Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вольфрам — водород

Чтобы удалить большинство растворенных в вольфраме газов, необходимо нагреть его в вакууме до температуры около 2200 °С и откачивать в течение примерно двух часов (здесь и в -последующем при обсуждении изменений в вольфраме приводится истинная температура, а не спектральная яркостная температура). После такой обработки основная часть оставшегося в стеклянной оболочке лампы газа будет появляться из молибденовых или никелевых вводов, которые остаются при более низкой температуре, или из стекла. Нагретый вольфрам выделяет следующие газы (в порядке их концентрации) азот, окись углерода и водород. Присутствие их в твердом растворе всегда увеличивает электрическое сопротивление металла. Если после отпайки лампы имеет место чрезмерная дегазация вольфрама, обычно наблюдается гистерезис соотношения со-противление/температура. Этот гистерезис происходит следующим образом. При высоких температурах газ выделяется из глубины металла диффузией к поверхности и испарением. При охлаждении тот же газ, если он не был удален откачкой или абсорбирован в другом месте, конденсируется на поверхности вольфрама и начинает диффундировать обратно в металл, увеличивая тем самым его сопротивление. Скорость, с которой происходят все эти процессы, является экспоненциальной функцией температуры. Для ламп, используемых в области до 1800 °С, дрейф сопротивления при охлаждении, скажем до 1200 °С, может происходить в пределах нескольких дней как результат недостаточной дегазации в начальной стадии или последующей течи.  [c.353]


Водород бромистый Водород фтористый Водород хлористый Вольфрам  [c.256]

Монокристаллы вольфрама диаметром 20—25 мм, содержащие сравнительно небольшое количество примесей (тысячные доли процента углерода и кислорода и десятитысячные—азота и водорода), можно прокатывать при 300—400 °С с суммарной степенью деформации до 85 % и обжатии за один проход 30 % (спеченный вольфрам обрабатывают давлением при 1500—1700 °С) образцы на сжатие выдерживают при 20 °С 35 %-ную осадку [1].  [c.138]

С водородом вольфрам химически не реагирует вплоть до температуры плавления. Это позволяет все процессы термической обработки металла производить в водороде.  [c.450]

Предварительная стабилизация вольфрам-молибденовых термопар из проволоки диаметром 0,5 мм, проводимая в водороде в течение 6 ч при 1100° С, позволяет контролировать без изменения термоэлектродвижущей силы в течение 250 ч температуру образца, нагреваемого в вакууме или в защитной атмосфере инертного газа.  [c.78]

S Восстановление чистых окислов Воздействие па химически чистые окислы водородом, углеродом или гидридами Никель, кобальт, хром, титан, вольфрам, молибден и др. Высокая чистота металла, получение порошка с осколочной формой зерна Твердые сплавы и изделия из тугоплавких металлов  [c.322]

Вольфрам деформируется методом прессования, ковкой, прокаткой, выдавливанием [11, 13]. Литой вольфрам деформируется в интервале 1400—2300° С (можно при 1400—1700° С). Нагрев под деформацию необходимо осуществлять в атмосфере водорода или в вакууме. Повторную деформацию проводят при температуре около 1200° С. Температура конца деформации не должна быть ниже 600—800° С. Промежуточные отжиги необходимо проводить в вакууме или в защитной атмосфере.  [c.413]

Сплавы W + (10—40)% Си [9]. Вольфрам и медь взаимно нерастворимы. Смеси этих двух металлов в промышленности условно называют сплавами. Их получают прессованием смеси металлических порошков с последующим спеканием в водороде при 1250—1350° С. Полученный компакт состоит из мягкой и твердой составляющих.  [c.415]

Углерод Кислород Водород Марганец 0,014 0,011 0,0014 0,0020 0,004 0,001 0,0007 0,0020 0,005 0,001 0,0005 0,0015 Кремний Хром Никель Вольфрам 0,0027 0,0015 0,0015 0,043 0,0020 0,0015 0,0015 0,040 0,0020 0,0015 0,0015 0,040 Железо Медь Алюминий 0,040 0,025 0,0015 0,020 0,0015 0,0010 0,015 0,0015 0,0010  [c.84]

Время R мин. Электроэнергия о квт-ч Вольфрам в мм Водород в л  [c.220]

Водород жидкий. Вольфрам. . . . Гадолиний. . . .  [c.177]

Для раскаленных вольфрамовых проволок особенно опасны пары воды, которые диссоциируют и способствуют образованию вольфрамового ангидрида. Последний после конденсации на стенках колбы восстанавливается освободившимся водородом, вновь образуя вольфрам и пары воды. В плохо откачанных лампах накаливания этот процесс может за короткое время привести к почернению стеклянной колбы и разрушению нити.  [c.37]


Отжиг в водороде. Во время отжига водород восстанавливает окислы большинства металлов, диффундирует с высокой скоростью в глубь их кристаллической решетки, вытесняя ряд других газов, а затем легко удаляется из деталей в процессе вакуумной обработки ламп. Для отжига используется водород с минимальным количеством примесей кислорода и влаги при достаточно высокой скорости его подачи и вывода из печей (влаги не более 0,001 7о и кислорода 0,005% в объемном исчислении при скорости подачи 0,3—0,4 м ч). В водороде отжигают большинство металлов вольфрам, молибден, никель, бескислородную медь и их сплавы.  [c.197]

Легко окисляющиеся металлы (вольфрам, молибден и др.) иногда сваривают в восстановительной защитной атмосфере — водорода или смеси водорода с азотом, в аргоне или гелии.  [c.221]

Вольфрам. Порошок вольфрама ( -модификация с кубической кристаллической решеткой, период которой а =0,316 нм) получают восстановлением WO3 водородом или углеродом (сажей) его цвет изменяется в зависимости от зернистости от черного (мелкие порошки) до серого (крупнозернистые порошки).  [c.96]

Порошкообразный вольфрам можно получить восстановлением его соединений, главным образом WO3, различными восстановителями. Наибольшее распространение в промышленной практике получил метод восстановления WO3 водородом. Восстановление углеродом приводит к насыщению WO3 карбидами, что придает металлу хрупкость и ухудшает обрабатываемость заготовок.  [c.414]

В сплавах, содержащих достаточное количество Р-стабилизирующих элементов, вплоть до комнатной, температуры превращений не происходит. У этих сплавов изменение структуры в результате теплового воздействия при сварке или термической обработке не наблюдается (так же как и у высоколегированных ферритных или аустенитных сталей). Р-стабилизаторами являются цирконий, молибден, ванадий, ниобий, тантал, хром, железо, кобальт> медь, марганец, никель, кремний, вольфрам, олово и водород.  [c.101]

Вольфрам и его сплавы Перекись водорода (30 %) Едкий натрий Вода 3 см 5 г 200 см  [c.243]

Термопары вольфрам-рений успешно используются в инертном газе высокой чистоты, в водороде, а также в вакууме с ограничениями, указанными выше. Для стабилизации размеров зерна рекомендуется предвари тельный отжиг новой термопарной проволоки. Это делается в инертной атмосфере при температуре 2100 °С в течение от одного часа для и — 3 % Не до нескольких минут для У — 25% Не. Такая процедура отжига снижает также скорость образования интерметаллической о-фазы в сплаве Ш — 25% Не, которая в противном случае выпадает в части проволоки, находящейся длительное время при температурах от 800 до 1300 °С. Градуировочная таблица зависимости термо-э.д.с. от температуры была предложена [2], но пока формально не утверждена. Одно из важных применений термопар водвф-рам-рений будет рассмотрено ниже и состоит в измерении температур в ядерной энергетике в присутствии потока нейтронов.  [c.292]

Другим фактором, затрудняющим перемещение дислокаций, является легирование твердых тел примесями. Известно, что малые добавки примесных атомбв улучшают качество технических сплавов. Так, добавки ванадия, циркония, церия улучшают структуру и свойства стали, рений устраняет хрупкость вольфрама и молибдена. Это, как говорят, полезные примеси, но есть примеси п вредные, которые иногда даже в незначительных количествах делают, например, металлические изделия совсем непригодными для эксплуатации. Так, очистка меди от висмута, а титана — от водорода привела к тому, что исчезла хрупкость этих металлов. Олово, цинк, тантал, вольфрам, молибден, цирконий, очищенные от примесей до 10 —10" % их общего содержания, которые до очистки были хрупкими, стали вполне пластичными. Их можно ковать на глубоком холоде, раскатывать в тонкую фольгу при комнатной температуре.  [c.135]

Водород (дейтер11й) Водород (дейтероводород) Водород (тритий) Водорода перекись Водород бромистый Водород двухсернистый Водород иодистый Водород мышьяковистый Водород селенистый Водород теллуристый Водород фтористый Водород хлористый Вольфрам  [c.260]

Водород не охрупчивает вольфрам и молибден, снижает пластичность ниобия и тантала. При содержании в ниобии 0,014 % На наблюдается хрупкое разрушение при холодной деформации. Водород не охрупчивает ниобий при 200 °С и выше вплоть до содержания 0,2 % (по массе).  [c.526]

Вольфрам — чрезвычайно тяжелый твердый металл серого цвета. Среди металлов он обладает наиболее высокой температурой плавления (3380°С). Вольфрам получают из руд различного состава главным образом из вольфрамита пРе Л 04хгаМп Л 04 и шеелита Са 04 промежуточным продуктом является вольфрамовая кислота Н21У04, из которой путем восстановления водородом при нагреве до 900 °С получают металлический вольфрам в виде мелкого порошка с размером зёрен 1...7 мкм. Из этого порошка прессуют стержни, которые подвергают сложной термической обработке в атмосфере водорода, ковке и волочению в проволоку (диаметром до 0,01 мм), прокатке в листы и т. п.  [c.28]


Исследованы физико-химические закономерности осаждения вольфрам-рениевых сплавов 03 смесд их гексафторидов о водородом. Процесс осаждения рения контролируется диф-  [c.259]

Метод электролитического осаждения. Из водных растворов солей молибдена и вольфрама нельзя получить качественные электролитические покрытия из-за выделения водорода, но из расплавленных галоидных солей молибден п вольфрам осаждают в виде тонких покрытий с очень малой скоростью, невысокой адгезией и относительно большой пористостью [152]. Поэтому этот метод не получил npiiNieHeHHH и является также мало перспективным.  [c.107]

Вольфрам W (Wo framium Сероватобелый блестящий металл. Распространенность в земной коре 1 10 /о- л = =3410 С, = 6000° С плотность 19,3. В природе встречается в виде соединений — солей вольфрамовой кислоты. Металлический вольфрам восстанавливается из трехокиси вольфрама WOj водородом. Обладает наивысшей тугоплавкостью из всех металлов. При обычных условиях не взаимодействует с водой и воздухом, при нагревании соединяется с кислородом, фтором, хлором, серой, азотом, углеродом, кремнием. Растворяется в царской водке, смеси фтористоводородной и азотной кислот и в расплавленных щелочах.  [c.383]

Гелий используется как теплопередающая среда в высокотемпературных реакторах, а в будущем он, возможно, будет применен в реакторах на быстрых нейтронах. Чистый гелий не реагирует с металлами, однако он может быть загрязнен воздухом, влагой или маслом, а в процессе работы газами, адсорбированными графитом активной зоны или отражателя, и влагой или водой в результате утечки из парогенератора. Примеси реагируют с нагретым графитом, образуя восстановительную атмосферу, в которой преобладает водород и моноокись углерода. Содержание примесей в контуре реактора Dragon , которое, вероятно, ниже, чем в промышленных реакторах, составляет 5-10 % Иг, 15-10 % СО, 5-10 % НгО и 5-10 % СН4. В этих условиях никель и кобальт практически не окисляются железо, молибден и вольфрам находятся почти в равновесии с их окислами в то же время такие металлы, как хром, ниобий и частично алюминий, быстро окисляются, рис. 11.10 [12]. При высокой температуре быстро науглероживаются молибден, хром, ниобий и титан, в то время как большинство других металлов не науглероживается (рис. 11.11). Поскольку концентрация окисляющих и науглероживающих газов мала, то их недостаточно для получения сплошной окисной пленки, которая могла бы полностью защитить металл от взаимодействия. Следовательно, существует возможность развития коррозии или науглероживания на отдельных участках, в частности, по границам зерен.  [c.154]

Температуру пайки в среде сухого и увлажненного водорода измеряют с помощью специальных вольфрам-рениевых термопар в случае сухого водорода — термопарами ТВР-0777, увлажненного (с избыточным давлением до 0,04 МПа) — термопарами ТВР-1338. Предел измерений температур этими термопарами300—1800°С, длина погружаемой части 100—500 мм, продолжительность работы 4000 ч. Изменение первоначального значения термо-ЭДС по градуировочной таблице за время работы термопары при температуре 1800 С в течение 200 ч не превышает 1,5%. Рабочий спай термопары после 200 ч работы при максимальной температуре возобновляют. Термопары помещены в молибденовый герметичный кожух, а при эксплуатации свыше 100 С их заключают в водоохлаждаемый чехол из коррозионно-стойкой стали.  [c.199]

Как ВИДНО из таблицы, электролитический хром при йодид-ном рафинировании очищается от кремния, титана, меди, железа, азота, кислорода, водорода и углерода, в то время как содержание алюминия, свинца, висмута и кадмия остается после рафинирования практически на том же уровне. В рафинированном металле полностью отсутствовали марганец, никель, ванадий, молибден, вольфрам, мышьяк, сурьма и бор (в исходном металле эти примеси не определяли). Металлический хром после йодид-ного рафинирования пластичен в литом состоянии (удлинение при растяжении 9—16%).  [c.160]

Руконодствуясь соответствующими соображениями, приведенными для температуры перехода вольфрама из хрупкого состояния в пластичнос, компактному металлу можно придавать форму с помощью обычных технологических операций, например ковки, штамповки, вырубки и гибки. Поскольку при температурах, поддерживаемых при этих операциях, вольфрам быстро окисляется, его следует нагревать в защитной атмосфере, лучше в водороде, а время выдержки его в этой атмосфере должно быть сведено к минимуму. Окисленные поверхности можно очищать от окислов промывкой в горячем растворе едкого натра или прокаливанием в атмосфере водорода примерно при 1000°.  [c.154]

При использовании преимуществ, обусловленных уникальными физическими и механическими свойствами рения при повышенных температурах, следует принимать во внимание, что металл сильно и быстро разрушаетсв D атмосфере кислорода, воздуха и в других окислительных средах, так как в Этом отношении он гораздо менее устойчив, чем ниобий, молибден, тантал или вольфрам [70]. ]Цеталл, легко изменяющийся в окислительной атмосфере, устойчив при повышенных температурах в атмосфере водорода и в других восстановительных и нейтральных средах, устойчив к действию соляной кислоты, не поддается коррозии при соприкосновении с морской вОдой и механически устойчив при электролитической эрозии 20].  [c.629]

В этой книге рассматрявается производство черных металлов в последовательности современной технологической схемы производства 1) выплавка чугуна из железной руды — доменное производство 2) прямое получение желюа и металлизованного сырья 3) выплавка стали из чугуна, металлического лома 4) обработка стальных слитков и заготовок на прокатных станах и получение готовых изделий и полуфабрикатов. Обычно черными металлами называют железо и сплавы железа с различными элементами. Основным элементом, придающим железу разнообразные свойства, является углерод. Сплавы с содержанием углерода до 2,14 % называют сталями, а сплавы с более высоким содержанием углерода — чугунами. Помимо углерода, в состав стали и чугуна входят различные элементы. Легирующие элементы улучшают, а вредные примеси ухудшают свойства железных сплавов. К легирующим элементам относятся марганец, кремний, хром, никель, молибден, вольфрам и др. К вредным примесям — сера, фосфор, кислород, азот, водород, мышьяк, свинец и др. В зависимости от содержания легирующих сталь или чугун приобретают различные свойства и могут быть использованы в той или иной области промышленности. Так, например, инструментальные стали с высоким содержанием углерода используют для изготовления режущего обрабатывающего инструмента. При повышении содержания хрома и никеля стали приобретают антикоррозионные свойства (нержавеющие стали). Стали с повышенным содержанием кремния используют в электротехнике в виде трансформаторного железа и т. п. Чугун с высоким содержанием кремния используют в литейном деле. Для деталей, выдерживающих повышенные нагрузки, применяют высокопрочные чугуны, содержащие хром, никель и т.д. Металл, используемый в промыш-деииости, сельском хозяйстве, строительстве, на транспорте и т.д., имеет различную форму, размеры и физические свойства. Придание металлу требуемой формы, необходимых размеров и различных свойств достигается обработкой слитков стали давлением и последующей термической обработкой. Для получения различной формы изделий применяют свободную ковку, штамповку на молотах н прессах, листовую штамповку, прессование, волочение и прокатку. На прокатных станах обрабатывается до 80 % всей выплавляемой стали, на них производят листы, трубы, сортовые профили, рельсы, швеллеры, балки и т. п.  [c.8]


Пары воды интенсивно окисляют вольфрам при температуре выше 600 °С с образованием WO3 и WO2. С галоидами при нагреве он может соединяться непосредственно с образованием соединений W le, WO2 I2 и WO U. С водородом вольфрам нё взаимодействует вплоть до температуры плавления.  [c.404]

Кроме ТОГО, для ракет, спутников и космических кораблей, работающих на жидком топливе, применяются жидкий водород и жидкий кислород. Поэтому температура перехода в хрупкое состояние особожаропрочных сплавов, обладающих кристаллической решеткой объемноцентрированного куба, должна быть достаточно низкой, чтобы их можно было бы применять в условиях глубокого холода. Наиболее выгодной, низкой температурой перехода в хрупкое состояние отличаются тантал и ниобий (фиг. 244). Менее выгодно применение здесь молибдена, у которого температура перехода в хрупкое состояние только несколько ниже 0° у молибденового сплава, содержащего 0,5% титана — 35 С, а добавка 50% рения понижает эту температуру до — 150 С. Вольфрам и хром становятся хрупкими и теряют пластичность при температурах значительно  [c.406]

Как уже было указано в разделе об особожаропрочных сплавах, даже сравнительно небольшое количество азота, кислорода, водорода и других примесей делают хром, вольфрам и ряд других тугоплавких металлов хрупкими и нетехнологичными. Опыт также показал, что сталь после вакуумной переплавки содержит гораздо меньше примесей и улучшает свою структуру и механические свойства. Поэтому в настоящее время широко применяются совершенные методы плавки стали и тугоплавких металлов с целью их очистки. К ним относятся электронно-лучевая плавка, плавка с расходуемым электродом в вакууме или под слоем шлака и индукционная вакуумная плавка.  [c.466]

Цирконий, как и титан, образует две аллотропические модификации, а-цир-коний кристаллизуется с образованием гексагональной решетки, а высокотемпературная Р-фаза имеет кубическую объемноцентрироваиную решетку. Температура превращения равна 862° С. Водород, марганец, железо, никель, хром, вольфрам, молибден, ванадий, ниобий, тантал, титан, торий и уран снижают температуру превращения. Они являются Р-стабилизаторами. Углерод и кремний ие влияют иа температуру превращения, а-стабилизаторами, повышающими температуру превращения, являются кислород, азот, алюминий, олово и гафний.  [c.104]


Смотреть страницы где упоминается термин Вольфрам — водород : [c.354]    [c.87]    [c.205]    [c.450]    [c.305]    [c.213]    [c.362]    [c.119]    [c.321]    [c.873]    [c.37]    [c.197]    [c.868]    [c.1022]    [c.269]   
Смотреть главы в:

Металловедение и термическая обработка стали Том 1, 2 Издание 2  -> Вольфрам — водород



ПОИСК



Водород

Вольфрам

Вольфрам Взаимодействие с водородом и углеродом

Восстановление трехокиси вольфрама водородом

Диаграмма состояний алюминий азот вольфрам—водород



© 2025 Mash-xxl.info Реклама на сайте