чугуна при его переплаве в сталь. Эти примеси отрицательно влияют на свойства готового металла.  [c.14]

Для обеспечения требуемых механических и эксплуатационных свойств литых деталей (прочности, твердости, износостойкости, жаростойкости и др.) в сплавы вводят в определенном количестве специальные добавки (легирующие компоненты). По их содержанию сплавы делят на низколегированные (до 2,5 % по массе), среднелегированные (2,5. .. 10 %) и высоколегированные (свыше 10 %). Кроме того, в литейных сплавах присутствуют постоянные примеси (например, сера и фосфор в сталях и чугунах), которые во многих случаях являются вредными, и содержание их офаничивают.  [c.152]

PjOj, соединяясь с известняком, образуют шлак. Сера в виде FeS также соединяется с СаО и переходит в шлак. Для ускорения процесса расплавления и окисления примесей в печь подают через водоохлаждаемые фурмы кислород, благодаря чему резко сокращаются время плавки и расход топлива и руды. Во время кипения окисляется углерод. При этом осуществляют химический контроль для определения количества углерода в стали. Когда достигнуто необходимое содержание углерода, серы и фосфора, сталь раскисляют ферросплавами или алюминием. Можно применять дополнительно впепечное раскисление, вводя раскислители прямо в ковш с жидкой сталью. Мартеновский процесс длится 8-14 ч в зависимости от вместимости печи. В настоящее время работают печи производительностью от 40 до 900 т в плавку.  [c.87]


Если в стали присутствует мышьяк, а в материале СО не содержится, то результаты анализа будут завышены, в особенности для фотометрической методики определения фосфора в виде синего фосфорномолибденового комплекса (восстановление гидроксиламино(и) по ГОСТ 12347—77, хотя воспроизведение аттестованной характеристики СО свидетельствует об отсутствии значимой систематической погрешности в результатах измерений. Следовательно, одного СО, ориентированного на марку, в этом случае недостаточно.  [c.70]

Способ определения ликвации фосфора и углерода основан на неодинаковом травлении участков с различным содержанием этих элементов. Участки, обогащенные углеродом и фосфором, окрашиваются в более темный цвет. Лучшие результаты достигаются для стали, содержащей менее 0,6 % С. В стали с более высоким содержанием углерода осадок меди, вьвделяющийся при травлении, плохо смывается с поверхности шлифа.  [c.26]

Стилоскопирование производится в следующем порядке зачищаются электрод и изделие устанавливается зазор между электродом и изделием 1—3 мм и зажигается дуга отыскивается нужная группа линий и производится оценка содержания искомых элементов. Определение элементов проводится в следующей носледователь-ности ванадий, хром, молибден, никель, титан, вольфрам, марганец, ниобий, кобальт, кремний. Следует отметить, что содержание углерода, фосфора и серы спектральными методами не определяется. Точность определения содержания элементов при стилоскопировании зависит от выбранной пары спектральных линий и в общем случае составляет 20 % от абсолютной величины концентрации элемента в стали. Например, если содержание элемента оценено 1 %, то фактическое содержание может находиться в пределах 0,8—1,2 %. При проведении стилоскопирования сталей, близких по содержанию легирующих элементов и назначению, целесообразно пользоваться рекомендациями, приведенными в табл. 3.3.  [c.67]

В сталях всегда присутствует водород, ухудшающий их качество и вызывающий при определенных условиях )аспространенный дефект — флокены. 1оэтому второй особенностью термической обработки большинства поковок является необходимость противо-флокенной обработки. В сталях сложного состава водород локализуется на дислокациях и двумерных дефектах, малоугловых и межфазных границах и т. д. На распределение водорода в структуре влияет также и тип неметаллических включений наибольшее количество водорода скапливается у сульфидов, наименьшее — у силикатов. Поэтому возможность образования флокенов в значительной степени определяется структурным состоянием, степенью дефектности структуры, плотностью материала, т. е. пористостью, а также природой и морфологией неметаллических включений. Как правило, флокены располагаются в средней части поковки и не имеют определенной ориентировки. В крупных поковках они располагаются или берут начало в ликва-ционных участках, обогащенных углеродом, фосфором, серой и легирующими элементами.  [c.405]

Такими полезными добавками в сплавах на основе железа являются (см. гл. II) бор, углерод и некоторые другие элементы. Так, введение 0,004 % бора в углеродистую сталь, содержащую 0,2 % (ат) позволило вдвое снизить концентрацию фосфора на границах аустенитных зерен [301]. Имеются данные [99, 124], свидетельствующие о том, что, например, углерод при определенных концент зациях действительно способен ликвидировать отпускную хрупкость в тройных сплавах Ре — Р — С (см. гл. I, II). Однако в случае легированных конструкционных сталей, уже содержащих 0,1-0,5 % С, дальнейшее повышение его концентрации не приводит к снижению склонности к отпускной хрупкости [6]. Попытки введения в сталь других полезных примесей (например, бора или бериллия) также не дали желаемого результата. Возможно, это обусловлено тем, что различньге добавки такого рода по адсорбционной активности на границах зерен и положительному влиянию на энергию межзеренного сцепления а-железа значительно уступают углероду — наиболее полезной примеси, уже присутствующей в сталях в концентрациях, достаточных для насыщения твердого раствора.  [c.192]

Приведенные данные о совместном влиянии примесей и легирующих элементов на отпускную хрупкость и изложенные методы расчета температурных, кинетических и концентрационных закономерностс й охрупчивания могут быть аналогичным образом использованы для определения допустимых концентраций фосфора и никеля и их оптимальных соотношений в сталях, изделия из которых длительное время эксплуатируются при температурах, близких к температурам максимального охрупчивания. Это относится, например, к некоторым роторным, дисковым сталям, для которых оптимальные соотношения между концентрациями фосфора и никеля должны устанавливаться с учетом допустимого охрупчивания, обусловленного изотермическими вьщержка-ми при эксплуатации в интервале 400—550 0 в течение десятков лет.  [c.205]

В связи с этим уместно напомнить об эволюции взглядов на роль карбидов в явлении отпускной хрупкости, В ранних гипотезах карбидные включения рассматривались как основной источник охрупчивания [21]. Затем образование на границах зерен легированных карбидов считали главным факт ом, определяющим термодинамический стимул неравновесной сегрегации опасных примесей, в частности фосфора, в приграничных зонах [1]. Впоследствии внимание исследователей привлекла равновесная и неравновесная сегрегация этих примесей и легирующих элементов на межфазных границах карбид - матрица [14, 105, 111, 118]. Недавно были получены прямые подтверждения того, что кoнцeнfpaция фосфора на таких границах в стали в состоянии отпускной хрупкости соизмерима с концентрацией на границах зерен и поэтому на них может происходить преимущественное зарождение трещин [121, 155]. Вместе с тем, появились данные о том (см. гл. Ill), что в определенных условиях мелкие и близко расположенные карбидные частицы на границах зерен могут ослаблять межкристаллитную адсорбцию фосфора и отпускную хрупкость. Кроме того, показано, что эффект низкотемпературной обратимости отпускной хрупкости, обнаруженный в низкоуглеродистых сплавах железа (в том числе легированных), не наблюдается при появлении карбидной фазы [165], Таким образом, влияние карбидных включений на развитие отпускной хрупкости неоднозначно природа такого сложного влияния в настоящее время остается в значительной степени неясной и заслуживает детального дальнейшего изучения.  [c.209]

Конвертер с основной футеровкой дал возможность перерас-батывать в сталь чугун, богатый фосфором, который не пригоден для конвертера с кислой футеровкой. Однако производство стали в конвертерах требует применения чугуна лишь определенного состава и не решает вопроса использования металлического лома в больших количествах.  [c.46]

Мартеновский процесс делится на три этапа плавление, кипение и раскисление. Во время плавления окисляются кремний, марганец и фосфор за счет кислорода FeO. Образующиеся оксиды SIO2, МпОг, Р2О5, соединяясь с известняком, образуют шлак. Сера в виде FeS тоже соединяется с СаО и переходит в шлак. Для ускорения процесса расплавления и окисления примесей в печь подают через водоохлаждаемые фурмы кислород, благодаря чему резко сокращаются процесс плавки и расход топлива и руды. Во время кипения окисляется углерод. При этом осуществляют химический контроль для определения количества углерода в стали. Когда достигнуто необходимое содержание углерода, серы и фосфора, сталь раскисляют ферросплавами или алюминием. Можно применять дополнительно внепечное раскисление, вводя раскислители прямо в ковш с жидкой сталью. Мартеновский процесс длится 8—14 ч в зависимости от вместимости печи. В настоящее время работают печи производительностью от 40 до 900 т в плавку.  [c.51]

Томасовский процесс. Наличие громадных месторождений железных руд, богатых фосфором, вызвало в сюе время необходимость изыскать способ производства стали из фосфористых чугунов. При томасовском способе произюдства стали футеровка конвертора основная (доломит). Это позюлило получать основные шлаки, необходимые для удаления фосфора. В конвертор забрасывают определенное количест-  [c.28]


Первыми способами получения стали из чугуна были кричный способ (XIV—XV вв.) и затем пудлинговый способ (XVIII в.). Во второй половине прошлою столетия появились и получили наибольшее развитие высокопроизводительные бессемеровский и томасов-ский способы. Недостатками этих способов являются невысокое качество стали и ограниченность сырьевой базы, так как для передела в сталь можно использовать только бессемеровский и томасовский чугуны с определенным содержанием кремния, серы и фосфора. Поэтому в дальнейшем основную массу стали выплавляли мартеновским способом, менее производительным, но позволяющим получать более качественную сталь. Для выплавки стали этим способом используют наиболее распространенный мартеновский чугун, не  [c.37]

Химический состав. Различные металлы и их сплавы имеют неодинаковую пластичность, так, например, медь более пластична, чем железо, с увеличением в стали содержания углерода, фосфора и серы уменьшается пластичность. Подобным же образом, но в меньшей степени действует марганеН и кремний. Другие элементы (например, никель, ванадий) в определенных пределах повышают пластичность стали,  [c.262]

Влияние алюминия, ванадия, титана, ниобия, хрома, молибдена, бора, фосфора на деформЬционное старение, контролируемое по изменению напряжения текучести при температурах старения 20—250° С, исследовано в ряде работ [41, с. 9 134 135 171 175 176 177, с. 209 178—183]. Было установлено, что нитридообразователи алюминий, кремний, бор — при соответствующих их добавках могут существенно снизить склонность к старению при 100° С и ниже. Неоднократно было замечено, что совместное действие алюминия и кремния эффективнее, чем, например, одного алюминия [178], что связывают с более полным выделением азота в виде изоморфных нитридов алюминия и кремния в первом случае. Для получения действительно нестареющей в определенных условиях стали в случае введения алюминия и кремния необходима соответствующая термическая обработка, которая обеспечивает медленное охлаждение или выдержку в интервале, в котором происходит наиболее полное выделение нитридов. Такая термическая обработка особенно важна при высоких температурах аустенизации, когда  [c.96]

Кнюппель и Мауер [187], исследовав 200 плавок различного способа выплавки, установили, что основное влияние на ударную вязкость после деформационного старения оказывают азот, фосфор и кислород, причем величины их удельного влияния относятся соответственно как 3,3 1 0,75. Эти авторы пришли к выводу, что склонность сталей к деформационному старению зависит только от их химического состава и не зависит от способа выплавки. Примечательно замечание, что установленное ими влияние химического состава имеет значение только для использованной термической обработки (нормализация на спокойном воздухе), так как, например, влияние кислорода с увеличением скорости охлаждения становится слабее, чем это следует из вышеприведенного. К. Ф. Стародубов и И. И. Коссая исследовали влияние на склонность стали к старению суммарного содержания в ней газов (азота, кислорода, водорода), переплавляя сталь в вакууме [190]. Ряд авторов определенно указывает, что учет влияния азота, фосфора, кислорода на степень охрупчивания при деформационном старении будет неполным, если не принимать во внимание содержание в стали марганца и углерода . Что касается марганца, то его наличие в стали улучшает вязкость после деформационного старения, причем особенно важно не абсолютное содержание марганца, а значение соотношения Мп С [71, 123]. Поэтому, в частности, изменение содержания углерода в пределах содержания его в низкоуглеродистой стали при неизменном содержании марганца будет изменять склонность стали к деформационному старению. Увеличение содержания углерода усиливает Неблагоприятное влияние азота и фосфора на охрупчивание при деформационном старении [71]. Данные же о  [c.99]

Например, если на просматриваемом поле щлифа перлит занимает примерно 50% общей площади микроструктуры, то содержание углерода в этой стали приблизительно равно 0,5 X 0,8 = 0,4%. В литой и перегретой доэвтектоидной стали феррит выделяется по определенным кристаллографическим плоскостям в виде пластинок и образуется так называемая видманщтеттова структура (рис. 24). Наличие этой структуры снижает ударную вязкость стали. В горячекатаной стали иногда наблюдается строчечное расположение феррита и перлита, получающееся в результате окончания проката при низких температурах или же из-за значительной ликвации серы и фосфора. Конструкционная углеродистая сталь широко применяется для проката на профили (рельсы, балки, уголки, проволоку, листы и др.), для холодной и горячей штамповки, а также для фасонного литья.  [c.60]

В настоящем параграфе изложены результаты экспериментальных работ автора [32], проведенных с целью определения условий производительного точения стали ЭЯ1Т. Для опытов была использована сталь ЭЯ1Т следующего химического состава 0,16% углерода 17,2% хрома 10,4% никеля 0,5% титана 1,44% марганца 0,64% кремния 0,012% серы 0,018% фосфора. Механические свойства стали предел текучести 27 кгс/мм , предел прочности при растяжении 62 кгс/мм , относительное удлинение 34%, средняя твердость НВ 143. Заготовки стали в состоянии поставки они не подвергались термической обработке. Микроструктура стали — аустенит и отдельные карбиды по границам зерен.  [c.86]

Легированная сталь может поставляться (по требованию потребителя) а) с суженными по сравнению с приведенными в табл. 11-21 пределами содерлония углерода и легирующих элементов б) с содержанием серы и фосфора в качественной стали не более 0,025% каждого (к обозначению марки стали добавляют букву А) в) с содержанием серы в высококачественной стали не более 0,157о г) с содержанием фосфора в высококачественной и особовысококачесг-венной стали не более 0,02% д) подвергнутой травлению е) с определением механических свойств в стали диаметром (или толщиной) более 80 мм на поперечных образцах ж) с определением ударной вязкости при —60° С образцов типа 1 по ГОСТ 9454—60 (сталь, предназначенная для изготовления мащин северного исполнения) з) в улучшенном состоянии (закалка и отпуск).  [c.45]

Способ определения ликвации фосфора и углерода основан на неодинаковой травн-мости участков с различным содержанием тих элементов. Участки, обогащенные углеродом и фосфором, окрашиваются в более темный цвет. Лучшие результаты достигаются для стали, содержащей до  [c.129]

Влияние фосфора на коррозию стали. Влияние фосфора менее определенно, чем серы. Тронстад и Сейерстед" , сравнивая три материала с различным содержанием фосфора, не нашли заметной разницы в коррозии в кипящем 2 N растворе хлористого натрия. Подобно этому Спеллер сообщает, что  [c.542]

Метод кривых термического высвечивания получил широкое применение в самых разнообразных областях науки и техники. Прежде всего он используется для исследования центров захвата в разных кристаллофосфорах. При этом в ряде случаев удалось связать определенные максимумы на кривых термовысвечивания с конкретными примесями. Метод термовысвечивания также широко применяется в геологии для термолюминесцентного анализа различных минералов. Фосфоры, обладающие боль-щой аккумуляционной способностью, используются в качестве дозиметров ионизирующих излучений. В частности, их используют в космических исследованиях при изучении коротковолнового излучения Солнца. В последнее время метод кривых термовысвечивания стал применяться и для исследования молекулярных систем в биологии.  [c.218]

Капуе [170] сообщил о существовании зависимости между отпускной хрупкостью и величиной зерна аустенита в низколегированных хромоникелевых сталях. Были исследованы две стали (0,3% С 3% Ni 0,75% Сг), содержащие вредные примеси фосфор и цинк. Склонность к отпускной хрупкости сталей с фосфором и цинком усиливается с ростом зерна аустенита (сегрегация элементов на границах зерен) точно также температура перехода ударной вязкости улучшенной хромоникелевой стали с повышенным содержанием примесей зависит от величины у-зерна. Эта же сталь без загрязнений приобретает отпускную хрупкость как при 450, так и при 600° С. Полученные результаты указывают на то, что повышение температуры перехода при росте зерен у-фазы объясняется присутствием примесей. На основании данных работы [170], можно заключить, что предпочтительное растравливание границ зерен аустенита при травлении водным раствором пикриновой кислоты наступает лишь тогда, когда отпускная хрупкость вызывается малым содержанием фосфора. Таким образом, чтобы отпускная хрупкость проявилась при отпуске, необходимо определенное отношение числа сегрегаций на границах к величине зерна.  [c.152]

А. С. Лавров не только открыл явления юна 1Ьной ликвации, но и объяснил их происхождение и основные закономерности. В чем же причины ликвации Прежде всего в химической неоднородности любых металлических сплавов, будь то сталь, латунь или бронза. В отличие от чистых металлов сплавы застывают и кристаллизуются не при одной определенной температуре, а в некотором интервале температур. Когда жидкая сталь налита в изложницу, в первую очередь затвердевают ее наиболее lyroJiflauioie составляющие, прежде всего железо, температура плавления которого 1530°. Поэтому ранее остывшие слои металла, расположенные у внешней поверхности слитка, содержат больше железа и меньше других химических элементов — углерода, фосфора, серы и т. д. по сравнению с внутренними частями слитка, затвердевающими позже. Наружные слои стального слитка обладают вследствие этого более высокими механическими свойствами.  [c.66]


Уравнения (1-92) и (1-93) применялись, в частности, Шерманом, Элвендером и Чипменом [346] для выражения активности серы в жидкой стали. Очевидно, что определение активности серы не может базироваться на жидком состоянии серы, поскольку при температуре жидкой стали и атмосферном давлении жидкая сера неустойчива. Эти положения действительны и для других неметаллов, например для фосфора.  [c.33]


Смотреть страницы где упоминается термин Фосфор Определение в стали : [c.238]    [c.73]    [c.100]    [c.186]    [c.188]    [c.24]    [c.705]    [c.385]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.96 , c.97 ]



ПОИСК



Определение фосфора

Фосфор в стали

Фосфорит

Фосфоры



© 2025 Mash-xxl.info Реклама на сайте