Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Серии спектральные

При переходах оптического электрона в атоме А1 возникают следующие основные серии спектральных линий  [c.63]

ПОБОЧНЫЕ СЕРИИ — спектральные серии в спектрах атомов щелочных металлов. Различают 1-ю П. с. (диффузную серию) и 2-ю П. с, (резкую серию). Наблюдаются в испускании (в поглощении лишь при высоких темп-рах) при переходах между верхними уровнями 5 (резкая серия) или D (диффузная серия) и самым нижним Р-уровнем. Линии П. с. лежат в ИК- и видимой областях оптич. спектра.  [c.644]


Если коэффициент поглощения источника имеет для разных длин волн одно и то же значение, то источник называется неселективным или серым. Спектральная кривая, характеризующая излучение такого источника, совпадает  [c.145]

ПОБОЧНАЯ СЕРИЯ — спектральная серия, па-бл1( дающаяся в спектрах атомов щелочных металлов. Различают 2 Н. с. 1-ю, или диффузную серию, и 2-ю, или резкую серию.  [c.53]

Группа спектральных линий с одинаковым значением п называется серией спектральных линий. Наибольшая частота для каждой серии с главным квантовым числом п соответствует значению т=оо и называется границей серии или спектральным термом  [c.440]

В инфракрасной части спектра расположены другие серии спектральных линий. На рис. VI.2.3 изображены серии спектральных линий атома водорода. Слева на шкале  [c.441]

Рис. 1-5. Спектральная плотность излучения серых тел в зависимости от их степени черноты при Г=1200 К. Рис. 1-5. <a href="/info/14664">Спектральная плотность излучения</a> серых тел в зависимости от их степени черноты при Г=1200 К.
Заметим, что серых тел, как и черных, не существует. Однако в отдельных спектральных интервалах, различных по протяженности, некоторые тела могут с достаточной точностью считаться серыми.  [c.20]

Аналогичную формулу можно записать также для других спектральных линий и серий. Так, например, для L-серии рентгеновских  [c.161]

Отсюда ясно, что для тел, характер излучения которых сильно отличается от излучения черного тела (например, для тела с ясно выраженными областями селективного излучения), понятие цветовой температуры не имеет смысла, ибо цвет таких тел можно только очень грубо воспроизвести при помощи черного тела. В тех случаях, когда определение цветовой температуры возможно (так называемые серые тела , например, уголь, окислы, некоторые металлы), для ее отыскания необходимо произвести исследование распределения энергии в спектре при помощи соответствующих спектральных приборов. Рис. 37.2 воспроизводит результаты такого исследования для Солнца одновременно на нем нанесены кривые распределения для черного тела при температурах 6000 и 6500 К. Рис. 37.2 показывает, что отождествление Солнца с черным телом  [c.703]


Рис. 38.1. Схематическое изображение спектра атома водорода полный спектр и отдельные спектральные серии. Рис. 38.1. <a href="/info/286611">Схематическое изображение</a> спектра атома водорода полный спектр и отдельные спектральные серии.
В задаче изучаются основные закономерности сериальной структуры спектра алюминия. С этой целью фотографируется спектр излучения алюминия и определяются длины волн его спектральных линий. Линии группируются в серии и находятся значения эффективных квантовых чисел и квантовых дефектов энергетических уровней.  [c.64]

Группировка линий в серии и вычисление квантовых дефектов. Группировку линий алюминия в спектральные серии производят с помощью таблиц спектральных линий, где приведена их классификация. После того как серии установлены, определяют эффективные квантовые числа верхних уровней линий серий. Для этого используют соотнощение  [c.65]

Богатый экспериментальный материал по атомным спектрам, накопленный к началу XX в., не имел теоретического обоснования. Почему спектры атомов линейчатые Чем объясняются наблюдаемые закономерности в структуре серий спектральных линий Как устроен атом и как связаны с его строением закономерности в спектре На все эти вопросы в то время ответа не было. Не был известен физический механизм испускания света атомом. Было неясно, в частности, что же именно испускает отдельный атом сразу все линии в спектре данного элемента или только одну линию из спектра. Первой точки зрения придерживался, например, Кайзер. Вторая была высказана в 1907 г. Конвеем, который полагал,  [c.61]

Расчеты лучистого теплообмена в системах из твердых тел, разделенных лучепрозрачной средой, в настоящее время проводятся по уравнениям, строго справедливым лишь для серого излучения. Вместе с тем реальные тела, как отмечалось выше, имеют спектры излучения в большей или меньшей мере отличающейся от спектра излучения серого тела. Имеется предложение учитывать отличие действительного спектра излучения тел от серого путем введения в расчетные уравнения интегральной поглощательной способности несерых тел ио отношению к падающему потоку излучения [Л. 194, 97]. Однако при строгой постановке задачи эти уравнения использовать нельзя, так как поглощательная способность, зависящая от сложного, отличного от серого, спектрального состава излучения тел, не может быть задана параметрически.  [c.222]

Лит. см. при ст. Электрические разряды в газах. ПАШЕНА СЕРИЯ — спектральная серия в спектрах атома водорода и водородоподобиых ионов. В спектрах испускания П. с. получается при всех разрешённых излучательных квантовых переходах атома Н (и Н-подобных ионов) на уровень энергии с гл. квантовым числом II = 3 со всех вышележащих уровней энергии с Пг > (в спектрах поглощения — при обратных переходах).  [c.552]

В этих условиях исследуемые молекулы оказываются изолированными друг от друга и жёстко закреплёнными в растворителе, что и позволяет получить спектры, состоящие из серий спектральных линий, напоминающих атомные спектры (их называют квазилинейча-тыми) и обладающих ярко выраженной индивидуальностью (рис. 1, 2).  [c.468]

Стилоскопирование производится в следующем порядке зачищаются электрод и изделие устанавливается зазор между электродом и изделием 1—3 мм и зажигается дуга отыскивается нужная группа линий и производится оценка содержания искомых элементов. Определение элементов проводится в следующей носледователь-ности ванадий, хром, молибден, никель, титан, вольфрам, марганец, ниобий, кобальт, кремний. Следует отметить, что содержание углерода, фосфора и серы спектральными методами не определяется. Точность определения содержания элементов при стилоскопировании зависит от выбранной пары спектральных линий и в общем случае составляет 20 % от абсолютной величины концентрации элемента в стали. Например, если содержание элемента оценено 1 %, то фактическое содержание может находиться в пределах 0,8—1,2 %. При проведении стилоскопирования сталей, близких по содержанию легирующих элементов и назначению, целесообразно пользоваться рекомендациями, приведенными в табл. 3.3.  [c.67]


Такой механизм расщепления подтверждается тем, что квазилинейные спектры флуоресценции, полученные путем быстрого и медленного замораживания, различаются числом компонентов. При медленном замораживании в спектре изчезают коротковолновые линии мультиплетов и сильно ослабляются длинноволновые. Этот факт можно объяснить, учтя изомеризацию молекул растворителя. Форма плоской цепочки молекул парафинов наиболее устойчива и характерна для кристаллического состояния. В жидкости парафины составляют смесь поворотных изомеров. При быстром замораживании молекулы не успевают принять устойчивую плоскую форму и включаются в решетку в виде поворотных изомеров, что обеспечивает многообразие кристаллических дефектов и, следовательно, появление в спектрах различных серий спектральных линий.  [c.128]

На рис. 16. 22 схематически изображены орбиты электрона и главные квантовые числа для атома водорода, показаны возможные переходы (перескок) электронов с одних орбит на другие, сопровождающиеся излучением фотофв (света). Переход электронов с верхних орбит на самую нижнюю орбиту при п = 1 соответствует испусканию серии спектральных линий, называемых серией Лаймана переход нэ орбиту при ге = 2 — серии Больмера и т. д. Аналогичная картина, но более сложная, характерна и для других атомов. Итак, по квантовой теории для нахождения спектра излучения атомов необходимо знать энергию Е электронных орбит и возможные переходы между ними частота излучения определяется формулой (21).  [c.335]

Подобные же закономерности излучения характерны для газов, состоящих из молекул с несколькими атомами. Только в этом случае спектры становятся полосатыми, состоящими не из серий спектральных линий, а из серии их полос. Б случае же конденсированного вещества эти линейчатые полосы сливаются в непрерывные полосы — непрерывные спектры. Свечение в конденсированном веществе может быть возбуяедено различными способами. Важнейшие из них возбуждение светом видимыми или ультрафиолетовыми лучами, электронным ударом и нагревом. При освещении видимыми и ультрафиолетовыми лучами многие вещества начинают испускать свет обычно с большей длиной волны, чем падающий свет. Такое излучение, называемое люминесценцией, широко применяется в технике, в частности в люминесцентных лампах. При падении быстрых электронов на некоторые вещества также наблюдается свечение, называемое катодолюминесценцией. Свечение такого вида нашло широкое применение в телевизионных и других электронно-лучевых трубках. Наиболее распространено возбуясдение свечения нагреванием. На этом принципе основаны электри-ческие лампы накаливания. Для тепловых источников имеет место характерное распределение излучения но спектру. Спектр излучения является непрерывным  [c.335]

Стектр излучения разбивается на серии спектральных линий, со-ответстадтощие переходам в состояние с определенным П1 (то есть на. уровень энергии Е ) ю всех более высоких энергетических состо  [c.24]

Весьма важно выяснить спектральную зависимость оптических свойств веществ, образующих дисперсную среду. Твердым материалам, обычно применяемым в технике псевдоожижения, свойственна слабая зависимость радиационных свойств от длины волны излучения [125]. Это позволяет при расчете 4HTaTjD поверхность частиц серой. Для газов, ожижающих дисперсный материал, характерна сильная селективность. Однако из-за малой оптической плотности она может сказаться лишь при значительной оптической толщине излучающего слоя газа. В псевдоожиженном слое средняя толщина газовых прослоек порядка диаметра частиц не более нескольких миллиметров), В этом случае можно не рассматривать излучение газа и считать его прозрачным [125].  [c.134]

Для повышения жесткости испытаний использовали циклическое нагружение образцов при температуре около минус 5°С. Применяли пятиканальную аппаратуру специальной компоновки, включающую стандартные блоки серии АФ НПО Волна (датчики, предварительные и основные усилители) и дополнительные блоки формирования узкополосных спектральных компонентов непрерывной акустической эмиссии (разработка МИИТа), а также многоканальный статистический анализатор импульсов АИ-1024, панорамный спектроанализатор С4-25,  [c.191]

Установление сериальных закономерностей, связь между сериями (принцип Ритца), универсальность постоянной Ридберга — всё свидетельствовало о глубоком физическом смысле открытых законов. Тем не менее, попытки установить на основании этих законов внутренний атомный механизм, обусловливающий найденные закономерности, потерпели решительную неудачу. Было ясно, что каждая серия полностью вызвана одним и тем же механизмом. Между тем трудно представить себе возможность излучения целого ряда частот таким простым атомом, как, например, атом водорода. Известны, конечно, типы механических излучателей, дающих ряд колебаний, например струна. Однако спектр такого излучателя состоит из основной частоты и ее обертонов, представляющих целые кратные от основной, даже отдаленно не напоминая закономерностей, наблюдаемых в спектральных  [c.717]

Из соотношений Эйнштейна (211.13) легко видеть, что при прочих равных условиях поглощение сильнее в тех спектральных линиях, для которых большее значение имеет коэффициент Атп-В случае, например, серии Бальмера в спектре атомарного водорода (рис. 38.1 и 38.3) поглощение должно быть слабее у старших членов серии, поскольку для них, согласно приведенным выше данным, коэффициенты Атп меньше. Соотношения (211.13) подтверждаются измерениями без всяких исключений. Поэтому, измеряя коэффициенты поглощения и опираясь на (211.13),- можно определять численные значения первых коэффициентов Эйнштейна Атп-  [c.737]

При обсуждении спектра водорода упоминалось, что в нем наряду с дискретными спектральными линиями, составляющими серии, наблюдается ряд полос, которые при исследовании приборами с достаточной разрешающей способностью расчленяются на ряд тесно расположенных друг около друга линий, образуя так называемый многолинейчатый, или полосатый, спектр. Подобной особенностью отличаются и спектры других газов, молекулы которых состоят из двух или нескольких атомов. Наоборот, для одноатомных газов (благородные газы, пары металлов) характерны только линейчатые атомные спектры. Правда, при значительном давлении пары металлов (например Hg, 2п и др.), равно как и благородные газы, также излучают полосатые спектры, но, как показывают разнообразные исследования, при этих условиях в парах образуются нестойкие соединения типа Hg2, Пег, HgH, Сзо и т. д., т. е. молекулы, с существованием которых и связано излучение полосатых спектров.  [c.744]


Спектр атома водорода представляет собой совокупность отдельных спектральных линий, группирующихся в серии. Связь между частотами отдельных линий для серии, расположенной в видимой и близкой ультрафиолетовой области, впервые установил Бальмер (1885). Частоты линий этой серии выражаются формулой  [c.229]

Анализируя затруднения модели Резерфорда, ученые обратили внимание на еще одан непонятный факт. Электроны, вращающиеся вокруг ядра, должны излучать с частотой, равной частоте их обращения. Но при падении электрона на ядро радиус орбиты электронов уменьшается, частота вращения возрастает, следовательно, спектр излучения резерфордовского атома должен был бы быть непрерывным. Между тем многочисленные исследования спектров различных атомов показывали, что они представляют совокупность дискретных линий, характерных для каждого атома (рис. 48). Этот своеобразный паспорт атомов составляет основу для химического анализа различных веществ. Были и первые попытки найти определенные закономерности в расположении спектральных линий. В 1885 г. швейцарский ученый И. Бальмер установил, что длины волн, соответствующих некоторым линиям спектра водорода, образуют серию, которая хорошо описывается с помощью формулы  [c.163]

На рис. 3.4 стрелками показаны квантовые переходы в атоме водорода, соответствующие спектральным сериям Лаймана, Бальмера, Пашена.  [c.66]

В атоме водорода совокупность переходов на основной (невозбужденный) уровень п = ) носит название спектральной серии Лаймана. Серия линий, имеющих общий нижний уровень = = 2, называется серией Бальмера. Переходы на уровни с и =3 и 4 образуют соответственно серии Пашена и Брэкета.  [c.53]

На рис. 17 изображен общий вид спектральной серии Бальмера, линии которой лежат в видимой и ближней ультрафиолетовой области спектра. Волновые числа линий серии Бальмера описываются формулой  [c.53]

Линии главной серии щелочных элементов представляют собой дублеты (рис. 19, а). Их ширина убывает от головной линии к более высоким членам серии. Линии резкой (второй побочной) серии также являются двойными. Их структура обусловлена расщеплением нижнего терма (верхние термы 5 являются простыми). Более сложную картину расщепления обнаруживают линии диффузной (первой побочной) серии, для которой как нижний, так и верхние термы испытывают расщепление. Согласно правилу отбора (2.24) линии диффузной серии содержат три компоненты мультиплетной структуры, как это показано на рис. 19, б. Вследствие того что расщепление терма значительно меньше, чем терма Р, компонента а оказывается близкой к более сильной компоненте Ь и спектральным прибором часто не разрешается.  [c.58]

Цветовая температура так называемых серых тел, характеризующихся условием e(Xi, Т)=е(Х2, Т), совпадает с термодинамической. Метод спектрального отношения нечувствителен к серой среде (пропускательная способность которой удовлетворяет условию т(Я[) = =т( 2)),часто присутствующей между объектом и пиоо-метром (например, пыль, дым. смотровые окна и т. д.).  [c.191]

Последними с новой строки заносятся значения спектральной плотности лучистой энергии источника, если он яв.1яется серым телом.  [c.179]


Смотреть страницы где упоминается термин Серии спектральные : [c.186]    [c.495]    [c.185]    [c.391]    [c.598]    [c.332]    [c.186]    [c.347]    [c.218]    [c.72]    [c.249]    [c.718]    [c.57]    [c.573]    [c.925]   
Оптика (1976) -- [ c.714 ]



ПОИСК



Серии атома спектральны

Серия спектральных линий

Сснармопа призма серия спектральная



© 2025 Mash-xxl.info Реклама на сайте