Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дефекты двумерные

Рассмотрим применение предложенного подхода к решению контактной задачи для упругого основания, ослабленного системой дефектов (двумерная постановка). Пусть штамп, форма контактирующей поверхности которого описывается функцией у = = f x), вдавливается без трения в упругую полуплоскость Q = = х,у) у > 0 силой Р (рис. 4.3). Условия на границе у = О имеют вид  [c.213]

Поверхностные, или двумерные, дефекты относятся уже к разряду макроскопических - это границы раздела и дефекты упаковки  [c.49]


Такое нарушение последовательности слоев, являющееся двумерным дефектом, называют дефектом упаковки. Этот тип дефектов можно представить как изъятие какой-либо плоскости из кристалла AB AB . .. (стрелкой показана удаляемая плоскость) или,.  [c.236]

Дефектоскопическая информация во многих случаях представляет собой изображения различного типа. Например, при контроле усталостных трещин оператор сравнивает изображения эталонной и контролируемой поверхностей.. Аналогичные операции многократно выполняются при сравнении формы однотипных изделий, выявлении дефектов заданного типа на фоне структурных помех и т. д. Это вызывает утомление операторов и приводит -к ошибкам распознавания дефектов. Во всех этих случаях эффективно применение когерентно-оптических методов фильтрации основных частот изображения, позволяющих устранить ошибки операторов. Любое изображение можно представить его частотны.м спектром (спектром Фурье), представляющим собой совокупность синусоидальных решеток с различным периодом изменений яркости и различной ориентации на плоскости. Двумерное преобразование Фурье может быть -выполнено с помощью ЭВМ, однако оптические устройства выполняют эту операцию существенно проще и быстрее. Воздействуя на спектр изображения с помощью различных устройств (масок, диафрагм), можно осуществлять его обработку в реальном масштабе времени.  [c.97]

Когда к такому двумерному слоистому композиту, составленному из элементов, имеющих определенный разброс прочности, приложено в направлении армирования растягивающее напряжение о, могут происходить изолированные разрушения элементов в местах локализации наиболее опасных дефектов. Разрушенные элементы будут тогда разгруженными на определенной длине а/2 с каждой стороны от разрыва. Часть нагрузки, которую нес разрушенный элемент, передается соседним неразрушенным элементам. При этом в них возникает концентрация продольного растягивающего напряжения, которая рассматривалась в предыдущем разделе и показана на рис. 4 и 5 для двух ближайших элементов с каждой стороны от разрушенного элемента в случаях упругой и пластичной матриц.  [c.186]

В работах Ю. М. Полукарова с сотр. [82] установлено, что увеличение перенапряжения катода при электроосаждении меди вызывает переход от слоисто-спирального роста осадка к образованию и росту двумерных зародышей с появлением дефектов упаковки двойникового типа добавки к электролиту меднения поверхностно активных веществ резко повышают вероятность образования дефектов упаковки, увеличивают искажения кристаллической решетки и плотность дислокаций. Заряд двойного электрического слоя ускоряет процессы возврата в тонких осадках меди (эффект Ребиндера), приводящие к появлению внутренних напряжений растяжения. Влияние электрохимических условий осаждения на состояние кристаллической решетки осадков становится определяющим при достаточно большой толщине осажденного слоя на пластически деформированной монокристал-лической подложке дефектность слоев осадка постепенно уменьшалась при утолщении слоя, а при росте осадка на подложке из граней совершенного монокристалла, наоборот, увеличивалась до значений, соответствующих условиям электролиза.  [c.93]


Взаимодействие внутренней поверхности канала неплотности с проходящими через них газообразными и жидкими средами происходит в результате их адсорбции на твердой поверхности. Поверхности каналов неплотностей состоят из участков, имеющих различные адсорбционные свойства. В результате дефектов строения твердых тел и вследствие двумерной миграции молекул адсорбция распространяется на устья микротрещин.  [c.47]

Поверхностные дефекты. Поверхности, отделяющие кристалл или его часть от материала, отличающегося в том или ином отношении от вещества кристалла, являются двумерными дефектами. Возможные виды соприкасающихся материалов и разграничивающих поверхностей перечислены в табл. 1.1 [82].  [c.17]

В гл. 2 описаны характерные поля температур, напряжений и деформаций, градиентов и распределения напряжений, коэффициентов концентрации напряжений, деформаций и интенсивности напряжений в роторах и корпусных элементах турбин, полученные в результате физических и численных экспериментов. Даны также решения двумерных и трехмерных стационарных краевых задач о распределении электрического потенциала в детали при наличии в ней дефекта.  [c.18]

Бесконечная пластина толщиной Н, содержащая внутренний дефект цилиндрической формы (двумерная задача). Расчетная схема представлена на рис. 2.6. Цилиндрическая полость с радиусом R (неэлектропроводный дефект) расположена на расстоянии h от поверхности D электропроводной пластины. Потенциал U определяется на плоскости АВ, на расстоянии х от вер-  [c.103]

Для уточнения характерных размеров и местоположения дефектов используют аналитические решения двумерных и трехмерных стационарных задач о распределении электрического потенциала в моделях ротора при наличии в них дефекта. С помощью ЭВМ эти решения представлены в виде номограмм (см. гл. 2, рис. 2.6—2.8). При расчетах по сложным, близким к реальной конструкции, моделям целесообразно использовать алгоритм и программу, описанные в гл. 1, позволяющие получить численное решение уравнения Лапласа и образное представление результатов.  [c.185]

Поверхностные или двумерные дефекты, которые имеют макроскопические размеры в двух направлениях это границы зерен, субзерен, двойников, фаз.  [c.44]

Кристалл растет последовательными слоями путем образования на его поверхности двумерных зародышей критического размера. Существенную роль при росте играют дефекты структуры. Если даже кристалл обладает совершенной структурой, поверхность его может быть несовершенной и состоять из ступенчатых террас — каждая ступень образуется слоем атомов или молекул. Наблюдения действительно показывают, что плоскости реальных кристаллов часто имеют ступенчатое строение, что подтверждает механизм роста за счет образования двумерных зародышей.  [c.180]

Поверхностные дефекты (ступени роста, двумерные зародыши) наблюдаются даже в нитевидных кристаллах (см. гл. VIU).  [c.181]

Рост кристалла по незавершенным граням при наличии дефектов энергетически более выгоден, так как адсорбируемые атомы вступают сразу в связь не с одним, а с двумя и более атомами. Такой рост, следовательно, может протекать при меньших степенях пересыщения в случае совершенной поверхности растущего кристалла. Однако такой рост не может продолжаться бесконечно, так как поверхность становится гладкой и в дальнейшем кристалл должен расти путем отложения двумерных зародышей на этой поверхности.  [c.182]

Двумерные, или плоские, дефекты решетки  [c.23]

Плоские (двумерные) дефекты решетки имеют достаточную протяженность в двух направлениях. К двумерным (плоским) дефектам относятся  [c.23]

В любом реальном кристалле всегда имеются дефекты строения. Дефекты кристаллического строения подразделяются по геометрическим признакам на точечные (нульмерные), линейные (одномерные) и поверхностные (двумерные).  [c.19]

Рост кристалла значительно облегчается тем, что грани его не представляют идеально ровных плоскостей. На гранях растущего кристалла всегда имеются различные дефекты поверхности в виде ступенек и выступов, на которых легко удерживаются новые атомы, поступающие из жидкости. В этом случае рост кристалла может протекать даже без образования двумерного зародыша. В растущем кристалле всегда имеются дислокации. В месте выхода на поверхность винтовой дислокации имеется ступенька, к которой легко присоединяются атомы, поступающие из жидкости (рис. 21, б). Винтовые дислокации ведут к образованию на поверхности кристалла спиралей роста высогой от одного до нескольких тысяч атомов. Спиральный рост экспериментально обнаружен при изучении роста монокристаллов магния, кадмия, серебра и других металлов.  [c.34]


В работах Ю. М. Полукарова с сотр. [90] установлено, что увеличение перенапряжения катода при электроосаждении меди вызывает переход от слоисто-спирального роста осадка к образованию и росту двумерных зародышей с появлением дефектов упаковки двойникового типа добавка к электролиту меднения поверхностно-активных веществ резко повышают вероятность обра-  [c.96]

Двумерные дефекты, имеющие месго по тем или иным поверхностям раздела  [c.235]

Анализ экспериментальных данных показал, что при образовании поверхности методом среза величина нормальных и ка сательных напряжений, действующих на металл, превышает предел текучести в 1,5—5 раз. При этом не только разрываются атомные связи в плоскости среза или в направлении сдвига слоя металла, но и происходит всесторонняя упруго-пластическая деформация. Поэтому вид, количество и размер поверхностных дефектов (величина выступов и впадин) после механической обработки зависят от соотношения пластической деформаций Ттах И напряжений хрупкости Отах. Специальными исследова- ниями было установлено, что если Ттах>сТтах, то более вероятна пластическая деформация, если 0тах >Ттах, происходит хрупкое разрушение материала. Поэтому в зависимости от вида и режима механической обработки (точения, фрезерования, шлифования) схема напряженного состояния материала может быть различной и, следовательно, будут изменяться текстура деформированных слоев металла, вид, размер и характер макро- п микрогеометрии поверхности (рис. 78, 79). В соответствии с современными представлениями, механизм образования поверхности кристаллических тел методом среза имеет свои особенности. Энергия кристаллов, находящихся на поверхности, превышает энергию кристаллов в объеме. Дело в том, что под воздействием тангенциальных напряжений поверхностный слой сжимается, а глубинные слои оказывают ему сопротивление. Поскольку поверхностный слой очень тонкий, во многих случаях он не выдерживает и разрывается. Кроме того, на вновь образованной поверхности имеются некомпенсированные химические связи, компенсация которых идет за счет адсорбции, образования плен и др. Вот почему поверхность, образованная механической обработкой, всегда имеет повышенное количество суб-микроскоппческих двумерных и точечных дефектов — вакансий, дислокаций, примесных атомов, микротрещин и др. (рис. 80, а).  [c.117]

Дефекты. К. с., в к-рой все позиции заполнены атомами, наз. идеальной К. с. Однако в действительности К. с. имеет ряд дефектов — точечных (смещения атомов из идеальных позиций, замещение этих атомов атомами примеси, вакансии, атомы внедрения и т. н,), линейных и двумерных (дислокации, ошибки в наложении слоев и т. It.) (см. Дефекты в кристаллах). Если количество точечных дефектов велико, можно фиксировать среднее по всем ячейкам изменение бр электронной плотности К, с., напр, в рубине А1з0з+0,05% Сг, где Сг замещает позиции А1. В структурах твёрдых растворов вычитания или внедрения анализ бр даёт сведения о заселённости атомами тех или иных позиций.  [c.505]

МБЖЗЁРЕННЫЕ ГРАНИЦЫ — поверхности раздела между различно ориентированными областями (зёрнами) поликристалла. Многие фпз. свойства зависят от числа и строения М. г. К нйм относятся как свойства, связанные с переносом электронов, фононов, атомов и др. (электропроводность, теплопроводность, диффузия), к-рые рассеиваются на М. г., так и свойства, зависящие от взаимодействия между М. г. и дислокациями- (механич. свойства), стенками магн. доменов (магн. жесткость), вихрями в сверхпроводниках (кри-тич. ток и поле в жёстких сверхпроводниках) и т. п. Как и внеш. поверхность, М. г. являются двумерными дефектами, вносящими воз.мущение в эяергетич. спектр Кристалла (см. Поверхность).  [c.87]

ВПЫ транзисторов с баллистич. пролётом электронов (без рассеяния на дефектах и фононах), с двумерным электронным газом, с проницаемой базой (внутри базы расположена металлич, решётка, играющая роль сетки) и др.  [c.153]

Кроме взаимодействия волны с дефектами кристалла структура Н. с. в большой мере определяется взаимодействием волны с осн. структурой. В трёхмерных системах благодаря этому взаи.модействию Н. с. в строгом смысле слова не существуют даже в идеальном кристалле. Можно показать, что при иррациональном отношении Я периода замороженной волны к периоду осн. структуры система обладает большим термодина-мич. потенциалом, чем при любом рациональном значении Я, бесконечно близком к данному иррациональному. Поэтому при данной Т существует бесконечное кол-во устойчивых фаз с разл. (рациональными) значениями Я. При изменении Т равновесная система должна испытать бесконечное число фазовых переходов между этими соразмерными (С) структурами. В большинстве случаев, однако, скачки разл. величин, напр. теплоёмкости, при таких переходах оказываются столь малыми, что свойства системы неотличимы от свойств Н. с. В двумерных системах влияние осн. структуры ослаблено из-за тепловых флуктуаций (роль к-рых возрастает при переходе к системам меньшей размерности). При конечной Т устойчивыми оказываются только соразмерные фазы с не очень большим отношением периодов. На фазовой диаграмме с ними граничат особые Н. с. с ква-зиидальным порядком , когда соответствующие корре-ляц. функции обнаруживают не простое осцилляц. поведение (как для периодич. структуры), а с амплитудой осцилляций, убывающей с расстоянием по степенному закону.  [c.335]

Физически спадающая к центру частицы осциллирующая поверхностная релаксация связана с фриделевскими осцилляциями плотности вырожденного электронного газа. Осцилляции Фри-деля вызываются любыми дефектами, нарушающими трансляционную симметрию кристалла в данном случае таким двумерным дефектом является поверхность. Фриделевские осцилляции передаются решетке через электрон-фононное взаимодействие и приводят к изменению межплоскостных расстояний. Согласно [270], в модели свободных электронов амплитуда фриделевских осцилляций убывает по мере удаления от поверхности. Необходимо заметить, что в зависимости от параметров решетки и размера кристалла поверхностная релаксация может не только уменьшать, но и увеличивать его объем.  [c.78]


Из соотношений (1.1) следует, что направления главных осей тензоров uiUj) и Sij совпадают. Этот вывод, однако, экспериментально не подтверждается даже для простых турбулентных течений с поперечным сдвигом [1]. Так, например, в пограничном слое и в однородном сдвиговом течении углы направлений главных осей этих тензоров могут различаться в 2 раза. В двумерных сдвиговых течениях в каналах, струях и следах осредненное течение определяется лишь одной компонентой тензора напряжений — (г lг 2) Поэтому отмеченная принципиальная неточность зависимости (1.1) может быть скорректирована удачным выбором эмпирических постоянных, входящих в модель для определения турбулентной вязкости. Однако дефекты соотношения (1.1) все равно остаются при описании анизотропной турбулентности даже в простейших течениях. Так, например, в бес-сдвиговом пограничном слое над движущейся стенкой [2, 3] градиенты скоростей отсутствуют (Sij = 0) и, следовательно, зависимость (1.1) не позволяет учитывать анизотропию турбулентности. Однако эксперименты [2, 3] показывают существенную разницу между компонентами пульсаций скорости.  [c.577]

Классификация дефектов решетки. Дефекты решетки классифицируют по их протяженности в пространстве, причем в качестве единицы протяженности принимают величину трансляции. Различают нульмерные, одномерные и двумерные нарушения строения решетки.  [c.20]

В середине 70-х гг. методом граничных элементов широко пользовался Круз с сотрудниками [62—66]. В этом подходе поверхность трехмерного тела, включая поверхность трещины, моделируется двумерными (поверхностными) элементами, внутри которых интерполируются перемещения и усилия. Эти поверхностные (граничные) элементы могут иметь произвольную форму, например они могут быть двумерными изопараметриче-скими криволинейными. Далее, плоские элементы, одна из сторон которых совпадает с отрезком фронта трещины, могут принадлежать к такому типу изопараметрических элементов, которые содержат описания перемещений в функции г (где г — нормальное радиальное расстояние от фронта трещины) [64, 65, 67, 68]. Пользуясь методом граничных элементов, который приводит к уравнению типа (4.14), перемещения и усилия рассчитывают для узлов, находящихся на границе твердого тела и, следовательно, на поверхности трещины. Коэффициент К определяют экстраполяцией, пользуясь величинами перемещений узлов, находящихся вблизи фронта трещины [67, 68]. В работе [68] приведено впечатляющее исследование полуэллип-тического поверхностного дефекта в пластине, подвергнутой такому нагружению, что нормальные напряжения в зоне трещины могут быть представлены полиномами вплоть до четвертого порядка по толщине пластины, т. е. по направлению t, причем эти напряжения аппроксимируются в пластине без трещины. В этой работе представлены результаты для различных отношений глубины трещины к толщине пластины ajt отмечено, что точность расчетов составляет порядка 5%. В [67, 68] была использована методика подконструкций, благодаря которой вблизи поверхности трещины применялась более мелкая сетка из работы  [c.207]


Смотреть страницы где упоминается термин Дефекты двумерные : [c.49]    [c.193]    [c.229]    [c.142]    [c.430]    [c.31]    [c.367]    [c.369]    [c.370]    [c.591]    [c.597]    [c.326]    [c.550]    [c.137]    [c.138]    [c.179]    [c.23]   
Основы материаловедения и технологии полупроводников (2002) -- [ c.87 , c.111 ]



ПОИСК



Дефект атомной решетки двумерный

Дефект кристаллический поверхностный (двумерный)

Дефекты в кристаллах двумерные

Дефекты в кристаллах термодинамика линейных и двумерных

Дефекты в кристаллах точечные, линейные и двумерные

Дефекты решетки — Расположение двумерные

Тор двумерный



© 2025 Mash-xxl.info Реклама на сайте