Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Резание деталей машин - Режимы

Резаки специальные — Типы 8 — 333 Резаки-тракторы для листовой котельной стали 5 — 524 Резание деталей машин — Режимы 7 — 77—  [c.237]

При этом следует учитывать, что основными путями, способствующими внедрению поточных методов в серийное производство, является развитие стандартизации и унификации деталей, машин, а также типизация и стандартизация технологических процессов. При внедрении поточных методов исходными данными для организации производственного процесса механической обработки является программа выпуска N, класс точности и сложности согласно принятой в технологии машиностроения классификации предназначенных к обработке деталей. Основой производственного процесса является технологический процесс. Прежде чем решить вопрос, каким образом организовать производственный процесс, решается задача, как изготовить деталь, определяется технологический маршрут, число операций т, предварительное количество оборудования Н, производится расчет режимов резания, выбор инструмента и приспособлений, расчет основного 4 и вспомогательного 4 времени, определяется трудоемкость деталей /щ, а также рассчитывается коэффициент загрузки оборудования /(, при выбранной сменности работы.  [c.232]


Большинство выпускаемых станков имеет механизированные рабочие движения. Только у некоторых небольших станков, главным образом настольных, одно, реже два рабочих движения не механизированы. В то же время сравнительно у немногих современных станков механизированы вспомогательные движения. Этот недостаток особенно проявляется в случае, если станок работает на высоких режимах резания, когда машинное время сокращается до минимума. В этих условиях затраты времени на выполнение вспомогательных движений могут достигать 50— 60% всего времени операции, поэтому на механизацию вспомогательных движений и в первую очередь на механизацию таких элементов операции, как загрузка и закрепление обрабатываемых деталей, обращается большое внимание.  [c.7]

Скорость резания — см. Режимы резания Слесарные работы 706 Соединения деталей машин —  [c.761]

Результаты эксплуатационных исследований технологических процессов, проводимых в условиях действующего производства, дают необходимый материал для разработки методики исследования машин-автоматов. Для условий массового поточного производства комплексные эксплуатационные исследования технологических процессов были поставлены Ф. С. Демьянюком [2] и под его руководством проводились в Институте машиноведения и в автомобильной промышленности в течение ряда лет [3, 4, 29]. Были проведены исследования точности обработки, производительности и надежности оборудования, различных методов базирования и зажима деталей, правильности выбора режимов резания, износа и порядка смены инструментов, возможности увеличения концентрации операций на одном автомате, заделов между станками поточных линий, способов загрузки и межоперационной транспортировки деталей и их влияния на условия выполнения технологических процессов автоматизированного производства, а также сравнение различных способов построения технологических процессов и поточных линий. Такой подход к эксплуатационным исследованиям позволил выявить основные факторы, влияющие на качество и надежность выполнения технологических процессов автоматизированного поточного производства, что побудило в дальнейшем более подробно изучить эксплуатационные характеристики высокопроизводительного оборудования.  [c.9]

РЕЖИМЫ РЕЗАНИЯ ПРИ МЕХАНИЧЕСКОЙ ОБРАБОТКЕ ДЕТАЛЕЙ МАШИН  [c.77]


РЕЖИМЫ РЕЗАНИЯ ПРИ МЕХАНИЧЕСКОЙ ОБРАБОТКЕ ДЕТАЛЕЙ МАШИН [РАЗД. III  [c.94]

Характер деформирования срезаемого слоя зависит от физико-механических свойств материала обрабатываемой заготовки, геометрии инструмента, режима резания, условий обработки. В процессе резания заготовок из пластичных металлов и сталей средней твердости превалирует пластическая деформация. У хрупких металлов пластическая деформация практически отсутствует. Поэтому при обработке хрупких металлов угол р близок к нулю, а при обработке пластичных металлов р доходит до 30°, что свидетельствует о сложном внутреннем процессе деформирования кристаллитов и формировании новой структуры. Знание законов пластического деформирования и явлений, сопровождающих процесс резания, позволяет повысить качество обработанных поверхностей деталей машин и их надежность.  [c.303]

Для целесообразного использования явления технологической наследственности следует устанавливать связи между эксплуатационными характеристиками деталей машин и различными элементами технологических методов их обработки. Подобные связи в ряде случаев можно выявить в виде математических зависимостей например, состояние поверхностного слоя - функция режимов резания. Полученные зависимости имеют большое значение при моделировании технологических методов формообразования поверхностей деталей машин, что особенно важно при разработке и эксплуатации ГПС.  [c.319]

Основная область применения стандартных магнитных плит — плоское шлифование, получистовое и чистовое фрезерование, строгание и другие операции механической обработки плоскостных деталей машин при сравнительно небольших внешних нагрузках, действующих на деталь. Вопрос о возможности применения этих плит на операциях с интенсивными режимами резания должен решаться с использованием методики, изложенной в т. 1.  [c.199]

Правильное проектирование и эксплоатация режущих инструментов, разработка новых высокопроизводительных методов обработки деталей машин и применение высокопроизводительных режимов резания возможны только в том случае, когда имеется точное понимание самой сущности процесса резания, законов износа  [c.5]

Третий раздел посвящен рассмотрению методов рационального использования токарно-карусельных станков. Здесь рассматриваются мероприятия, которые обеспечивают повышение производительности труда при токарно-карусельной обработке. Даются основания для выбора режимов резания и приводятся конкретные примеры выбора рациональных режимов резания при обработке деталей машин на токарно-карусельном станке.  [c.6]

Самое широкое распространение в машиностроении имеют металлы и сплавы, различные по своим свойствам, изучение которых позволяет наиболее разумно выбирать материал для изготовления деталей машин, правильно рассчитывать их на прочность, выбирать наиболее экономичный способ обработки и рассчитывать производительные режимы резания.  [c.5]

При проектировании технологических процессов изготовления деталей машин выполняется ряд работ, основные из которых следую-ш,ие выбор методов обработки и установление их последовательности выбор оборудования и оснастки установление оптимальных режимов резания расчет технически обоснованных норм времени.  [c.64]

СЛУЖЕБНОЕ НАЗНАЧЕНИЕ РЕЖИМОВ РЕЗАНИЯ. Эффективность и качество изготовления деталей машин зависят от рационального проведения процессов обработки металлов резанием, которое достигается в том случае, если а) режущая часть инструмента имеет оптимальные геометрические параметры и качественную заточку лезвий б) обработка заготовок ведется с технически и экономически обоснованными подачами 8 и скоростями резания у в) кинематические и динамические возможности механизмов коробки подач и коробки скоростей станка позволяют реализовать обоснованные значения подачи 8 и скорости резания V.  [c.154]


Современное развитие металлообрабатывающей промышленности характеризуется повышением требований к качеству обрабатываемых поверхностей, точности размеров и формы поверхностей деталей машин, производительности их изготовления. Неуклонно расширяется номенклатура конструкционных материалов, обладающих повышенными физикомеханическими или специальными свойствами. В последние годы осуществляется техническое перевооружение станочного парка машиностроительных предприятий, причем основной тенденцией является ускоренное внедрение станков с числовым программным управлением (ЧПУ), на базе которых организуются гибкие автоматизированные производства (ГАП), в перспективе обеспечивающие возможность перехода к работе в режиме безлюдной технологии. В связи с высокой стоимостью этого оборудования возрастают требования к совершенству и рациональности осуществляемых на нем процессов резания, а также к надежности режущего инструмента. Простои подобного оборудования или его нерациональное использование ведут к значительным экономическим потерям. Поэтому успешное решение задач, поставленных партией и правительством, по повышению уровня отечественного машиностроения возможно только при условии тщательного изучения теоретических основ металлообработки, а также последних достижений в этой области.  [c.297]

В зависимости от вида обработки, инструмента и режимов резания неровности имеют определенный средний размер от дна впадины до вершины гребешков. Неровности поверхности, невидимые невооруженным глазом, оказывают большое влияние на износоустойчивость и коэффициент трения деталей машин, их прочность при знакопеременной ударной нагрузке, прочность прессовых соединений, устойчивость против воздействия коррозии и др.  [c.336]

Резец конструкции новатора т. Колесова В. А. Отличительной особенностью резца, созданного для работы с большими подачами, является наличие дополнительной режущей кромки с передним углом в плане Ф = 0 и длиной /кр= (1,14-1,2) s . Наличие этой кромки позволяет при значительном увеличении подачи получать чистоту обработки в пределах 5—6-го класса. Резец очень эффективен в своей области работы — при получистовой обработке деталей напроход при режимах резания (для стальных деталей) i=l,5—2,5лш s = 1,5- -3жж/об и=60—150 м/мин. При указанных условиях резец дает хорошую форму стружки, приближающую к оптимальной спирали с короткими отрезками с диаметром витка d=20 30 мм. Диаметр витка зависит главным образом от глубины резания 7 и скорости резания v и увеличивается при увеличении v и уменьшении t. Машинное время при обработке стальных деталей такими резцами может быть уменьшено почти в 10 раз.  [c.30]

Можно полагать, что в случае обработки деталей на оптимальных режимах резания, при которых получается наименьшая глубина и степень наклепа поверхностного слоя, автоматически (без всяких дополнительных операций) будет повышена износостойкость, коррозионная стойкость и долговечность ряда ответственных деталей машин.  [c.256]

Величина и знак остаточных напряжений после механической обработки зависят от обрабатываемого материала, его структуры, геометрии и состояния режущего инструмента, от эффективности охлаждения, вида и режима обработки. Величина остаточных напряжении может быть значительной (до 1000 МПа и выше) и оказывает существенное влияние на эксплуатационные характеристики деталей машин, их износостойкость и прочность. Выбором метода и режима механической обработки можно получить поверхностный слой с заданной величиной и знаком остаточных напряжений. Так, при точении закаленной стали 35ХГСА резцом с отрицательным передним углом 45° при скорости резания 30 м/мин, глубине резания 0,2-0,3 мм было получено повышение предела выносливости образцов на 40-50% и обнаружены остаточные сжимающие напряжения первого рода, доходящие до 600 МПа [25]. При шлифовании закаленной стали в поверхностном слое были обнаружены остаточные сжимающие напряжения до 600 МПа [26]. В некоторых случаях напряжения первого рода создаются намеренно в целях упрочнения. Например, для повышения усталостной прочности. Такой эффект получают наложением на поверхностный слой больших сжимаюп их напряжений путем обкатки поверхности закаленным роликом или обдувкой струей стальной дроби. Такой прием позволяет создать остаточные напряжения сжатия до 900-1000 МПа на глубине около 0,5 мм [25].  [c.42]

Данное изделие может попасть в различные условия эксплуатации и работать при разных режимах. Для того чтобы предсказать ход процесса потери изделием работоспособности, надо знать вероятностную характеристику тех условий, в которых будет эксплуатироваться изделие. Такими характеристиками могут быть законы распределения нагрузок / (Р), скоростей / (и) и условий эксидуатации f (к). Заметим, что эти закономерности оценивают те условия, в которых будет находиться изделие и поэтому могут быть получены независимо от его конструкции с использованием статистики по работе аналогичных машин или по требованиям к будущим изделиям. Например, спектры нагрузок и скоростей при различных условиях работы транспортных машин, необходимые режимы резания при обработке данного типажа деталей на металлорежущих станках, нагрузки на узлы горнодобывающих машин при разработке различных пород и т. п. могут быть заранее определены в виде гистограмм или законов распределения.  [c.213]

Анализируя технологические процессы на различные детали, можно заметить, что для сходных деталей они имеют много общего. Различие между такими процессами часто больше зависит от взглядов технолога, их разрабатывавшего, чем от особенностей детали и производственной обстановки. Отсюда, естественно, возникает мысль разрабатывать процессы не на отдельные детали, а на типы деталей. Таким образом типизацией технологических процессов называется такое направление в изучении и построении технологии, которое заключается в классификации технологических процессов обработки деталей машин и их элемен(пов и в комплексном решении всех заоач, возникающих при осуществлении процессов каждой классификационной группы. При этом под комплексным изучением подразумевается всестороннее изучение процесса, включая рассмотрениг плана обработки, оборудования, инструмента, режимов резания, участия рабочего, определение времени обработки и решение некоторых технико-экономических вопросов.  [c.71]


Быстросменные машинные тиски с рычажно-1сулачковым зажимом обеспечивают большое усилие зажима и прочно удерживают обрабатываемую деталь при высоких режимах резания. Для крепления деталь 7 устанавливают в тиски и вращением установочного винта 4 (фиг. 166, а) подводят к ней подвижную губку 2, оставляя некоторый зазор. Затем перемещением рычага 3 в горизонтальное положение воздействуют ка кулачок б эксцентрикового валика 5  [c.207]

Уменьшение интенсивности изнашивания резцов за счет интенсификации процессов торможения в зоне наростообразования для Ф = 90° при переходе к высокому вакууму и экстремальные зависимости износ — давление с экстремумом при давлении 1 — ЫО- Па, а также значительное уменьшение интенсивности изнашивания при ср= 30°, в том числе в зоне резания без нароста, можно также объяснить защитной ролью заторможенных слоев обрабатываемого материала. Последний выступает во всех случаях как менее твердый и прочный металл по сравнению с инструментальным материалом. В начальные периоды резания происходит перенос ме- нее прочного металла на сопряженную поверхность, и далее последующее трение уже одинаковых металлов. Поэтому некоторые режимы трения, признанные для трущихся пар деталей машин недопустимыми, как вызывающие схватывание, задир и заедание, могут оказаться на некоторых участках пары инструмент — обрабатываемый металл даже полезными, предохраняющими поверхности инструмента от усиленного изнашивания. В качестве иллюстрации приведем фотографии контактных иоверхностей. инструмента и стружки, полученные на растровом электронном микроскопе (РЭМ). В данном случае РЭМ имеет ряд преимуществ ввиду большой глубины резкости, что позволяет одинаково четко наблюдать микропрофиль грубой поверхности во впадинах и на выступах при больших увеличениях. Кроме того, в режиме поглощенных электронов представляется возможным выявить на прирезцовой стороне стружки и на поверхности резания частицы износа инструмента. На рис. 19 показана полученная на РЭМе после резания в вакууме 5-10 Па передняя грань резца в районе полки, защищенной наростом (нарост удален), и часть поверхности, на которой происходит интенсивный непрерывный перенос обрабатываемого материала. Очень хорошо видны налипы обрабатываемого металла в области краевого износа на передней поверхности быстрорежущего инструмента после резания на воздухе (рис. 20). Поверхность стружки, срезанной в вакууме, когда наблюдается малый износ инструглента, выглядит более рельефно (большие неровности, связанные с периодическим дискретным срывом и размазыванием ранее заторможенных частиц обрабатываемого металла), однако частицы износа инструмента на ней не просматриваются (рис. 21, а). Поверхность же стрз жки, срезанной на воз-  [c.80]

При установлении допусков и посадок для деталей из пластмасс [14] учитывались специфические физико-механические свойства пластмасс (в 5—10 раз больший, чем у стали коэффициент линейного расширения, в 10—100 раз меньший модуль упругости, способность к водо- и маслопогло-щению и изменению размеров при эксплуатации в зависимости от среды и времени и другие факторы). Поэтому для соединения пластмассовых деталей, кроме полей допусков и посадок по ГОСТу 7713—62, установлены дополнительные поля допусков, обеспечивающие посадки с большей величиной зазоров и натягов (на рис. 1.40 эти поля имеют перекрестную штриховку). Получающиеся в деталях из пластмасс уклоны должны располагаться в поле допуска. Точность размеров деталей из пластмасс зависит от колебания усадки материала при формообразовании, от конструкции деталей и положения отдельных ее поверхностей при изготовлении в прессформе, от технологических условий изготовления деталей и может соответствовать классам За—5 и грубее. Методика определения точности деталей и расчет посадок для деталей из пластмасс приведены в работах [14, 70]. Для получения точности размеров и надежных посадок классов точности 2а и За необходимы тщательный отбор исходных пластмассовых материалов по наименьшему колебанию усадки, стабильный технологический процесс прессования или литья и определенные условия эксплуатации узлов машин с деталями из пластмасс. Обработкой резанием деталей из пластмасс можно получить точность в пределах 2а — 5 классов, в зависимости от методов и режимов обработки.  [c.110]

На основе известных ныне закономерностей резания металлов получены математические модели процесса в виде систем линейных алгебраических уравнений и неравенств, разработаны алгоритмы нахождения с помощью электронновычислительных машин наивыгоднейших режимов для конкретньи производственных условий. Эти режимы служат основой для разработки, во-первых, кинематики станка — чисел оборотов, чисел двойных ходов, величины подач во-вторых, динамики станка — мощности электромотора, величин усилий, возникающих при резании, величин крутящих моментов на шпинделях и валах станка, прочности и жесткости отдельных деталей и узлов станка. Правильно выбрать оптимальный режим очень сложная технико-экономическая вариационная задача, требующая огромного числа вычислений даже для сравнительно простых с инженерной точки зрения случаев обработки. Создать единую теоретическую модель трудно, так как различные закономерности, характеризующие процессы механического резания металлов представляют в большинстве случаев эмпирические зависимости, полученные разными исследователями в разное время и по различной методике.  [c.26]

В справочнике помещены таблицы, содержащие данные о методах обработки на фрезерных станках типовых деталей машин и приборов, таблицы режимов резания, основные формулы и примеры расчетов, необходимые при работах на делительных головках и приспособлениях. а также при других видах работ на ффе-зервых станках.  [c.2]


Смотреть страницы где упоминается термин Резание деталей машин - Режимы : [c.512]   
Машиностроение Энциклопедический справочник Раздел 3 Том 7 (1949) -- [ c.128 ]



ПОИСК



403 — Режимы резани

403 — Режимы резани резания

Заготовки деталей машин - Конструирование резание - Режимы

Заготовки деталей машин — Конструирование резание — Режимы 5 — 648 — Нагрев перед ковкой 5—101 — Сортамент

Заготовки деталей машин — Конструирование резание — Режимы 648 — Нагрев перед ковкой



© 2025 Mash-xxl.info Реклама на сайте