Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тугоплавкие Сварка с другими металлами

Тугоплавкие металлы и их сплавы — Применение прокладок для сварки 161 Сварка с другими металлами 155—162  [c.271]

Режимы сварки тугоплавких металлов между собой и с другими металлами изменяются в широких пределах. Ориентировочные значения параметров режима приведены в табл. 1.  [c.162]

Сварные соединения вольфрама с другими тугоплавкими металлами (V, Nb, Та, Мо), полученные аргоно-дуговой сваркой, характеризуются весьма высокими температурами хладноломкости (как правило, более 700") [30].  [c.381]


Сжатая дуга (рис. 2.6, г) — это дуга прямого или косвенного действия с неплавящимся вольфрамовым электродом, сжатая кольцевой струей газа. Сжатую дугу получают в специальных горелках — плазматронах (см. гл. 12) и применяют для резки и сварки тугоплавких и других металлов.  [c.43]

Электро- технические Контакты Изготовляются из псевдосплавов тугоплавких металлов с медью, серебром и другими металлами отличаются высокими прочностью и электропроводностью Контактная сварка приборы, в которых про исходит искровой разряд  [c.318]

В связи с тем что при диффузионной сварке тугоплавких металлов необходима высокая температура, для них эффективен нагрев зоны соединения электронно-лучевым способом с помощью специальных кольцевых пу-щек. Процесс диффузионного соединения деталей из вольфрама можно ускорить применением промежуточных прослоек из никеля и других металлов.  [c.161]

Разрежение в камерах составляет от 10 до 10 мм рт. ст. Такой вакуум создает возможность электронам пролетать большой путь без соударений с частицами газа, что позволяет разогнать их до высоких скоростей. С другой стороны, при глубоком вакууме содержание воздуха в единице объема в тысячи и десятки тысяч раз меньше, чем содержание вредных примесей в единице того же объема, заполненного аргоном, при нормальном давлении. Это исключает опасность насыщения расплавленного металла газами и создает возможность сварки тугоплавких и высокоактивных металлов. Поэтому электроннолучевая сварка применяется при соединении таких металлов, как молибден, тантал, вольфрам, ниобий, цирконий, ванадий и т. п. Для углеродистых сталей электроннолучевая сварка в вакууме не применяется.  [c.35]

Сочетание сталей с другими тугоплавкими металлами и тугоплавких металлов между собой также часто встречается в технике. Тантал и ниобий по свойствам близки к титану и при сварке с ним образуют твердые растворы без хрупких соединений. Ниобий удовлетворительно сваривается с медью и медными сплавами, с которыми образует ограниченные растворы. Тантал с медью растворов и соединений не образует. Однако обычно в качестве вставок применяют бронзу. Ниобий хорошо сваривается с ванадием и цирконием. При сварке ниобия с никелевыми сплавами образуются трещины рекомендуется их сварка через палладий. Трудности получения сварных соединений тугоплавких металлов со сталями и сплавами обусловлены также хрупкостью тугоплавких металлов после нагрева выше температуры рекристаллизации и их высокой химической активностью при нагреве до температур выше 573 К.  [c.158]


Трудности при сварке тугоплавких металлов Ti, Zr, Mo, Nb и других связаны с тем, что они при нагреве интенсивно поглощают газы — кислород, водород и азот. При этом даже незначительное содержание газов приводит к резкому снижению пластических свойств этих металлов.  [c.237]

Высокая температура плавления и высокая реакционная способность тантала при повышенных температурах вызывают необходимость использования для его сварки особой технологии. Лучшим способом получения сварных швов удовлетворительного качества является дуговая сварка в атмосфере инертного газа,— такая же, как применяемая для других тугоплавких реакционноспособных металлов, например для титана и циркония. Практически оборудование и технологию, используемые для этих металлов, можно с очень небольшими изменениями применять и для сварки тантала.  [c.736]

Другой путь измельчения структуры шва - это физическое воздействие на ванну переменным электромагнитным полем или ультразвуком. При этом в объеме ванны возникают колебания, волны горячего металла подмывают растущие столбчатые кристаллиты, их обломки, не успевая полностью расплавиться, служат новыми центрами кристаллизации - структура измельчается. Разрушению вершин столбчатых кристаллитов способствуют механические напряжения в них, возникающие в результате колебаний металла. При дуговой сварке соленоид, генерирующий электромагнитное поле, устанавливают над ванной так, чтобы его ось совпадала с осью электрода, - образуется продольное относительно электрода поле. Ультразвук вводят в сварочную ванну через тугоплавкий стержень, один конец которого помещают в жидкий металл хвостовой части сварочной ванны, а второй конец жестко прикрепляют к концентратору генератора ультразвуковых колебаний. При сварке плавящимся электродом можно присоединить к концентратору мундштук сварочной горелки.  [c.28]

Электронным лучом можно сваривать тугоплавкие металлы без существенного изменения свойств литой структуры шва и рекристаллизованной зоны. Обеспечивается возможность сварки разнородных металлов со значительной разницей толщин, температур плавления и других теплофизических свойств. Например, при сварке алюминия и меди пятно луча на % располагается на медной детали и на 7з — на алюминиевой. Соединение получается типа паяного, практически без расплавления меди. При сварке меди со сталью с небольшой нахлесткой необходимо сначала подогреть медную деталь лучом, а затем производить сварку.  [c.374]

Одним из достоинств ультразвуковой сварки является возможность соединения заготовок различной толщины, например тонких листов и фольги с деталями большой толщины. Другое существенное преимущество сварки ультразвуком заключается в хорошей свариваемости этим методом металлов в разнородных сочетаниях, например алюминия с медью, цинком и оловом, меди со сталью, никеля с вольфрамом, тугоплавких металлов со сталью и металлов с керамическими материалами.  [c.414]

Одно из наиболее надежных средств предотвращения образования горячих трещин при сварке — повышение качества свариваемого металла ограничение содержания кремния, бора, фосфора, серы и других примесей в аустенитных сталях и никелевых сплавах [4, с. 141 5 8 9, с. 148], а также примесей внедрения в сплавах тугоплавких металлов. При сварке сплавов из тугоплавких металлов, как и при сварке сплавов титана и циркония, предусматривают эффективные меры защиты металла сварных соединений от насыщения примесями струйная защита инертными газами, сварка в камерах с контролируемой атмосферой, электроннолучевая сварка [9, с. 155 и 156].  [c.73]

При сварке ниобия и сплавов на его основе возникают те же трудности, что и при сварке других тугоплавких металлов (вольфрама, молибдена, тантала). Связаны они с высокой химической активностью при повышенных температурах, большой склонностью к росту зерна и, как следствие этого, с резким снижением пластичности сварных соединений (рис. 1).  [c.113]


Диффузионную сварку сплавов на основе ниобия и других тугоплавких металлов осуществляют при температурах, более низких по сравнению с температурой рекристаллизации, что необходимо для предотвращения насыщения их газами и роста зерен при нагреве.  [c.24]

Контроль без разрушения может осуществляться по энергетическим параметрам процесса (сварочному току, напряжению на инструментах, полезной мощности, энергии), температуре, перемещению электрода, а также ультразвуком, рентгеном и другими физическими методами. Последние не всегда дают надежные данные. Так при рентгеновском просвечивании, реагирующем на изменение плотности, выявляются поры, трещины, раковины и внутренний выплеск, однако граница литой зоны без использования рентгеноконтрастных веществ не выявляется. В настоящее время для ее выявления на поверхности контакта деталей толщиной 0,3—5 мм перед сваркой кладут тонкую фольгу (0,1—0,3 мм), наносят гальваническое покрытие или порошок из материала, обладающего повышенным коэффициентом поглощения рентгеновских лучей. Этот металл, не влияя на качество, под действием электромагнитных сил может вытесняться к периферии ядра (если его сопротивление и 7пл выше исходного металла) или перемешиваться (если Гпл близки). Для нержавеющих и жаропрочных сталей в качестве материала-свидетеля используют тугоплавкие металлы (Мп, Ш, Мо, V) в виде порошка с размерами частиц 20—100 мкм. Порошок  [c.243]

В 1958—1959 гг. ИМЕТ (Институт металлургии) имени Байкова, ВНИИавтогенмаш (Всесоюзный научно-исследовательский институт автогенного машиностроения) и другие учреждения разработали специальные установки и горелки для сварки металлов плазменной струей. Особенность этого способа заключается в более высокой температуре столба дуги вследствие сжатия дуги потоком газа, пропускаемого через сопло ограниченного диаметра. Следует отметить, что плазма обеспечивает температуру 16 ООО—33 000° С, что позволяет сваривать самые тугоплавкие металлы.  [c.7]

Диффузионной сваркой-изготовляют узлы и детали из различных металлов, сплавов и неметаллических материалов. Композиции свариваемых материалов исключительно разнообразны. В результате накопленного опыта можно сделать вывод, что большинство металлов, таких, как никель, медь, титан и их сплавы, а также стали (в том числе и аустенитного класса) обладают хорошей взаимной свариваемостью. То же можно сказать о тугоплавких металлах — молибдене, вольфраме, тантале, ниобии. Хорошо сваривается молибден со сталью, ниобием. Свариваются неметаллические материалы керамика, стекло, кварц, полупроводники, графит, керметы и металлокерамика с металлами. Сварка чугуна со сталью осуществляется по большой поверхности. Свариваются такие разнородные металлы и сплавы, как титан и медь, титан и ковар, титан и константан, титан и молибден, золото и бронза, серебро и коррозионно-стойкая сталь, титан и платина, молибден и ковар, алюминий и ковар. Качественные соединения перечисленных материалов невозможно получить другими методами сварки и пайки.  [c.42]

Сварка вольфрама. Вольфрам имеет две модификации — а и . Ниже температуры полиморфного превращения 903 К -фаза переходит в а-фазу с решеткой объемно-центрированного куба. Вольфрам устойчив в соляной, серной и других кислотах, в расплавленных натрии, ртути, висмуте. С азотом и водородом вольфрам не взаимодействует до температуры плавления. На воздухе устойчив до 673 К- Вольфрамовые сплавы содержат в небольших количествах такие легирующие элементы, как ниобий, цирконий, гафний, молибден, тантал, рений, окись тория. Основной целью легирования вольфрама является повышение его пластичности, так как технически чистый вольфрам при 293 К имеет относительное удлинение, близкое к нулю. Среди" тугоплавких металлов вольфрам имеет наиболее высокие следующие параметры температуру плавления, модуль упругости, коэффициент теплопроводности и низкую свариваемость. Для диффузионной сварки вольфрама в вакууме может быть рекомендован режим Т = 2473 К, р 19,6 МПа, /=15 мин, который обеспечивает свойства соединений, близкие к свойствам основного металла.  [c.155]

Сварка тугоплавких металлов с другими металлами. Многие задачи авиационной, космической, электронной техники, химического машиностроения, судостроения, приборостроения могут быть решены при использовании комбинированных конструкций из сталей с титаном и его сплавами. Согласно диаграмме равновесного состояния Ti—Fe, растворимость железа в а-титане крайне мала и при 293 К составляет 0,05—0,1%. При концентрации железа более 0,1% в сплаве образуются интерметаллические соединения TiFe й TiFeg- Появление интерметаллидов в сплаве Ti—Fe значительно повышает прочность, но резко снижает пластичность. Растворимость титана в а-железе достигает 6,9% при температуре 1573 Кис понижением температуры резко уменьшается при 293 К растворимость титана в а-железе менее 2%. Максимальная растворимость железа в -титане при эвтектической температуре (1353 К) составляет 25%. Непосредственная сварка титана со сталью не дает положительных результатов. Практически применяют сварку через промежуточные вставки или прослойки. Единственный металл, хорошо соединяющийся с титаном и сталью без образования интерметаллических фаз, — ванадий. Несколько хуже сваривается ниобий. Хорошие результаты получены при использовании комбинированной вставки, состоящей из технического тантала (ад = 686 МПа) и термообработанной бронзы.  [c.155]

Сварка химически активных металлов затрудняется те.м, что они очень сильно реагируют с кпслородо.м, азо-то.м, водородом, окисью углерода и другими газами при те.мпературах, более низких, чем температура плавления этих металлов. Отдельные активные металлы при температурах плавления реагируют с флюса.ми, что тол<е усложняет их сварку. Кроме того, химически активные металлы, равно и тугоплавкие, нуждаются в защите от воздуха как при нагреве их перед сваркой, так и при расплавлении, а также при охлаждении после сварки. Учитывая, что подача к сварочной ванне защитного инертного газа через открытое сопло в ряде случаев оказывается недостаточной, часто приходится полностью изолировать зону сварки от окружающего воздуха и наполнять изолирующую камеру инертным газом.  [c.190]


Из новых способов, разработанных и внедряемых в производство за последние годы, следует указать на сварку ультразвуком, сварку давлением в вакууме, сварку электронным лучом в вакууме, виб-родуговую наплавку, сварку с высокочастотным нагревом, сварку вращающейся дугой, сварку плазменной струей и др. Однако эти способы сварки имеют специализированное назначение и область их применения более ограничена, чем дуговой или контактной электрической сварки они используются, например, в приборостроении, при сварке пластмасс, сварке твердых сплавов, наплавке тонких слоев металла, сварке тугоплавких металлов и других подобных процессах. Данные об этих способах сварки можно найти в специальной литературе.  [c.12]

Электронно-лучевая снарка позволяет получать сварные соединения из окончательно обработанных деталей без их существенных деформаций (например, блоки зубчатых колес взамен крупных поковок). с лектронно-лучевая сварка гарантирует высокое качество сварного соединения детг1лей из тугоплавких металлов, жаропрочных, жаростойких и других материалов со скоростью, не уступающей дугоной сварке.  [c.155]

Лазерная резка твердых сплавов благодаря повышению скорости обработки, а также сокращению потерь материала и трудоемкости на зачистку среза обходится на 75 % дешевле других методов выполнения этой операции. А сверление алмазных фильеров лазером занимает 2—3 мин вместо 2—3 рабочих смен, затрачиваемых на эту операцию старыми способами. Современные промышленные установки ОКГ обеспечивают надлежащую сварку тугоплавких металлов толщиной до 4 мм, а резку металла толщиной до 10 мм и неметаллических материалов — толщиной до 100 мм. Скорость лазерной резки в обычных условиях 4—8 мм/с, а в атмосфере кислоро-  [c.48]

Катоды и другие изделия. Катоды электровакуумных приборов изготовляют из вольфрама, тантала и ниобия, в том числе с присадкой оксида тория или с покрытием в виде поверхностного слоя из смеси оксидов Ва, Sr, Са + Ва. Во многих случаях весьма эффективны катоды из различных тугоплавких соединений, напримерLaB ,Zr , Nb , ТаС, Hf и др. Так, горячепрессованные катоды из гексаборида лантана при рабочей температуре 1600- 1700 °С позволяют получать большие плотности эмиссионных токов (> 10 А/см ).как в импульсном, так и в стационарном режимах, работая в ускорителях заряженных частиц, мощных генераторных устройствах, электронно-лучевых установках для плавки и сварки металлов. Используя метод эрозии или ультразвук, можно вырезать из горячепрессованных заготовок катоды сложной конфигурации.  [c.206]

По этой причине в начале 1985 г. редакторы решили подготовить новую книгу примерно того же объема, но с акцентом на новые разработки - увеличение роли порошковой металлургии, решительный переход на направленно закристаллизованные и монокристаллические суперсплавы и т.д. Хотя многие главы были полностью переписаны (а некоторые вообще написаны другими авторами), есть главы, содержание которых просто интенсивно обновлено (например, "Природа упрочнения", "Сплавы на основе никеля") или оставлено почти неизменным (например, глава о сварке). Поскольку современные суперсплавы работают при температурах, при ближающихся к уровню 90% их абсолютной температуры плавления, возможности дальнейшего совершенствования газовых турбин ожидают от новых материалов керамики, тугоплавких металлов (ниобия), композитов, интерметаллических соеди-  [c.14]

Это замедление обусловлено тем, что на свободной поверхности твердого или жидкого металла атомы оказываются неуравновешенными из-за отсутствия связи (вакуум) или ослабления связи, вызванного другими свойствами окружающей среды. Это приводит к повышению энергии поверхности слоя (рис. 13.6, а) по сравнению с энергией Ео, необходимой атому для перемещения внутри тела. Аналогичное явление возникает и при сварке разьюродных металлов, когда из-за быстрого образования физического контакта жидкого металла с твердым, более тугоплавким (стадия А), на границе фаз образуется пик межфазной энергии Е, (рис. 13.6, 6), так как переход атомной системы в новое состояние осуществляется не мгновенно, а за некоторый конечный промежуток времени. Указанное явление и определяет период ретардации.  [c.496]

По мнению Н. Ф. Лашко и С. В. Лашко, полезное действие вольфрама и молибдена на стойкость против образования горячих трещин и аустенитных швов, содержащих малые добавки бора, связано с их способностью давать тугоплавкие соединения] (Сг, Mo)g В4 и (Сг, W) В4. Положительное действие этих легирующих элементов проявляется лишь при весьма значительных их концентрациях. Например, содержание молибдена в швах никелевых сплавов приходится доводить до 20—25%. То же самое относится и к вольфраму. Следует особо подчеркнуть, что положительный эффект от введения столь больших количеств молибдена и вольфрама может быть сведен на нет ничтожными концентрациями таких вредных для сварки примесей, как олово, фосфор, бор и др. Это обстоятельство лишний раз указывает на вторичный характер полигонизационных трещин, берущих начало от кристаллизационных трещин и служащих их продолжением. Значительно правильнее принимать меры против загрязнения металла шва легкоплавкими примесями, чем идти по пути легирования его огромными количествами молибдена, вольфрама и другими элементами, повышающими энергию активации самодиффузии.  [c.207]

Диффузионная сварка применяется в приборостроении, производстве специального инструмента и других отраслях. Этим способом можно сваривать однородные и разнородные металлы, сплавы и металлокера че кве материалы, в том числе тугоплавкие, например, медь с молибденом, сталь с чугуном, алюминием, вольфрамом, титаном, металлокерамикой. Качество сварки получается высокое.  [c.331]

Потолочные швы выполняются труднее всех других, так как расплавленный металл постоянно стремится вытечь из сварочной ванны. Это обстоятельство требует от сварщика поддержания возможно короткой дуги в течение всего процесса сварки. Этапы переноса капли с электрода в оварочнуюванну при потолочной оварке показаны на рис. 48. Наклон электрода к направлению сварки-должен составлять 10—15° (0,17—0,25 рад). Рекомендуется применять электроды с тугоплавким покрытием. Расплавляясь несколько позже, чем электродный стрежень, покрытие образует на конце электрода чехол, котор.ый обеспечивает более направленный перенос металла, облегчая тем самым процесс сварки. При сварке потолочных швов ток уменьшается на 20—25%, по сравнению со сваркой в нижнем положении.  [c.118]

Взаимодействие металлических расплавов с твердыми керамическими поверхностями представляет собой сложную физико-химическую проблему, научное и прикладное значеппе которой за последние годы сильно возросло в связи с непрерывным расширением применения жидких металлов во многих областях современной техники. Жидкие металлы применяют в качестве теплоносителей в энергетических установках, при паянии и сварке, при нанесении защитных металлических покрытий и в ряде других технологических процессов. При контакте жидкого металла с более тугоплавким керамическим материалом могут происходить коррозия, адсорбционное понижение прочности, обусловленное резким снижением свободной энергии на межфазовой границе металл — расплав, и др. Во всех этих процессах очень важную роль играет распределение металлического расплава по поверхности керамического материала. Наряду с чисто поверхностным распространением атомы расплава могут проникать и в объем керамического материала посредством регулярной (объемной) диффузии, а также диффузии по границам зерен п другим дефектам структуры. Закономерности объем- гой диффузии подробно изучены и изложены в ряде работ, например [331, 332], тогда как вопросам поверхностного распространения, несмотря на их большое значение, уделялось до недавнего времени значительно меньше внимания.  [c.138]


Качество сварных соединений в значительной степени определяется надежностью защиты сварочной ванны и максимально разогретой зоны от воздействия окружающей среды, а также отсутствием в шве нор, шлаковых включений и других дефектов. Обеспечение указанных условий получения качественных соединений также связано с выбором способа сваркп. Наиболее эффективны в этом отношении сварка в атмосфере защитных газов и вакууме. Особенно важно правильно выбрать способ сварки при применении материалов, свойства которых ухудшаются при незначительном насыщении газами из окружающего воздуха. Например, для таких тугоплавких металлов, как титан, ниобий, а также для алюминия, магния и высоколегированных сталей предпочтительна дуговая сварка в атмосфере аргона высокой чистоты, а для молибдена и его сплавов — электронным лучом в вакууме. В то же время углеродистые и легированные конструкционные стали успешно сваривают всеми способами дуговой и электрошлаковой сварки. При соответствующем выборе режима и сварочных материалов получают сварные соединения, равнопрочные основному металлу при статических и динамических нагрузках.  [c.377]

Основной трудностью при сварке алюминия является образование на поверхности алюминия тугоплавкой окис-ной пленки А1гОз с температурой плавления 2060° С, которая затрудняет плавление металла и сплавление свариваемых кромок. Другая трудность заключается в том, что при нагреве алюминий не меняет своего цвета и поэтому трудно уловить момент начала его плавления. От сваршика требуется большой навык и опыт по сварке алюминия и его сплавов.  [c.92]

ДИФФУЗИОННАЯ СВАРКА, диффузионная сварка в вакууме, диффузионно-вакуумная сварка — сварка давлением, при которой соединяемые части подвергают общему электронагреву в вакууме до температуры (0,7—0,8) длительной выдержке при этой температуре и последующему сжатию. Вакуум создается в специальных вакуумных камерах сварочных установок. Такие условия нагрева способствуют интенсивному протеканию процессов диффузии в металле и позволяют получать соединения при небольшой пластической деформации. Нагрев осуществляется преимущественно индуктированными токами, могут использоваться и другие источники нагрева обычные сопротивления, электрический ток, пропускаемый по самим деталям, электронный луч, поле тлеющего разряда и др. Осадка деталей осуществляется с помощью пневматических систем. Д. с. применяется для соединения тугоплавких металлов н сплавов па их основе, а также металлов с металлокерамикой и графитом. Особым видом Д. с. является диффузионная сварка в контролируемой атмосфере, при которой в качестве защитных газов используются водород, аргон, гелий. См. Автоеакуумная сварка. На рисунке дана схема диффузионной сварки 1 — нагреватель 2 — заготовки — усилие сжатия.  [c.41]

Зачистка под сварку. Легированные стали, поступающие на сварку, могут иметь на поверхности слой тугоплавкой окалины, образовавшейся при термической обработке. Для получения большего провара и чистоты переходной зоны кромки легированной стали необходимо тщательно зачищать от окайины, смазки, шлака и других загрязнений. Зачистку следует делать не только в местах сплавления металлов, но и на расстоянии не менее 10—15 мм от шва. Хорошие результаты дает дробеструйная очистка, а также травление. С кромок и прилегающих к шву закрытых мест следует также тщательно удалять влагу, жиры и различные масла, так как наличие этих примесей способствует образованию пористости шва. Влага удаляется просушиванием или подогревом металла до 110—120°. Масло и жиры удаляются обтиркой, а также промывкой в щелочах, а иногда и прокаливанием, если это допустимо по условиям термической обработки стали.  [c.192]

Таким образом, условия плавления металла влияют на процесс последующей кристаллизации и соответственно на свойства металла сварного шва. Рассматривая влияние условий плавления на последующую кристаллизацию и свойства, необходимо остановиться на роли неметаллических включений и карбидов неизбежно присутствующих в сталях и металле сварочной ванны И те, и другие, сохраняясь после расплавления в жидком металле также могут служить центрами несамопроизвольной кристалли зации. На практике несамопроизвольную кристаллизацию ис пользуют для модификации — измельчения кристаллитов при затвердевании. Модифицирующее действие таких включений сохраняется только в том случае, если они не растворяются в ванне расплавленного металла. В связи с этим представляют интерес температуры плавления и растворения твердых и тугоплавких включений, которые могут находиться в стали при ее нагреве и плавлении. Поведение этих включений при плавлении особенно большое значение имеет для сварки, так как продолжительность пребывания металла при высоких температурах в твердом и жидком состояниях очень невелика.  [c.28]

Таким образом, общими мерами предотвращения образования горячих трещин в однофазных аустенитных швах являются следующие 1) максимально возможное снижение содержания в металле шва серы, фосфора, кремния, водорода и других вредных примесей 2) применение окислительных защитных сред — смеси аргона с кислородом, высокоокислительного низкокремнистого сварочного флюса или введение окислителей (в том числе и тугоплавких окислов) в покрытия электродов и керамические флюсы 3) легирование металла шва марганцем, азотом, молибденом, вольфрамом и др 4) применение специальных методов воздействия на кристаллизующийся металл сварочной ванны — электромагнитного воздействия, механической продольной относительно оси шва вибрации электрода 5) введение в сварочную ванну модификаторов (лучше в хвостовую ее часть) 6) сварка на режимах, обеспечивающих наиболее благоприятную форму шва и, по воз можности, короткую сварочную ванну 7) применение электрошлаковой сварки (вместо электродуговой).  [c.309]

Газовая сварка бронзы применяется при ремонте изделий, исправлении брака литья, наплавке поверхностей деталей, рабо-,тающих на трение, л в других случаях. Основным затруднением при сварке броиз является выгорание легирующих примесей, что приводит к пористости металла шва. При сварке оловянистых бронз в расплавленном металле образуется ликвация олова, которое, выделяясь в виде мелких шариков сплава, насыщенного оловом, испаряется при нагревании до 1200°, образуя пары и давая белый налет двуокиси олова (ЗпОг) вокруг шва. Двуокись олова растворяется также в жидком металле шва и. с трудом удаляется из него. При сварке алюминиевых бронз основное затруднение состоит в образовании тугоплавкой окиси алюминия, трудно удаляемой из металла шва (температура плавления бронз наиболее распространенных марок составляет обычно около 1020—1060°).  [c.239]

Установки с электронно-лучевым нагревом. Установка АЗОб-14 предназначена для диффузионной сварки в вакууме деталей и узлов электровакуумных приборов из тугоплавких металлов и сплавов, а также других конструкционных сталей [II, 12]. Установка (рис. 27) состоит из двух частей блока сварки и блока питания. Блок сварки имеет вакуумную камеру 10, откачную систему и систему охлаждения, гидравлическую систему и блок с тремя электронно-оптическими системами 2. Вакуумная камера выполнена цилиндрической формы диаметром 0,49 м и высотой 0,48 м с водяной рубашкой. В камере можно сваривать изделия диаметром до 0,12 м и высотой до 0,18 м. В нижней части се на охлаждаемом упоре установлен блок электроннооптических систем. Приспособление со свариваемыми деталями / устанавливается на нижний упор. К патрубку камеры присоединен высоковаку-умный откачной агрегат. Усилие сжатия на свариваемые детали создается гидравлической системой. Гидроцилиндр установлен сверху камеры.  [c.111]

Общие сведения. С развитием новых отраслей техники тугоплавкие металлы и их сплавы благодаря высоким жаропрочности, коррозионной стойкости в ряде агрессивных сред и другим свойствам находят все более широкое применение. К тугоплавким металлам, использующимся для изготовления сварных конструкций, относятся металлы IV, V и VI групп периодической системы Менделеева ниобий, тантал, цирконий, ванадий, титан, молибден, вольфрам и др. Эти металлы и сплавы на их основе обладают рядом общих физико-химических и технологических свойств, основными из которых являются высокие температура плавления, химическая активность в жидком и твердом состоянии при повышенных температурах поотношению к атмосферным газам, чувствительность к термическому воздействию, склонность к охрупчиванию, к интенсивному росту зерна при нагреве выше температуры рекристаллизации. Пластичность сварных соединений тугоплавких металлов, как и самих металлов, в большей мере зависит от содержания примесей внедрения. Растворимость азота, углерода и водорода в тугоплавких металлах показана на рис. 1. Содержание примесей внедрения влияет на технологические свойства тугоплавких металлов и особенно на их свариваемость. Взаимодействие тугоплавких металлов с газами и образование окислов, гидридов и нитридов вызывают резкое охрупчивание металла. Главной задачей металлургии сварки химически активных тугоплавких металлов является обеспечение совершенной защиты металла и минимального содержания в нем вредных примесей. Применение диффузионной сварки в вакууме для соединения тугоплавких металлов и их сплавов является весьма перспективным, так как позволяет использовать наиболее совершенную защиту металла от газов и регулировать термодеформационный цикл сварки в благоприятных для металла пределах.  [c.150]



Смотреть страницы где упоминается термин Тугоплавкие Сварка с другими металлами : [c.40]    [c.127]    [c.320]    [c.254]    [c.345]    [c.425]    [c.139]    [c.24]   
Диффузионная сварка материалов (1981) -- [ c.155 , c.162 ]



ПОИСК



Металлы тугоплавкие

Сварка металла

Тугоплавкие сварка



© 2025 Mash-xxl.info Реклама на сайте