Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ниобий сварка

Сварка аустенитно-мартенситных сталей. Стали этого типа обладают двухфазным строением и свариваются, как правило, двухфазными аустенитно-ферритными швами. Поэтому появления кристаллизационных трещин при сварке таких сталей можно не опасаться. Главная трудность заключается в сохранении в металле шва алюминия, титана и бора, требующихся для его дисперсионного упрочнения. Если упрочнение достигается за счет молибдена или ниобия, сварка указанных сталей заметно упрощается.  [c.618]


Имеются сведения о режимах сварки ниобия и тантала малых толщин вольфрамовым электродом на постоянном токе прямой  [c.371]

Таблица 110. Режимы аргоно-дуговой сварки ниобия и тантала Таблица 110. Режимы <a href="/info/300727">аргоно-дуговой сварки ниобия</a> и тантала
Области применения сварки в защитных газах охватывают широкий круг материалов и изделий (узлы летательных аппаратов, элементы атомных установок, корпуса и трубопроводы химических аппаратов и т. п.). Аргонодуговую сварку применяют для цветных (алюминия, магния, меди) и тугоплавких (титана, ниобия, ванадия, циркония) металлов и их сплавов, а также легированных и высоколегированных сталей.  [c.198]

Разновидностью межкристаллитной коррозии металлов является ножевая коррозия (рис. 3. 2з) — коррозия местного вида, возникающая в сварных конструкциях в очень узкой зоне на границе сварной шов — основной металл при сварке хромоникелевых сталей с повышенным содержанием углерода, даже легированных титаном или ниобием. В узкой околошовной зоне перегретого почти до расплавления металла (порядка 1300° С и выше) растворяются карбиды титана или хрома. При последующем быстром охлаждении (при контакте с ненагретым металлом) этой зоны карбиды титана или ниобия не успевают выделиться вновь и углерод остается в твердом растворе. Последующее достаточно длительное пребывание этой зоны при температурах 600—750° С, например, при сварке двухсторонним швом, приводит  [c.424]

Окисляемость металла при сварке определяется химическими свойствами свариваемого материала. Чем химически активнее металл, тем больше его склонность к окислению н тем выше должно быть качество защиты при сварке. К наиболее активным металлам, легко окисляющимся при сварке, относятся титан, цирконий, ниобий, тантал, молибден, вольфрам. При их сварке необходимо защищать от взаимодействия с воздухом не только расплавленный металл, но и прилегающий к сварочной ванне основной металл и остывающий шов с наружной стороны. Наилучшее качество защиты обеспечивают высокий вакуум и инертный газ высокой чистоты.  [c.40]


Легирование титаном или ниобием. Легирование аустенит-ных сплавов небольшими количествами элементов, обладающих большим сродством к углероду, чем хром, предотвращает диффузию углерода к границам зерен. Уже имеющийся здесь углерод взаимодействует с титаном или ниобием, а не с хромом. Сплавы такого рода называют стабилизированными (например, марки 321, 347, 348). Они не проявляют заметной склонности к межкристаллитной коррозии после сварки или нагрева до температур сенсибилизации. Наилучшей стойкости к межкристаллитной коррозии при нагреве сплава до температур, близких к 675 °С, достигают в результате предварительной стабилизирующей термической обработки в течение нескольких часов при 900 °С [14, 19]. Эта обработка эффективно способствует переходу имеющегося углерода в стабильные карбиды при температурах, при которых растворимость углерода в сплаве ниже, чем при обычно более высокой температуре закалки.  [c.307]

При сварке обычно применяют сварочные электроды, содержащие ниобий, а не титан. Последний окисляется при повышенных температурах, и имеется опасность, что его содержание уменьшится и окажется недостаточным для стабилизации свариваемого сплава. Потери ниобия в результате окисления меньше.  [c.307]

Титан, а также цирконий и ниобий, содержащие водород, утрачивают свои пластические свойства, а сварка их становится невозможной. Поэтому массовая доля водорода в титане, предназначенном для ответственных конструкций, ограничивается 0,002...0,004%, и, кроме того, не допускается присутствие водорода в зоне сварки (сварка электронным лучом или в камерах с контролируемой атмосферой). При аргоно-дуговой сварке тщательно организуется защита металла сварочной ванны, остывающего до 773 К металла шва, и защищаются нижние кромки сварного соединения.  [c.347]

Положительное влияние вакуума на качество сварных соединений выражается в том, что значительно ускоряются и облегчаются процессы выхода газов и диссоциации оксидов не только в поверхностных, но и из внутренних слоев металла. Удаление кислорода и азота из сварочной ванны при электронно-лучевой сварке происходит тем полнее, чем больше упругость диссоциации оксидов и нитридов. Так, при сварке меди, кобальта, никеля в камере с разрежением 6,5-10 Па обеспечивается диссоциация оксидов этих металлов. Также диссоциируют нитриды алюминия, ниобия, хрома, магния, молибдена и некоторых других металлов с высокой упругостью диссоциации нитридов.  [c.401]

Для сварки тантала с танталом или ниобия с ниобием успешно используют дуговую сварку и сварку электронным лучом.  [c.510]

Участки металла в месте сварки попадают в опасный интервал температур. Поэтому межкристаллитная коррозия проявляется чаще всего в зоне сварных соединений. Ее появление можно предотвратить путем введения в сталь добавок титана или ниобия,которые в первую очередь связывают углерод в стабильные карбиды и делают невозможным образование карбидов хрома. Стали с очень низким содержанием углерода (менее 0,03%) не склонны к межкристаллитной коррозии даже после выдержки в опасном интервале температур. Детали небольших размеров после сварки можно подвергать гомогенизирующему отжигу, а более крупные сварные узлы — быстро охлаждать, т. е. проводить так называемую аустенитизацию.  [c.33]

Недостатком стабилизированных ниобием аустенитных хромоникелевых коррозионно-стойких сталей является возможность возникновения в них горячих трещин при сварке [15].  [c.55]

На определенном расстоянии по обе стороны сварного шва находятся области, нагревающиеся до критических температур. Здесь по границам зерен пересыщенного аустенита выделяются карбиды, богатые хромом. В результате того что устойчивость по границам зерен уменьшается, в агрессивных средах идет межкристаллитная коррозия. Образование карбидов зависит не только от температуры, но и от продолжительности ее воздействия. Влияние этих факторов определяется химическим составом основного материала и его структурой. Для сварки непригодны стали, при нагревании которых в области критических температур по границам зерен образуется карбид хрома. Поэтому для изготовления сварных конструкций широко применяются стали, стабилизованные титаном, ниобием или танталом, а также стали с низким содержанием углерода, при сварке которых не выделяются карбиды. В большинстве случаев их использования межкристаллитная коррозия в зонах, расположенных на определенном расстоянии от сварного шва, не наблюдается.  [c.100]


За последние годы в связи с развитием техники возникли потребности сварки новых, ранее не применявшихся материалов с особыми свойствами. В современной технике (особенно ракетной, авиационной, энергетической, атомной, химической, приборостроительной и др.) стали широко применяться в качестве конструкционных материалов тугоплавкие и в химическом отношении весьма активные металлы — молибден, тантал, вольфрам, ниобий, цирконий, бериллий и др. Это обусловило разработку способов сварки, основанных на новых физических принципах, так как при помош,и суш е-ствовавших методов не представлялось возможным получать доброкачественные соединения. В результате исследований, проведенных во многих странах, в том числе и в СССР, были изысканы новые источники нагрева, обеспечившие создание сварки электронными и когерентными лучами, плазменной дугой, ультразвуком, диффузионной сварки в вакууме, холодной сварки, сварки трением и др. Эти новые способы сварки внедряются в нашей стране.  [c.130]

Ниобий можно сваривать обычной аргонодуговой сваркой, при толщине листа более 1 мм дуговую сварку осуществляют в камере с аргоном или электронно-лучевым методом в вакууме. Точечную сварку листов толщиной менее 0.5 мм можно проводить на воздухе. В случае отсутствия загрязнения при сварке сварные соединения чистого ниобия пластичны при комнатной температуре.  [c.414]

Снижение пластических свойств стали в соседних со швом участках почти всегда можно предупредить или довести до допустимых пределов. Для этой цели или несколько изменяется состав стали, или меняются режимы сварки. Введение элементов, образующих медленно растворяющиеся в аустените карбиды, понижает в условиях сварки закаливаемость стали. Одним из наиболее интересных элементов с этой точки зрения является ниобий. Кроме того, целесообразно снижение (до возможных пределов) содержания в стали углерода.  [c.355]

Жаростойкие окалиностойкие) стали обладают коррозионной стойкостью в газовой среде и кислотах при повышенных температурах. Обычно это стали типа Х25Н20 с добавлением присадок легирующих элементов (Т1, Мо, МЬ и др.). При сварке сталей этого типа, кроме вышеперечисленных особенностей (выпадение карбидов хрома, малая теплопроводность), наблюдается еще склонность к образованию горячих трещин. Эти стали свариваются главным образом ручной дуговой сваркой, причем необходимо применить специальную сварочную проволоку (Св-Х25Н15 и Св-Х25Н15В), основные электродные покрытия с добавлением титана и ниобия. Сварку ведут на небольших токах и пониженном напряжении. Полезно применять подогрев до 300° С.  [c.495]

Вследствие активности -ниобия сварку его нельзя проводигь под флюсом, так как ниобий будет реагировать с ним, давая. хрупкие швы.  [c.187]

Отсутствие насыщения расплавленного и нагретого металла газами. Наоборот, в целом ряде случаев наблюдается дегазация мета.тла юна и повышение его пластических свойств, В резу [ьтате достигается Bi.i oKoe качество сварных соединений па химически активных металлах и сплавах, таких как ниобий, цирконий, титан, молибден и др. Хоро[иее качество электронно-лучопой сварки достигается также на низкоуглеродистых, кор-  [c.67]

Ножевая коррозия имеет сосродоточенпый характер (рис. 142, в) и поражает основной металл. Этот вид коррозии развивается в сталях, стабилизироват[иых титаном и ниобием, обычно в участках, которые нагревались до темиератур вьине 1250° С. При этом карбиды титана и ниобия растворяются в аустеиите. Повторное тепловое воздействие на этот металл критических температур 500—800° С (наирнг.гер, при многослойной сварке) приведет к сохранению титана и ниобия в твердом растворе и выделению карбидов хрома.  [c.291]

Удовлетворяющую этому требованию Хромоникелевую сталь марки Х18Н9Т применяют для сварных конструкций. Легирование стали ниобием (сталь 0Х17Н12Б) в ряде случаев дает больший эффект, чем легирование титаном. Кроме того, ниобий меньше, чем титан, подвержен выгоранию, поэтому в качестве присадочного материала при сварке применяют электродную проволоку из стали, легированной ниобием.  [c.424]

Ниобий легко подвергается механической обработке. Соединения деталей и ниобия можно осуществить клепкой или сваркой. Сварку рекомендуется производить в специальных камерах, иаиолпенных аргоном.  [c.290]

В связи с развитием научно-технической революции резко возрос диапазон свариваемых толшии материалов, видов сварки. В настоящее время сваривают штериалы толщиной от нескольких микрон (в микроэлектронике) до нескольких метров (в тяжелом машиностроении). Наряду с традиционными конструкционными сталями сваривают специальные стали и сплавы на основе титана, циркония, молибдена, ниобия и других материалов, а также разнородные ма-териащя.  [c.3]

При сварке легированных сталей диаграмма Fe—О — С существенно усложнится из-за образования более устойчивых, чем РезС, карбидов (легирующие элементы Сг, Мп, ванадий, ниобий, титан), а также из-за смещения границ растворимости карбидов в твердых растворах 7-Fe (никель).  [c.341]

Исследована возможность получения на тугоплавких металлах (ниобии, тантале, молибдене и вольфраме) покрытий из карбидов циркония и ниобия. 1) нанесением на подложку слоя карбидообразующего металла (циркония или ниобия) с последующей его карбидизацией 2) методом припекания порошка карбида на связке, п 3) методом диффузионной сварки в вакууме тонких горячепрессованных карбидных пластинок с металлической подложкой. В результате исследований для покрытий пз карбида циркония на ниобии, тантале, молибдене и вольфраме рекомендуются 2-й и 3-й способы, а для покрытий из карбида ниобия — 1-й и 3-й. Приводятся режимы нанесения покрытий для каждого металла. Библ. — 7 назв., рис. — 4, табл. — 1.  [c.338]


Как низкоуглеродистые, так и высокоуглеродистые хромомарганцевые сплавы характеризуются хорошими литейными свойствами. Низкоуглеродистые сплавы (особенно типа Х15АГ15) хорошо обрабатываются ковкой и прокаткой, удовлетворительно — резанием и сваркой. Легирование хромомарганцевых сплавов типа Х15АГ15 титаном и ниобием снижает их склонность к межкристаллитной коррозии. Сплавы, легированные ниобием, характеризуются мелкой зернистостью и высокой твердостью.  [c.61]

Для сварки хромоникелевых коррозионностойкнх сталей, содержащих молибден (Х17Н13М2Т), применяют электроды ЭА-1МБ, которые легируют шов молибденом и ниобием. К электродам этого вида могут быть отнесены также электроды  [c.59]

Чистый тантал легко поддается обработке резанием. Сваривается тантал только в вакууме или в нейтральной среде. Он хорошо сваривается с медью, титаном, ниобием, цирконием возможна сварка с мо.чнбденом и вольфрамом [13].  [c.415]

Компактный металлический ниобий получают методами порошковой металлургии и плавкой. Чистый компактный ЫЬ легко поддается деформированию (ковке, прокатке, волочению) в холодном состоянии. Нагартовывается медленно, поэтому может деформироваться до 99 % обжатий без промежуточных отжигов. (Зтжиг ниобия производится при температуре 1300—1400 °С в нейтральной среде. Поддается сварке обрабатывается резанием  [c.352]

При определенном содержании ниобия в никелевых сплавах образуется химическое соединение NijNb, для которого харак-т но замедленное (по сравнению с фазой Nig (Ti, Al)) выделение из твердого никелевого раствора, что в некотором случае (например, при сварке) представляет очевидное преимущество.  [c.163]

При сварке чисто ферритной высокохромистой стали под влиянием термического воздействия в зонах влияния при нагреве выше 800° наблюдается сильный рост исходного зерна и особенно в стали, пр. дварительно подвергшейся наклёпу. Местная крупнозернистость стали вблизи шва влечёт за собой понижение её механических и особенно пластических свойств. Интенсивность роста зерна понижается введением в сталь ниобия, титана или тантала. Образуя стойкие карбиды, нс успевающие раствориться при нагреве стали, эти элементы препятствуют росту зерна [3,4].  [c.354]

N1) под термическим влиянием процесса сварки в тех участках, где сталь нагревается выше 400 —500°, наблюдается также резкое снижение стойкости против интеркристаллит-ной коррозии и понижение механических свойств вследствие выпадения карбидов хрома по границам зёрен. Введение в эту сталь титана или ниобия, препятствующих выпадению из аустенита карбидов хрома, устраняет указанное явление.  [c.355]

При сварке хромоникелевых нержавеющих и жароупорных сталей необходимо учесть следующие их особенности а) хром интенсивно соединяется с кислородом, образуя тугоплавкий окисел Сг20 , б) хром образует устойчивые карбиды СГ3С2 и СгцС. сильно снижающие антикоррозийные свойства металла выделение карбидов из аустенита проходит в интервале температур 600—800° С, и чем больше содержание углерода в металле, тем благоприятнее условия их выделения. Наличие в металле титана и ниобия предохраняет его от выпадения карбидов хрома в) теплопроводность нержавеющих и жароупорных сталей в 3—4 раза меньше, чем малоуглеродистых, а коэфициент линейного расширения значительно выше, что вызывает местные перегревы и повышает внутренние напряжения.  [c.428]


Смотреть страницы где упоминается термин Ниобий сварка : [c.674]    [c.295]    [c.121]    [c.276]    [c.290]    [c.295]    [c.306]    [c.371]    [c.387]    [c.390]    [c.390]    [c.297]    [c.80]    [c.3]    [c.55]    [c.116]    [c.109]   
Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.156 ]



ПОИСК



Ниобий

Ниобий Аргоно-дуговая сварка

Ниобий — Содержание в стали влияние на сварку

Ниобий, особенности сварки

Ниобит 558, XIV

Сварка алюминиевых сплавов ниобия

Сварка ниобия, тантала и молибдена со сталью и сплавами цветных металлов

Сварка с титаном, ниобием, молибденом — Режимы

Технология сварки сплавов на основе ниобия, ванадия и тантала (И.Н. Шиганов)

Усовершенствование сварки плавлением сплавов на основе ниобия Дьяченко, Б. П. Морозов, Е. Н. Сивов, В. К Иванов)



© 2025 Mash-xxl.info Реклама на сайте