Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Физические Резка

Температура плавления деталей из кристаллических полимеров зависит от относительной молекулярной массы и степени кристалличности. С повышением температуры степень кристалличности снижается. Полимер с более высокой относительной молекулярной массой плавится при более высокой температуре (см. табл. 1). Например, температура плавления полиэтилена низкой плотности —107° С, а температура плавления полипропилена —150° С. Однако полимеры, молекулы которых обладают повышенной полярностью, несмотря на низкую относительную молекулярную массу, имеют высокую температуру плавления (полиамиды, полиэтилентерефталат). При сварке кристаллических полимеров значительную и, как правило, отрицательную роль играют процессы развития неоднородностей физической (резкое уменьшение или увеличение кристаллов, изменение основной структуры), химической (влияние примесей, диффузионное перераспределение в околошовной зоне и т. д.).  [c.27]


Наиболее достоверное предположение о физической природе инерционной составляющей состоит в том, что отклонение от линейного закона Дарси обусловлено такими явлениями, как расширение и сжатие, резкое изменение направления струи жидкости в пористом материале.  [c.19]

При параметрических колебаниях, как и при обычных, возможно резкое возрастание амплитуды, которое при отсутствии затухания становится неограниченным. Возможен так называемый параметрический резонанс. Из простых физических соображений нетрудно установить, когда он наиболее всего вероятен.  [c.497]

При классификации процессов сварки целесообразно выделить три основных физических признака наличие давления, вид вводимой энергии и вид инструмента — носителя энергии. Остальные признаки можно условно отнести к техническим или технологическим (табл. 1.1). Признак классификации по наличию давления применим только к сварке и пайке. По виду вводимой в изделие энергии все сварочные процессы, включая сварку, пайку, резку и др., могут быть разделены на термические, термомеханические и прессово-механические способы.  [c.20]

Физическая основа образования лазерной искры — возникновение в фокальном пятне вследствие нагрева газа термической плазмы, температура которой может достигать 10 К. Неравномерность распределения по объему плазмы электрически заряженных частиц приводит к резкой неравномерности распределения электрического потенциала в этом объеме и, как следствие, — электрическому пробою. Пробой имеет характер миниатюрного взрыва и сопровождается яркой вспышкой. Поскольку на образование лазерной искры расходуется большое количество энергии излучения лазера и в ряде случаев ее образование нарушает ход технологического процесса с применением лазерного излучения (например, сварки), этого явления стараются избегать.  [c.126]

Существует много методов экспериментального определения температур [И]. Рассмотрим лишь те, которые используют при сварке. Один из простейших методов состоит в использовании индикаторов температуры, например, термокрасок или термокарандашей. Некоторые термокраски меняют цвет непрерывно (в диапазоне 400...700 К) и позволяют наблюдать положение изотермических линий. Другие краски резко меняют свой цвет при определенной температуре и сохраняют его в дальнейшем. Существуют краски для диапазона температур 300... 1800 К с од-H0-, двух-, трех- и четырехкратным изменением цвета при различных температурах. Термокарандаши изготовляют для диапазона 340...950 К с градацией в 50...80 К. Нанося различными термокарандашами риски, как мелом, можно быстро определить распределение температур по изменению цвета, например зеленого в коричневый, голубого в бежевый и т. д. С их помощью можно определить размеры зоны, нагретой до определенной температуры, момент времени, при котором достигается заданная температура. Этот метод удобен также для определения температуры подогрева перед сваркой. Точность измерения составляет несколько кельвин. Подробные сведения о цветовых индикаторах температуры, основанных на различных химических и физических явлениях, можно найти в работе [1].  [c.203]


Таким образом, фазой называется часть гетерогенной системы, отделенная физической границей раздела, т. е. границей резкого изменения свойств. Так как всякая граница раздела обладает запасом свободной энергии, то в системах высокой дисперсности свойства поверхностей раздела будут влиять на состояние системы и даже доминировать над объемными свойствами. Так, при высоком дроблении твердых или жидких фаз изменяются их температуры плавления, температуры кипения. Высокодисперсные системы могут создавать метастабильные системы — коллоидные растворы и аэрозоли. К таким системам общие термодинамические закономерности уже не приложимы.  [c.251]

Когда пытаешься выстроить в единую нить впечатления от личных встреч и наблюдений во время различных обсуждений или мероприятий, то перед глазами встает человек, который, с одной стороны, в научных спорах отнюдь не отличался излишней дипломатией—прежде всего стремился добраться до истины С другой стороны —исключительно вежливый, доброжелательный и, в лучшем смысле этого слова, аристократичный в общении. Первая из названных сторон проявлялась при слушании различных докладов или знакомстве с чьими-либо результатами. Пожалуй, вначале он мог шокировать резким высказыванием, по казалось бы, твердо установленным фактам, иногда казалось обидным тратить силы на объяснения по, казалось бы, пустяковым вопросами. Но в какой-то момент приходило ощущение того, что именно с этих дальних подступов начиналось у Игоря Фомича ощущение проблемы. Сначала это было просто проявление его тонкого физического чутья, затем начиналась работа его критичного и ироничного ума и, наконец, следовала точная и острая формулировка существа проблемы или же ее слабого места.  [c.221]

В случае первого превращения, как показали результаты рентгеноструктурного исследования в сочетании с другими физическими методами, при низкотемпературном отпуске в начальный период происходит резкое уменьшение процентного содержания углерода в мартенсите (рисунок 3.33), а затем процесс замедляется и сталь переходит в метастабильное состояние, с очень медленным изменением содержания углерода в мартенсите.  [c.205]

Обычно с помощью интерферометров решают вполне определенные физические и технические задачи (например, измерение длин или углов, определение показателя преломления и т.д.). Наблюдение интерференционной картины становится не целью исследования, а средством проведения того или иного измерения. Поэтому оптическая схема интерферометра должна удовлетворять ряду дополнительных требований. Для повышения точности часто вводят значительную разность хода между интерферирующими пучками и работают в высоких порядках интерференции. В таких случаях используют относительно высокую степень монохроматичности излучения резко повышаются и требования к юстировке оптической системы. В дальнейшем рассказано также об исследованиях, в которых интерферометры применяют для изучения основных характеристик излучения (степени монохроматичности, длины волнового цуга и др.).  [c.221]

Свойство диссипации энергии на самом-то деле привычно нам, даже исходя из обыденного опыта, и оно чрезвычайно важно. Внезапные физические нагрузки заставляют наш организм работать в более интенсивном режиме. При этом происходит накачка в него энергии за счет сжигания пищи, аналогичная подаче дополнительной порции топлива при резком разгоне автомобиля. Как только нагрузка прекращается, скажем, мы пробежали стометровку и отдыхаем, организм включает механизмы диссипации дополнительной энергии, подведенной при беге. Сердечные мышцы начинают сокращаться все медленнее, кровь насыщается кислородом, замедляются реакции обмена. Если бы не было механизма диссипации, подобная накачка энергии приводила бы биологические системы к смерти вскоре после их рождения.  [c.101]

Мы говорили до сих пор об ударных волнах как о геометрических поверхностях, не обладающих толщиной. Рассмотрим теперь вопрос о структуре реальных физических поверхностей разрыва. Мы увидим, что ударные волны с небольшими скачками величин представляют собой в действительности переходные слои конечной толщины, уменьшающейся при увеличении величины скачков. Если же скачки величин в ударной волне не малы, то, действительно, разрыв происходит настолько резко, что в макроскопической теории не имеет смысла говорить о его толщине.  [c.489]


На рис. 13.10 показано, что условие синусов Аббе есть следствие физического требования, согласно которому для получения резкого изображения волны, идущие от объекта к изображению, должны проходить через разные зоны системы без разности фаз.  [c.311]

Одно из следствий научно-технической революции заключается в резком повышении требований к точности расчетов, что, в свою очередь, требует более полного учета всех физических особенностей рассматриваемых задач. Как правило, прикладные задачи, связанные с исследованием колебаний стержней, требуют знания статического напряженно-деформированного состояния. Это существенно осложняет решение уравнений движения, так как требует решения уравнений равновесия — определения вектора состояния в статике, компоненты которого входят в качестве коэффициентов в уравнения малых колебаний. В консервативных задачах статическое напряженно-деформированное состояние влияет в основном только на спектр частот, изменяя их числовые значения. В неконсервативных задачах, например в задачах взаимодействия стержней с потоком воздуха или жидкости, статическое напряженно-деформированное состояние влияет не только на спектр частот (на мнимые части комплексных собственных значений), но и на критические состояния стержня (на действительные значения комплексных собственных значений), что, конечно, необходимо учитывать при расчетах. Во второй части книги, так же как и в первой, основные теоретические положения и методы решения иллюстрируются конкретными примерами, способствующими более глубокому пониманию излагаемого материала.  [c.3]

К сожалению, на этом фоне резким диссонансом выглядит сложившаяся практика изучения физических постоянных, которая явно не соответствует их действительно фундаментальному значению в науке. Пока все сводится к сос щению о них скупых и разрозненных данных в различных разделах курса физики. Мало внимания уделяется систематизации и объединению сведений о них, анализу связи констант между собой, исследованию их основополагающей роли в развитии и становлении физических теорий и построении современной научной картины мира. В учебной литературе совершенно не рассматривается диалектика возникновения, развития и формирования этого важнейшего структурного элемента физической науки. Отсутствует более или менее удовлетворительное определение понятия фундаментальная физическая постоянная . Не удивительно, что этот термин часто ассоциируется с более или менее подробной таблицей физических констант, числовые значения которых следует применять при решении задач. Проблема фундаментальных постоянных еще не пришла на страницы учебников. Невольно формируется принципиально неверное представление о физических постоянных как о статичном справочном материале. Известно, что изменить  [c.4]

В литературе можно встретить резко различающиеся по физическому содержанию определения термина фундаментальные постоянные . Одно из них приведено в предыдущем абзаце [l" . В [19] можно найти следующее определение Это величины, которые используются при атомистическом описании в физике и химии, которые обычно могут быть измерены с большой точностью , и там же другой автор предлагает Это те постоянные, которые входят в выражения, описывающие атомные и квантовые явления, в качестве множителей, определяющих порядок величины квант действия А (так иногда называют постоянную Планка.— О. С.), квант электрического заряда е, скорость света с и т.п. . Нетрудно заметить, что физическое содержание этих определений далеко не идентично. Определения [19] объяв-  [c.31]

Обсуждение проблемы фундаментальных физических постоянных в целом требует резкого изменения характера исследования. Отдельные классические размерные константы — G. Nj , е.с.кя др.,  [c.202]

Основные физические закономерности, свойственные звуку, полностью применимы и для ультразвуковых волн. Наряду с этим малая длина ультразвуковых волн обусловливает и некоторые особые явления, несвойственные волнам звукового диапазона. Направленность излучения звука зависит от соотношения между размерами излучателя и длиной волны (см. 62). Чем меньше длина волны по сравнению с размерами излучателя, тем больше направленность излучения звука. С уменьшением длины волны, кроме того уменьшается также и роль дифракции в процессе распространения волн (см. 57). Поэтому ультразвуковые волны, имеющие сравнительно малую длину волны, могут быть получены в виде узких направленных пучков. В воздухе ультразвуковые волны весьма сильно затухают. Вода по своим акустическим свойствам резко отличается от воздуха. Акустическое сопротивление воды почти в 3500 раз больше, чем воздуха. Следовательно, при одинаковом звуковом давлении скорость колебания частиц воздуха в 3500 раз больше, чем частиц воды. Кинематическая вязкость воды значительно меньше, чем воздуха. Поэтому ультразвуковые волны в воде поглощаются примерно в 1000 раз слабее, чем в воздухе. Этим и объясняется то, что направленные пучки ультразвуковых волн находят широкое применение в гидроакустике для целей сигнализации и гидролокации под водой. Отметим, что использовать для этой же цели электромагнитные волны невозможно, так как их поглощение в воде очень велико. Таким образом, ультразвуковые волны являются, по-существу, единственным видом волнового процесса, который может распространяться с относительно малым поглощением в водной среде.  [c.243]

В этом случае граница, разделяющая области устойчивости и неустойчивости резонаторов, физически резко выражена при переходе от неустойчивых резонаторов к устойчивым дифракционные потери резко уменьшаются. В рассматри ваемом случае указанная граница достаточно четко раз деляет резонаторы с гауссовыми и негауссовыми пучками С уменьшением апертуры зеркал уменьшается и число Френеля. При этом происходит постепенное сглаживание различия дифракционных потерь в устойчивых и неустойчивых резонаторах, находящихся вблизи границы области устойчивости. Одновременно будет размываться граница между резонаторами с гауссовыми и негауссовыми пучками. Последнее означает, что с уменьшением числа Френеля  [c.186]


В твердых монолитных телах перемещение макроскопических объемов относительно друг друга невозможно, поэтому теплота переносится в них только теплопроводностью Однако при нагреве, сушке зернистых материалов (геска, зерна и т.д.) очень часто искусственно организуют перемешивание. Процесс теплопереноса при этом резко интенсифицируется и физически становится похожим на конвективный теплопезенос в жидкостях.  [c.69]

Согласно (10-32) повышение температуры слоя приводит к необычному результату— снижению числа Нус-сельта, что в [Л. 32] объясняется более быстрым изменением с ростом ten коэффициента Хаф, чем коэффициента теплообмена Осл- Полученный результат можно объяснить методической погрешностью, связанной с выбором определяющей температуры и с оценкой критерия Нуссельта по эффективной теплопроводности неподвижного слоя, не учитывающей важную роль пристенного слоя. В этом смысле физически более верно испсиьзова-ние критерия Мпсл, оцененного по теплопроводности газа у стенки канала и по температуре пограничного слоя. Формула (10-32) так же может создать впечатление о наличии противоречия с общепризнанными представлениями о роли симплекса LID. Его увеличение до момента тепловой стабилизации может только снижать средний и более резко-локальный теплообмен. Поэтому  [c.342]

Свариваемость материалов в основном определяется типом и свойствами структуры, возникающей в сваррюм соединении при сварке. При сварке однородных металлов и сплавов в месте соединения, как правило, образуется структура, идентичная или близкая структуре соединяемых заготовок.. Этому случаю соответствует хорошая свариваемость материалов. При сварке разнородных материалоз в зависимости от различия их физико-химических свойств в месте соединения образуется твердый раствор с решеткой одного из материалов либо химическое или интерметаллидное соединение с решеткой, резко отличающейся от решеток исходных материалов. Механические и физические свойства твердых растворов, особенно химических или интерметаллидных соединений, могут значительно отличаться от свойств соединяемых материалов. Такие материалы относятся к удовлетворительно сваривающимся. Если образуются хрупкие и твердые структурные составляющие в сварном соединении, то в условиях действия сварочных напряжений возможно возникновение трещин в шве или околошовной зоне. В последнем случае материалы относятся к категории плохо сваривающихся.  [c.183]

Из фиг. 3.13 следует, что при постоянных o , и Тнас плотность теплового потока Jg сначала линейно увеличивается с ростом АТ . В момент достижения поверхностью температуры насыщения Гцас начинается кипение с недогревом. После этого плотность теплового потока резко возрастает, пока не достигается точка пережога. Скорость Уй оказывает большее влияние на Jg до начала кипения, чем при кипении. При одинаковых значениях. линии с.легка смещены из-за зависимости физических свойств от температуры.  [c.130]

Любые концентраторы напряжений как геометрические (резкое изменение орормы сечения детали), так и физические (местное изменение физико-механических свойств и структуры металла) приводят к появлению в них доп общительных напряжений и, как следствие, к локальной коррозии или снижению коррозионно-уссалостной долговечности.  [c.55]

Разность давлений в двух фазах, возникающую из-за искривления поверхности границы, называют давлением Лапласа. Для жидких капель, размерами порядка 10" см в диаметре давление Лапласа согласно (15.7) должно составлять десятки или даже сотни атмосфер. Надо, однако, иметь в виду, что для таких объектов может оказаться неправильной принятая выше модель. Действительно, реальная граница однородных фаз, как показывает опыт, представляет собой некоторый переходный слой, в пределах которого свойства вещества изменяются от одной фазы к другой не скачком, как считалось выше, а более или менее плавно. Может оказаться, что размеры этого слоя сравнимы с размерами фазы. В этом случае сделанные ранее выводы, так же как и сами термодинамические величины о, Р и другие, для такой микрофазы теряют ясный физический смысл. Серьезные трудности возникают и при попытке строго определить саму толщину переходного слоя, не имеющего резких границ.  [c.138]

Та совокупность электромагнитных волн, которая называется светом (иногда видимым светом), представляет собой узкий интервал длин волн, заключенных примерно между 400 и 800 нм. Они действуют непосредственно на человеческий глаз, производя специфическое раздражение его сетчатой оболочки, ведущее к световому восприятию. Вследствие этого указанный интервал длин вОлн играет особую роль для человека, хотя по своим физическим свойствам он принципиальнане отличается от примыкающих к нему более длинных и более коротких электромагнитных волн. Несмотря на то, что границы светочувствительности глаза субъективны, тем не менее резкое падение чувствительности человеческого глаза к концам этого интервала (ср. 8) оправдывает установление специальных названий для соседних областей спектра.  [c.400]

Состав образуемой в пористой среде смеси в процессе вытеснения из нее взаимосмешивающихся жидкостей меняется, что обусловливает непрерывное изменение физических свойств этой смеси. Характер изменения во времени состава указанной смеси зависит не только от физико-химических свойств ее компонентов, но и от гидродинамических условий протекания процесса вытеснения. Установлено, что динамика изменения во времени состава образуемой в пористой среде смеси резко влияет на механизм процесса вытеснения из этой среды взаимосмешивающихся жидкостей.  [c.119]

Указанным критериям отвечает новый метод снятия остаточных напряжений физические основы которого можно сформулировать сле> дующим образом. Как показано при теоретическом исследовании, каждому кристаллическому материалу соответствует вполне определенный дискретный спектр собственных частот колебаний атомов в решетке. Последний определяется типом дислокаций, характерных для данной структуры твердого тела, и может быть, в принципе, рассчи> тан для любого материала. Если подвести к кристаллу анергию, равную величине Wi = hv,, (Wi — пороговый уровень энергии, h — постоянная Планка, — частота колебаний 1-моды в спектре), то эта энергия избирательно поглотится кристаллической решеткой, что приведет к резкому повышению амплитуды атомных колебаний i-моды.  [c.149]

Средства вычислительной техники, применяемые в автоматизированном проектировании ЭМУ, должны отвечать ряду специальных требований. Прежде всего комплекс этих средств должен обеспечить эффективное решение всей совокупности задач проектирования, резко различающихся объемом, способами получения и представления информации, числом операций по ее преобразованию. Так, для эффективного выполнения параметрической оптимизации или детального анализа физических процессов в объекте в ряде случаев требуются ЭВМ с высоким по современным представлениям быстродействием -(1- 5)-10 операций в секунду, а необходимый объем внешних запо-минающх устройств для размещения банка данных САПР исчисляется 24  [c.24]

Уровень достижений в области получения твердых материалов с улучшенными свойствами сейчас высок. Однако эти достижения были бы невозможны без научно обоснованного подхода к проблеме улучшения механических свойств. Возможности для такого подхода появились с развитием физических методов исследования твердых тел и прежде всего структурных рентгеновского, электро-нографпческого, нейтронографического и электронно-микроскопи-ческого. Стало ясно, что. большинство свойств твердых тел зависит от особенностей их атомной структуры. Крупным шагом в развитии физической теории прочности твердых тел явились теория несовершенств и, в первую очередь, теория дислокаций. Оказалось, что механическая прочность твердых тел зависит, главным образом, от дислокаций и что небольшие нарушения в расположении атомов кристаллической решетки приводят к резкому изменению такого структурно чувствительного свойства, как сопротивление пластической деформации.  [c.115]


Эвтектика Ni - NiS плавится при 645°С и вызывает горячелом-кость металла при обработке давлением эвтектика N1 - NiO и Ni -С ухудшает пластичность никеля В1, РЬ вызывают горячеломкость никеля As, Sb, Р, d резко снижают его механические, физические и технологические свойства.  [c.34]

Хром ока.чывает существенное влияние на механические, физические и химические свойства стали. Добавка хрома повышает твердость и прочность, не снижая пластичности стали. Однако увеличение содержания хрома выше 1,0 - 1,5% снижает ударную вязкость, но мало влияет на поперечное сужение и относительное удлинение. Особенно резко хром повышает твердость и прочность мартенсита. Увеличение содержания хрома до 4 -. 5% наиболее резко повышает твердость закаленной стали, в то время как свойства отожженной стали изменяются незначительно.  [c.86]

Более общий подход к изучению законов отражения и преломления электромагнитной волны может быть осуществлен на основе уравнений Максвелла (см. 2.1). Однако уравнения Максвелла были выведены для областей пространства, в которых физические свойства среды (характеризующиеся величинами е и р) непрерывны. В оптике же часто встречаются случаи, когда эти свойства резко меняются на одной или нескольких поверхностях, поэтому необходимо вводить граничные условия. Выше мы отмечали (см. 2.1), что при отсутствии поверхностных токов и свободных поверхностных зарядов на границе раздела уравнения Максвелла должны удовлетворять гранич[1ым условиям, т. е. равенству тангенциальных составляющих векторов Е и Н. Отношение нормальных составляющих обратно пропорционально соответствующим значениям е или р, т. е. г Ет = г2Е2п, р Ящ = ргГ/гп- Так как в оптике обычно Р1 = Ц2=Г то нор.мальные составляющие вектора Н равны Я]т =//2)2.  [c.11]

Приведенные в этом параграфе документы и их анализ ясно показывают, что существующие таблицы, хотя и содержат в своем названии термин фундаментальные постоянные , составляются с полнейщим игнорированием действительного содержания этого важнейшего физического понятия. Таблицы представляют сводку всевозможных справочных данных по физическим константам, не более. Практические цели явно довлеют над общенаучными, которые тонут в обилии разнородных фактов. Нечего и говорить о том, что различным образом усеченные копии приведенных выше таблиц, содержащиеся в учебной и справочной литературе, выглядят совершенно статично и никак не способствуют осознанию учащимися существования проблемы фундаментальных констант. Ситуация располагает к тому, что примелькавшиеся на страницах учебников и справочников физические постоянные воспринимаются как некие неизменные сущности, все изучение которых состоит в их запоминании. Ситуация резко противоречит целям физического образования и всему процессу развития физической науки. Справедливости ради следует отметить, что проблема фундаментальных физических постоянных предельно сложна и не решена еще современной наукой. Скорее, она только возникает в качестве одной из ее актуальнейших проблем. Дискутируются проблемы числа истинно фундаментальных констант, рассматриваются возможные механизмы формирования их числовых значений на ранних этапах эволюции Вселенной. Трудности решения кардинальных проблем современной физики дожны найти отражение в современной учебной литературе. Не абсолютизация относительных истин, не метафизический характер обучения, а его злободневность, острота, проблемность—вот что должно лежать в основе физического образования.  [c.26]

Коротко подведем итоги обсуждения. Анализ показывает, что столь часто употребляелшй в физике термин фундаментальные физические постоянные не имеет пока единого и четкого определения. Разные авторы совершенно различно подходят к его пониманию и составляют в связи с этим резко различающиеся друг от друга списки фундаментальных констант. Методологический анализ понятия отсутствует, проблема определения важнейшего физического термина является белым пятном физики. Ситуация совершенно недопустима с учебной точки зрения.  [c.38]

Феномен электрического заряда. Электрический заряд является важнейшей характерисгикой элементарных частщ. Обратим внимание на то, что независимо от частиц он не ществует, обратное же возможно (наличие нейтронов, л°- и А -мезонов и т. n.j. Заряды большинства элементарных частиц равны по модулю и равны е, несмотря на то что многие частицы резко отличаются по другим физическим параметрам — массе, магнитным свойствам, наличию внутренней структуры и др. Наиболее известной иллюстрацией к этом> являются свойства электрона и протона (см. табл. l). Однако несмотря на все различия мехсду характеристиками многих элементарных частиц, равенство по величине их электрических зарядов наводит на мысль о том, что между ними должно быть нечто общее, обусловленное в первую очередь их пока не известной нам внутренней структурой, что определяет их электрические свойства. Это нечто обшее мы пока не знаем, оно представляется нам как свойства материи, обусловливающие ее организацию в электрически заряженные частицы. Представляется возможным, что именно эти пока неведомые свойства материи вкупе с остальными характеристиками элементарных частиц обусловливают их стабильносгь, а следовательно, в конечном счете создают условия для возникновения и существования жизни.  [c.107]

Принцип относительности Галилея. Опыт не дает нам свиде-тельсгв сущ твования абсолютного пространства. Физические явления протекают одинаково в системах, движущихся равномерно и прямолинейно друг относительно йруга. Такие системы получили название инерциальных. Повседневная жизнь убеждает нас в справедливости этого принципа. Например, во время поездки на теплоходе по реке нам приходится обедать как на берегу, так и в каюте. При этом все наши действия остаются прежними, привычными, ничто не выдает нам того, что в одном из этих случаев мы движемся. Даже случайно выпавший из рук предмет падает на пол каюты так же отвесно, как и на берегу. Только резкий рывок или торможение теплохода могут напомнить нам о том, что мы движемся по отношению к берегу. Принцип, согласно которому законы физики должны быть одинаковы  [c.131]

Таким образом, в этом случае влияние примесей заключается в заметном повышении средней величины критического поля. При уменьшении ноля наблюдается петля гистерезиса большой площади замороженный момент составляет почти 50% ). Такая резко выраженная необратимость характерна скорее для сверхпроводящих колец, чем для сплошных образцов, имеющих эллипсоидальную форму. Поскольку небольшие количества примесей ока. зы-вают значительное влияние на магнитные свойства, можно иредполож1гть, что некоторая необратимость, наблюдаемая у номинально чистых образцов, связана с наличием небольших загрязнений как физического, так и химического ироисхождения.  [c.626]

В дальнейшем мы не 10льк0 будем рассматривать тела как абсолютно упругие, но будем предполагать, что все деформации не выходят за пределы области пропорциональности, т. е. что для них справедлив закон Гука. Такая область принципиально должна существовать для всякого материала, у которого силы однозначно определяются деформациями. Это скорее математическое утверждение, чем физический закон сила как функция деформации может быть разложена в ряд Тэйлора, и поэтому для малых изменений аргумента всегда можно ограничиться первым членом ряда. Утверждение, заключающееся в законе Гука, состоит в том, что существует достаточно широкая область, в которой силы пропорциональны деформациям, и что вне этой широкой области сразу начинаются резкие отклонения от пропорциональности. Однако о том, как велика эта область, закон Гука ничего не говорит. Этот вопрос должен быть выяснен опытом для каждого конкретного случая.  [c.468]


Смотреть страницы где упоминается термин Физические Резка : [c.185]    [c.151]    [c.22]    [c.274]    [c.207]    [c.5]    [c.23]    [c.24]    [c.38]    [c.47]    [c.161]    [c.6]   
Машиностроение Энциклопедический справочник Раздел 3 Том 5 (1947) -- [ c.487 ]



ПОИСК



5 — 234 —Резка с особыми физическими свойствами— Химический состав

СВАРКА, ПАЙКА И ОГНЕВАЯ РЕЗКА МЕТАЛЛОВ Физическая сущность, классификация и характеристика способов и видов сварки

Физические Резка газовая - Влияние легирующих эле

Физические Резка дуговая металлическими толстопокрытыми электродами - Режимы



© 2025 Mash-xxl.info Реклама на сайте