Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

МЕТОД ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ другими механическими свойствами

Для измерения разности хода и параметра изоклины, а также для наблюдения за общей картиной напряженного состояния модели используются специальные приборы — полярископы. Некоторые виды полярископов позволяют определять разность хода по методу сопоставления цветов и методу полос, другие—но методу компенсации. В последнем случае в полярископах в качестве дополнительного измерительного элемента используются компенсаторы. Кроме основных измерительных приборов для исследования напряжений поляризационно-оп-тическим методом необходимо различное вспомогательное оборудование, предназначенное для изготовления материалов, определения их оптико-механических свойств и нагружения моделей.  [c.98]


Расчет деталей сооружений на динамическую нагрузку более сложен, чем расчет на статическую нагрузку. Трудность заключается, с одной стороны, в более сложных методах определения внутренних усилий и напряжений, возникающих от действия динамической нагрузки, и, с другой — в более сложных методах определения механических свойств материалов при динамической нагрузке.  [c.287]

Метод конечных элементов применял и Адамс [1] он использовал метод модуля сдвига для определения напряженного состояния композита при поперечном растяжении. Рассматривались напряжения, отвечающие интервалу от предела упругости до разрушения одной из составляющих композита, при квадратном и прямоугольном расположениях волокон предполагалось, что разрушение матрицы происходит тогда, когда напряжения в композите достигают предела прочности материала матрицы. По оценке Адамса, в композите А1—34% В с прямоугольным расположением волокон первой должна разрушаться матрица на участках минимального расстояния между волокнами. Разрушение по расчету должно происходить при поперечном нагружении композита напряжением 17,2 кГ/мм (что много меньше предела прочности материала матрицы, составляющего более 23,1 кГ/мм ). Однако в эксперименте композит разрушался путем расщепления волокон. Предсказать такой характер разрушения не представлялось возможным, так как, хотя напряжения на поверхности раздела и в волокнах были рассчитаны, прочность этих элементов при поперечном растяжении неизвестна. Автор совершенствует эту модель с целью описать процессы распространения трещины и полного разрушения композита. Вообще говоря, если известны механические свойства поверхности раздела матрицы и волокон, эта модель позволяет предсказать как разрушение по поверхности раздела, так и другие типы разрушения.  [c.193]

С увеличением размеров и скоростей в современном машиностроении все большее значение приобретает вопрос о расчетах прочности машинных частей. С одной стороны, в связи с увеличением размеров и скоростей увеличиваются и допускаемые напряжения, с другой стороны, к машинам значительных размеров предъявляются более высокие требования прочности, нежели к малым i). Необходимая прочность машин может быть обеспечена только на основе точного исследования распределения напряжений в их частях и изучения механических свойств применяемых материалов. При разрешении вопросов прочности в машиностроении необходимо пользоваться и тем и другим путем. Полное теоретическое решение, которое может быть непосредственно применено к анализу распределения напряжений, можно получить только для простейших случаев, как, например, при деформациях тонких призматических стержней и тонких пластинок. В большинстве критических случаев картина очень сложна, и решение задачи, основанное на упрощающих допущениях, может быть принято для определения напряжений только как первое приближение. Для расширения наших знаний в вопросах о распределении напряжений следует, с одной стороны, развивать методы, которые позволяли бы разрешать задачи теории упругости в сложных случаях, встречающихся на практике, с другой стороны, производить испытания моделей, а также производить измерения напряжений на самих машинах, внимательно изучая при этом всякие неправильности в их работе ).  [c.556]


Испытание на кручение является одним из основных методов определения механических свойств материалов, используемых в деталях, работающих на кручение. Этим методом можно также оценивать пластичность материалов, хрупких при растяжении. Определение при испытании на кручение модуля сдвига О позволяет вычислить коэффициент Пуассона х. В отличие От растяжения при кручении форма образца практически не изменяется даже при очень больших деформациях, что облегчает оценку напряжений и деформаций в этой области. Испытания на кручение позволяют наиболее строго в сравнении с другими видами механических испытаний дифференцировать характер разрушения..  [c.40]

Испытания на твердость отличаются от других способов механических испытаний главным образом методом приложения внешних нагрузок, передающихся специальным наконечником на поверхность исследуемого материала, т. е. путем создания контактных напряжений. Твердый наконечник той или иной формы (шарик, конус, пирамида и т. д.) по-разному воздействует на образец и вызывает различного вида деформацию поверхностного слоя образца. Обычно это воздействие распространяется на весьма малые объемы материала. Как и при других видах механических испытаний, при определении твердости можно замерять упругие свойства, сопротивление малым или большим пластическим деформациям и т. п.  [c.364]

В технике используются механические колебания в очень широком интервале частот — от нескольких герц до 200 МГц, или от инфразвука до ультразвука. Широкий интервал применяемых частот обусловлен тем, что характер их распространения и поглощения зависит от частоты. Ею определяются контролируемая зона, минимальная измеряемая толщина, степень поглощения и характер возбужденных волн. В ультразвуковой дефектоскопии используется целая гамма различных видов волн, которые отличаются друг от друга как направлениями распространения колебаний, так и характером колебаний. Механические колебания используются для выявления нарушения сплошности и измерения толщины. Свойство их поглощения при прохождении через контролируемую среду используется для нахождения мелких рассеянных инородных включений и пустот, оценки неоднородности зерна, структуры, определения плотности массы, внутренних напряжений, коэффициента вязкости, межкристаллитной коррозии, зоны поверхностного распространения. Большим достоинством методов и средств неразрушающего ультразвукового контроля является их универсальность — возможность применения как для металлов и сплавов, так и для керамики, полупроводников, пластических масс, бетона, фарфора, стекла, ферритов, твердых сплавов, т. е. таких синтетических материалов, которые находят все большее применение в технике.  [c.548]

Испытания проводят при различных видах напряженного состояния и различных температурах. Испытания могут быть выполнены при кратковременном или длительном приложении нагрузок, а также с учетом влияния среды, в которой происходит работа деталей машин и конструкций, технологии их изготовления и других факторов. Однако свойства материалов, определенные при простейших напряженных состояниях и на образцах, в значительной степени отличаются от свойств реальных деталей машин и конструкций при их натурных стендовых испытаниях или в процессе эксплуатации. Реальные детали машин и конструкции находятся иод действием сложной системы напряжений, часто имеют сложную конструктивную форму и для них экспериментально трудно определить напряжения, при которых начинаются пластические деформации или наступает процесс разрушения материала. Поэтому возможно большее приближение методов механических испытаний к работе реальных изделий является одной из основных задач, решение которых позволит повысить долговечность и надежность работы деталей машин и конструкций.  [c.11]

Пластические массы (текстолит, гетинакс, стеклотекстолит, древесно-волокнистые пластики, волокнит, винипласт, оргстекло, полиэтилен, пенопласт, эпоксидная смола и многие другие) используются в качестве отделоч1Ных материалов и для различных изделий (трубы, краны, соединительные части, детали интерьеров, машин и конструкций и т. д.). Они получают все более широкое применение 1в машиностроении, строительстве, энергетике и многих других отраслях техники, что делает необходимым изучение основных механических свойств пластмасс и методов определения их главных механических характеристик. Следует иметь в виду, что некоторые механические свойства пластмасс весьм.з сильно изменяются (ухудшаются) под влиянием повышенной температуры, длительных нагрузок, влажности, циклических напряжений и времени. Эти изменения, как правило, необратимы. Для  [c.157]


Общую и локальную виды коррозии контролируют не реже 2 раз в месяц по зондам электросопротивления или аналогичным, но другого типа по всей технологической линии в жидких фазах, газовой фазе и по возможности на границах раздела, а также не менее 1 раза в год по образцам-свидетелям и замерам толщины стенок ультразвуковым или другим дефектоскопом. За сероводородным растрескиванием ведется наблюдение косвенным методом по степени водородпроницаемости водородных зондов на первой стадии (в течение года) не реже 1 раза в неделю и на последующей—1 раза в квартал по напряженным образцам и образцам для гиба-перегиба — не реже 1 раза в год. По мере проведения ремонтных работ необходимы вырезка образцов металла и полный анализ их состояния определение механических свойств, содержания водорода, стойкости к сероводородному растрескиванию, а также металлографические исследования. Кроме того, периодически проводится визуальный осмотр внешнего состояния и не реже 1 раза в год — внутренний осмотр сосудов с проведением соответствующих замеров и техническим освидетельствованием их.  [c.176]

Общая для всего мира тенденция улучшения рабочих параметров ГТД за счет увеличения степеней сжатия как следствие приводит к появлению большого числа коротких лопаток с собственными частотами колебаний даже по первой форме в области высоких звуковых частот циклов. Увеличение частоты / при данном ресурсе эксплуатации Тэ автоматически приводит к росту циклической наработки N. Поскольку ресурс Тэ также имеет тенденцию к росту, увеличивается относительное число усталостных повреждений среди возможных нарушений работоспособности деталей ГТД. Стала актуальной проблема оптимизации технологии коротких лопаток и связанных с ними элементов дисков по характеристикам сопротивления усталости на высоких звуковых частотах и эксплуатационных температурах, которые, как и частота нагружения, становятся все более высокими. Из-за жестких требований к весу деталей и сложности их конструкции в каждой из них имеет место около десятка примерно равноопасных зон, включающих различные по форме поверхности и концентраторы напряжений гладкие участки клиновидной формы, елочные пазы, тонкие скругленные кромки, га.лтели переходные поверхности), ребра охлаждения, малые отверстия, резьба и др. Даже при одинаковых методах изготовления, например при отливке лопаток, поля механических свойств, остаточных напряжений, структуры и других параметров физико-химического состояния поверхностного слоя в них получаются различными. К этому следует добавить, что из-за различий в форме обрабатывать их приходится разными методами. Комплексная оптимизация технологии изготовления таких деталей по характеристикам сопротивления усталости сразу всех равноопасных зон без использования ЭВМ невозможна. Поэтому была разработана система методик, рабочих алгоритмов и программ [1], которые за счет применения ЭВМ позволяют на несколько порядков сократить число технологических испытаний на усталость, необходимых для отыскания области оптимума методов изготовления деталей, а главное строить математические модели зависимости показателей прочности и долговечности типовых опасных зон деталей от обобщенных технологических факторов для определенных классов операций с общим механизмом процессов в поверхностном слое. Накапливая в магнитной памяти ЭВМ эти модели, можно применять их для прогнозирования наивыгоднейших режимов обработки новых деталей, которые в авиадвигателестроении часто меняются без трудоемких испытаний на усталость. Построение  [c.392]

Современные методы расчета отражают влияние динамичности нагрузок, формы и жесткости деталей, типа напряженного состояния, пластичности, усталости, ползучести и других факторов на несущую способность, поддающихся расчетному или экспериментальному определению. Влияние факторов, не поддающихся таким определениям, должно быть отражено в запасе прочности на основании наблюдений за работой деталей и узлов, статистического анализа данных эксплуатации и испытания машин. Н. С. Стрелецким [33] и А. Р. Ржанициным [28] на основании статистических кривых распределения возникающих усилий и отклонений механических свойств, а также анализа основных факторов отклонения между действительными и расчетными усилиями, обоснована каноническая структура запаса прочности п в виде произведения минимального числа сомножителей п = 1П2П3, каждый из которых отражает важнейшие факторы отклонения между рассчитываемой и фактической несущей способностью детали или конструкции.  [c.536]

При участии автора книги в СССР были разработаны РД 50.344— 82 "Методические указания. Расчеты и испытания на прочность в машиностроении. Методы механических испытаний металлов. Определение характеристик вязкости разрушения (трещиностойкости) при циклическом нагружении", являющиеся первым межотраслевым нормативно-методическим документом по испытаниям металлов на трещиностойкость. Определяемые в соответствии с этими методическими указаниями характе 1стики могут быть использованы (наряду с другими характеристиками механических свойств) для суждения о сопротивлении материала развитию трещины и определения влияния на него различных металлургических, технологических и эксплуатационных факторов сопоставления материалов при обосновании их выбора для машин и конструкций контроля качества материалов оценки долговечности элементов конструкций на основании данных об их дефектности и напряженном состоянии установления Критерия неразрушающего контроля и анализа причин разрушения конструкций.  [c.49]


Таким образом, размах коэффициента инта<сив1Ности напряжений, как и любая другая характеристика механических свойств материала, зависит от типа нагружения, условий испытаний, геометрии и размеров образцов. Дальнейшие работы в области экспериментальных методов определения А/С должны быть направлены на унификацию и стандартизацию методов ее определения,  [c.170]

Несмотря на примитивность, метод Кика был использован другими исследователями и не потерял ценности до настоящего времени. Б. Д. Грозин [91], папример, подвергал образцы из закаленной стали всестороннему сжатию в обоймах из пластичных материалов и вывел формулы для определения в этом случае напряжений. Эти испытания (рис. 88) не требуют специального оборудования и обеспечивают возмолшость создавать значительные боковые давления. При соответствующей методике обработки опытных данных метод Кика позволяет проследить особеппостп изменения механических свойств материала при достаточно больших сжимающих усилиях [4, 49, 195, 430].  [c.209]

Механические свойства Д., характеризующие ее способность сопротивляться механич. воздействиям, м б. под[1азделены на 1) крепость, или способность сопротивляться разрушению от действия механических усилий -) упругость, или способность принимать первоначальную форму и размеры после прекращения действия сил 3) ж е с т к о с т ь, или способность сопротивляться деформированию 4) твердость, или способность сопротивляться внедрению другого твердог о тела (для большинства методов ее определения). Свойства, определяющие низкую степень перечисленных основны.х свойств, или иначе обратные и.м, м. б. соответственно названы слабость, пластичность, податлив о с т ь и мягкость. Первые три свойства могут проявляться при разных видах напряжений, из которых простыми видами являются растяжение, сжатие и сдвиг (скалывание) изгиб и кручение заключают в себе у ке нек-рый комплекс простых видов напрягкений. По характеру действия сил различают нагрузки статические при плавном медленном действии сил и дина м и ч е с к и е при действии сил со значительной ско])остью в момент соприкосновения с тч лом (удар) или со значительным ускорением. Динамич. нагрузки прп испытании материалов м. б. однократные ударные, при к-рых тело разрушается от одного удара, и вибрационные, вызывающие разрушение при многократном возде11ствии динамич. нагрузок, с ударом или без него, но с большим ускорением. Крепость ири ударной нагрузке иногда называется в п з к о с т ь ю, а крепость при вибрационной нагрузке получила название вынос л и в о с т и. Кроме перечисленных видов действия внешних сил нужно отличать еще случай весьма длительного действия статич. нагрузки, а также силы трения, вызывающие медленное разрушение (истирание) и характеризуемые величиной изнашивания. Так как Д. является материалом анизотропным, то при характеристике действия сил на нее необходимо указывать еще их направление по отношению к направлению волокон (вдоль и поперек волокон) и годовых слоев (радиальное и тангентальное направление). Механич. свойства Д. определяются путем механич. испытаний ее в большинстве случаев на малых чистых (без пороков) образцах. Получаемые в результатах таких испытаний цифры характеризуют Д. с точки зрения ее доброкачественности, но не всегда могут  [c.102]

ХРУПКОСТЬ МЕТАЛЛОВ, свойство металла при статической нагрузке рваться, ломаться или разрушаться без заметной остаточной деформации. Если металл перед разрывом обнару- кивает пластич. деформации (см. Деформация пластическая), а остаточных деформаций не получается только при ударной нагрузке, то это свойство называется ударной хрупкостью. X. м. при низких и обыкновенных иногда называется холодноломко-с т ь ю, а X. м. в раскаленном состоянии—к р а с-н о л о м к о с т ь ю. Хрупкость зависит от целого ряда факторов от структуры металла, ориентации кристаллитов, от примесей, от самого метода испытания и т. д. Один и тот же слиток металла в одном направлении м. б. хрупким, а в другом пластичным. Начиная приблизительно с 1920 года, металловедение сделало большие успехи благодаря тому, что был открыт ряд способов получения металлич. монокристаллов, т. е. одиночных кристаллов, в виде стержней. Детальные исследования механических свойств этих монокристаллов, произведенные нем. физиками (Полани, Э. Шмид, Закс и их сотрудники) и англ. металловедами (Тейлор, Карпентер, мисс Элам и др.), дали весьма ценные ре-. ультаты для понимания механизма хрупкости и пластичности (см.). Эти исследования показали, что в металлич. монокристаллах существуют вполне определенные кристаллографич. плоскости—плоскости с наиболее плотной упаковкой атомов, по к-рым начинается трансляция, или скольжение, одних слоев относительно других. Это явление начинается тогда, когда с двигающее, или скалывающее, напряжение в данной плоскости и по вполне определенному направлению достигает некоторого критич. значения 5. Кристаллографич. направление в плоскости скольжения, по которому атомы расположены наиболее близко друг к другу, является направлением скольжения.  [c.319]

На всех участках был проведен полный комплекс детальных инструментальных обследований. Были выполнены анализ фактически сложившихся конструктивных схем нагружения участков визуальный осмотр и толщинометрия стенок трубопровода (прибор УТ-93П) геодезические измерения пространственного положения коллектора (теодолит Т-5 и спутниковая навигационная система, базирующаяся на вездеходе) измерения параметров напряженно-деформированного состояния (НДС) магнитным методом (приборы Стресскан-500 , ПИОН , ИНИ-1А) установка тензодатчиков для длительного измерения параметров НДС и режимные тензометрические измерения (прибор ЦТИ-1) акустико-эмиссионные измерения (система ЕМА-1) определение в полевых условиях механических свойств стали трубопровода неразрушающим методом с использованием прибора Equotip отбор образцов металла труб для лабораторных исследований оценка состояния обвалования и балластировки измерения температуры грунта и стенки трубы контроль состояния изоляции наземная телевизионная и фотосъемка участков и другие работы.  [c.176]

Как мы видели, трещина в деформируемом теле создает очаг возмущения напряженного состояния, характерный сильной концентрацией напряжений у ее острия. На первый взгляд любая малая трещина благодаря стремлению напряжений к неограниченному росту с приближением к кончику трещины должна была бы породить прогрессирующий процесс разрушения. Однако такой теоретический результат следует из модели идеально упругой сплошной среды и не соответствует реальным физическим свойствам материала. Дискретная структура реального материала и нелинейность механических соотношений для него в сильной степени изменяют картину фиаико-меха-нического состояния, следующую из линейной теории упругости. В результате, как показывает опыт, в одних условиях трещина может устойчиво существовать, не проявляя как-либо себя, а в других — происходит взрывоподобный рост треш ины, приводящий к внезапному разрушению тела. Существуют попытки проанализировать это явление на атомном уровне методами физики твердого тела. Они представляют определенное перспективное направление в этой проблеме, но, к сожалению, до сих пор полученные здесь результаты далеки от уровня прикладных инженерных запросов.  [c.383]

АНИЗОТРОПИЯ, явление, выражающееся в зависимости физич. величин, выражающих определенное свойство твердого или жидкого тела от направления, вдо.11Ь к-рого эта величина (коэфициент теплопроводности, показатели преломления, прочность на разрыв и др.) измеряется. Тела, обладающие А., называются анизотропными в противоположность изотропным, в к-рых свойства по всем направлениям одинаковы. Анизотропная среда однородна (гомогенна) в том случае, когда зависимость физич. свойств от направления одинакова в различных точках среды. Для данного направления все физич. свойства однородного тела не зависят от положения элемента объема, длп к-рого онп исследуются. Однородная А. может быть обусловлена строением тела, наличием кристаллич. структуры или резко выраженной асимметрией его молекул, легко ориентирующихся под влиянием внешнего или собственного поля (жидкие кристаллы, кристаллич. жидкости). А. (например местная) возникает также в результате односторонних деформаций тела (возникновение неравномерно распределенных внутренних напряжений при растяжении, одностороннем сдавливании тел, закалке, вообще при разных видах механической обработки). Поверхностный слой всякого тела вызывает местную А., делая тело неоднородным вблизи поверхности раздела с окружающей средой. При этом А. поверхностного слоя выражается в том, что физич. свойства по тангенциальным направлениям (лежащим в поверхности) отличны от свойств в направлении, нормальном ij поверхностному слою. Тела м. б. анизотропны в отношении одних свойств (напр, оптических) и изотропны относительно других (напр, упругих). Кристаллы всех систем кроме кубической оптически анизотропны. В таких кристаллах по каждому направлению (за исключением направления. лучевых осей) идут два луча, оба поляризованных во взаимно перпендикулярных плоскостях. Оба эти луча распространяются в кристалле с разной скоростью. А. может быть исследована по характеру зависимости физич. свойств напр, тепловых или механических) в данной среде. В прозрачных телах для изучения А. удобнее исследовать оптич. свойства (напр, по отношению к поляризованному свету). Наиболее полным методом исследования является исследование структуры (рентгено- или электро-нографич. анализ), обусловливающей А.  [c.388]



Смотреть страницы где упоминается термин МЕТОД ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ другими механическими свойствами : [c.63]    [c.56]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.3 ]



ПОИСК



Другие методы

Другие механические свойства

Другие свойства

Метод механический

Метод напряжений

Методы определения механических свойств

Механические свойства и методы определения механических свойств

Напряжение Определение

Напряжение Свойства

Напряжение механическое

Напряжения Определения метода



© 2025 Mash-xxl.info Реклама на сайте