Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метрический первый

Метрические резьбы бывают с крупным и мелким шагом. Эти резьбы по профилю подобны, но для одних и тех же диаметров они имеют различные значения шага, а следовательно, и другие размеры профиля. Установлено три ряда диаметров метрической резьбы (ГОСТ 8724 — 8 ). При выборе диаметров резьб следует предпочитать первый ряд второму, а второй — третьему.  [c.188]

Первую группу составляют задачи, связанные с определением метрических свойств положения данной фигуры относительно плоскостей проекций (расстояние, угол), определяющие параметры положения фигуры. Например, положение точки относительно плоскостей координат (проекций) определяется ее координатами, положение прямой можно определить координатами ее следов на плоскостях проекций или координатами следа на какой-либо плоскости проекций и углами наклона к двум плоскостям проекций. В случае задания плоскостей и поверхностей в качестве параметров положения выступают метрические характеристики определяющих их элементов (геометрической части определителя поверхности). Например, сфера имеет три параметра положения — координаты се центра. За параметры положения плоскости можно принять три отрезка, отсекаемые плоскостью на осях системы координат.  [c.145]


Структурная схема (см. рис. 5.1) позволяет наглядно и достаточно информативно представить комплекс метрических задач, алгоритмами решения которых должен владеть студент технического вуза. Решения этих за дач сводятся к решению простейших (базовых) задач. К ним в первую очередь следует отнести  [c.145]

В этом разделе рассмотрим алгоритм решения метрических задач, относящихся к первым трем группам классификации (см. рис. 5.1).  [c.155]

Для облегчения определения метрических соотношений на изображении такие модели было предложено делать на основе одного кубического модуля. Из непроизводного модуля производные элементы выполняются путем последовательной склейки , их друг с другом. Единая модульная система объектов выбрана с учетом простоты реализации их изображения на ЭВМ в интерактивном режиме. Удобство модульного комплекса заключается прежде всего в, возможности моделирования большого количества задач, значительно дифференцированных по своей трудности. Уже на этапе анализа можно реализовать несколько уровней сложности объекта. Наиболее простые детали соответствуют плоской структуре, сложные — трехмерной пространственной структуре первого и второго порядка (рис. 4.6.3).  [c.172]

Пространственно-графическое формообразование в учебных заданиях подразделяется на три структурных компонента геометрический, конструктивный и технологический. Геометрический аспект формообразования является основным, им определяется процесс разработки пространственной, метрической структуры, а также главное содержание действий анализа верности отображения формы на ее графической модели. Конструктивный аспект выступает на первый план при анализе связи многокомпонентного устройства, рассматриваемого как функциональное целое. Технологический аспект определяет логику формообразования детали, ее строения в соответствии с прогрессивной технологией. Идея простран-ственно-графического моделирования вполне совпадает с концепцией качества в технике, естественно вытекает из ее основных положений.  [c.181]

Приблизительно с середины 19 в. быстрый рост мировой торговли в сочетании с появлением все более сложной техники привели к идее о необходимости, международного соглашения о мерах и весах и единицах измерений. В Великобритании и континентальной Европе были предприняты усилия, направленные на установление единства измерений. Британская ассоциация развития науки (БАРН) первой проявила инициативу в области электрических измерений, а Международная геофизическая ассоциация на своей 2-й Генеральной конференции в Берлине в 1867 г. выдвинула предложения об унификации измерений длины в Европе. Одно из предложений предусматривало организацию европейского Бюро мер и весов. К этому времени необходимость в единой системе мер стала насущной и метрическая система, уже применявшаяся в ряде стран Европы, была по существу единственным серьезным кандидатом. На всемирных выставках в Лондоне в 1851 и 1862 гг. и в Париже в 1855 и 1867 гг. выдвигались различные предложения о формах международного сотрудничества в области мер и весов. Наконец, в 1869 г. в соответствии с рекомендациями Международной геофизической ассоциации, поддержанными Академиями наук Петербурга и Парижа, а также французским Бюро долгот, правительство Франции предложило организовать Комиссию для выработки соглашения о принятии метрической системы в качестве международной. Приглашение  [c.37]


Действуют стандарты на резьбы общего назначения (см. стр. 87) и резьбы специальные, например для цоколей электроламп (ГОСТ 6042— 71), сантехнической арматуры (ГОСТ 13536—68) и др. Для резьб общего применения, и в первую очередь метрических, существует комплекс стандартов на основные размеры, допуски и калибры.  [c.86]

Принцип предпочтительности. Обычно типоразмеры деталей и типовых соединений, ряды допусков, посадок и другие параметры стандартизуют одновременно для многих отраслей промышленности, поэтому такие стандарты охватывают большой диапазон значений параметров. Чтобы повысить уровень взаимозаменяемости и уменьшить номенклатуру изделий и типоразмеров заготовок, размерного режущего инструмента, оснастки и калибров, используемых в той или иной отрасли промышленности, а также чтобы создать условия для эффективной специализации и кооперирования заводов, удешевления продукции при унификации и разработке стандартов применяют принцип предпочтительности. Согласно этому принципу устанавливают несколько рядов (например, три) значений стандартизуемых параметров с тем, чтобы при их выборе первый ряд предпочитать второму, второй — третьему. По такому принципу построены ряды диаметров и шагов метрической резьбы, ряды нормальных углов, стандарты на допуски и посадки для гладких цилиндрических соединений и т. д. Кроме того, рекомендуется создать отраслевые ограничительные стандарты, сводящие к необходимому минимуму число допускаемых к применению параметров, типов и типоразмеров изделий.  [c.43]

Метрические резьбы бывают с крупным и мелким шагом. ГОСТ 8724—81 (СТ СЭВ 181—75) устанавливает три ряда диаметров метрической резьбы, в каждом из которых предусмотрены крупный и мелкие шаги. При выборе диаметров резьб первый ряд следует предпочитать второму, второй —третьему. У резьбы с крупным шагом каждому наружному диаметру соответствует шаг, определяемый зависимостью d (D) яь 6Р 3. У резьбы с мелкими шагами одному наружному диаметру могут соответствовать разные шаги. Метрические резьбы с мелкими шагами применяют при соединении тонкостенных деталей, ограниченной длине свинчивания, а также в случаях, когда требуется повышенная прочность соединения (особенно при переменных нагрузках).  [c.277]

Принятые в этой главе обозначения соответствуют обозначениям в II. Латинские индексы i, ft, /,. .. пробегают значения О, 1, 2, 3, причем = t — временная координата (в этой главе с — скорость света). Первые буквы греческого алфавита а, р,, .. в индексах пробегают значения I, 2, 3, отвечающие пространственным координатам. Галилеевой метрике (специальная теория относительности) отвечает метрический тензор с компонентами goo =1, gn = = S22 = Язз = —1-  [c.692]

Путем свертывания данного тензора с метрическим тензором выполняется операция опускания или поднятия индексов у данного тензора. Эту операцию для вектора (тензора первого ранга) иллюстрируют равенства (2 .22) и (2 .23). Пусть, например, два раза контравариантный тензор а 1 дважды свертывается с ковариантным метрическим тензором. В результате получим два раза ковариантный тензор  [c.411]

Задаче динамики деформируемого тела можно поставить в соответствие задачу о равновесии фиктивного четырехмерного тела. Для этого в рассмотрение вводится четырехмерное пространство с системой координат л (а = 1,2, 3, 0), в которой первые три координаты х (I = 1, 2, 3) — пространственные они совпадают с координатами Д основной системы координат, четвертая координата — временная хР = где и" — коэффициент пропорциональности, имеющий размерность скорости. Координатная линия х° — прямая, ортогональная к другим координатным линиям системы координат. Метрический тензор системы координат х имеет компоненты goo = —U ёю = остальные компоненты gtj совпадают с соответствующими компонентами метрического тензора основной системы координат х (t = 1,2,3). Введем в рассмотрение четырехмерный тензор кинетических напряжений (Т), компоненты которого имеют вид [24]  [c.32]

Пусть частота усиливаемого сигнала равна сок а частота накачки со . Для работы усилителя необходимо, чтобы его первый контур был настроен на частоту, близкую к частоте сигнала второй контур настраивается на частоту, близкую к 2 и равную либо со,, —сох, либо (Ои-Есо . Режим работы пара.метрического усилителя в этих  [c.255]


Еще в 1918 г. В. И. Ленин подписал декрет Совета Народных Комиссаров О введении Международной метрической системы мер и весов . Это было первым шагом по созданию отечественной стандартизации.  [c.4]

Первые сведения о работах по стандартизации, проводившихся в России, относятся к 1555 г., когда указом Ивана Грозного были определены размеры пушечных ядер и установлены калибры (лекала) для их проверки. Во времена Петра 1 был издан ряд указов, согласно которым изготовление многих изделий военной техники должно было вестись по образцам, которые можно рассматривать как предшественников стандартов. На тульских оружейных заводах при массовом производстве стрелкового оружия с начала XIX в. широко использовались методы стандартизации. Первые русские стандарты появились в результате развития машиностроения, железнодорожного транспорта, судостроения и других отраслей промышленности. Это были стандарты предприятий или фирм. Государственной стандартизации в царской России не было не было также единой системы мер в промышленности действовали три системы мер старая русская, британская и метрическая.  [c.13]

Полное внедрение Международной системы единиц в нормативно-техническую, конструкторскую и другие виды документации, в научную литературу, учебные, справочные и другие периодические издания по своему технико-экономическому значению соизмеримо с произведенным в первые годы Советской власти переходом на метрическую систему мер.  [c.95]

Резьба метрическая нечётные варианты - с крупным шагом, чётные варианты -- с первым мелким шагом. Записать условное обозначение стандартных деталей соединения.  [c.55]

В 1899 году вышел в свет Русский нормативный метрический сортамент фасонного железа. Угловое, тавровое, двутавровое, корытное железо . Издание носило предварительный характер. Первым ведомством, одобрившим русский нормативный метрический сортамент и введшим его в действие, было Министерство путей сообщения.  [c.40]

В первой части рассмотрены методы структурного и метрического синтеза и кинематического анализа рычажных, кулачковых и зубчатых механизмов.  [c.2]

В первой части излагаются методы структурного и метрического синтеза и кинематического анализа рычажных, кулачковых и зубчатых механизмов. Эти механизмы широко применяют в современном машиностроении для механизации различных технологических процессов. Задачи механизации могут быть решены в разных вариантах, причем конструктор располагает большими возможностями использования тех или иных механизмов, из которых следует выбрать наиболее целесообразный для заданных условий. Поэтому авторы сочли полезным в начале основных глав учебника  [c.3]

Кинематическое исследование схем механизмов выполняют графическими и аналитическими методами. Первые отличаются наглядностью и относительной простотой, но не дают точных результатов. Аналитические методы позволяют получить требуемую точность результатов и установить в аналитической форме функциональную зависимость кинематических параметров механизма от метрических параметров звеньев, но отличаются большой сложностью и трудоемкостью вычислений.  [c.74]

Решение задач метрического синтеза кулачкового механизма должно выполняться на основе учета механических показателей или его качественных критериев, ограничивающих условия, и критериев высшей пары — профиля кулачка. К числу первых относятся угол давления у коэффициент полезного действия механизма т] коэффициент возрастания усилия Н коэффициент динамичности коэффициент прочности или жесткости элементов механизма а коэффициент потерь от трения в кинематических парах х степень удаления механизма от зоны заклинивания Q габарит или компактность механизма Г.  [c.113]

На первом этапе энергетические балансы показывают энергоресурсы в их натуральном выражении, т. е. метрических тоннах, кубических метрах и киловатт-часах. Для того чтобы данные по энергоресурсам, представленные в балансе в натуральном выражении, сделать сопоставимыми и сравнимыми, требуется перевести их в единую систему измерения.  [c.130]

Символы, определяемые выражениями (1-4.11) и (1-4.10), называются символами Кристоффеля первого и второго роДа соответственно. Как видно из этих соотношений, они являются комбинацией производных метрического тензора по координатам и обра-ш аются в нуль, если компоненты метрического тензора постоянны, как это имеет место в декартовой системе координат. Известное правило суммирования распространяется также и на эти символы. Индексы в символах Кристоффеля первого рода считаются нижними, а в символах Кристоффеля второго рода один из индексов считается верхним и два — нижними.  [c.32]

Как было (угмсчено в первой главе, в курсе начертательной геометрии рассматривается два типа отношений между геометрическими фигурами позиционные и метрические. Соответственно этому решаются два типа задач. Изучение теории и алгоритмов решения позиционных задач в трехмерном расширенном евклидовом пространстве направлено на развитие "пространственного мыпьтсния учащихся для дальнейшего чтения и составления чертежей трехмерных объектов как на бумаге, так и на экранах дисплеев. Некоторые из них (построение касательных плоскостей, соприкасающихся поверхностей) имеют непо-среаственпое значение и составляют основу при составлении математических моделей технических форм в процессе их автоматизированного проектирования и воспроизведения на оборудовании с числовым программным управлением.  [c.99]

Задачу построения точек пересечения кривой линии с поверхностью принято называть первой основной позиционной задачей, так как алго ритмы решения многих по шдионных и метрических задач включают в себя процедуру ее решения.  [c.103]


По ГОСТ 8724—-81 каждому номинальному размеру резьбы с крупным шагом соответствует несколько мелких шагов. Резьбы с мелким шагом применяются в топкостенны.х соединениях для увеличения их герметичности, для осуществления регулировки в приборах точной механики и оптики, с целью увеличения сопротивляемости деталей самоотвинчиванию. В случае, если диаметры и шаги резьб не могут удовлетворить функциональным и конструктивным требованиям, введен СТ СЭВ 183—75 Резьба метрическая для приборостроения . Если одному диаметру соответствует несколько значений шагов, то в первую очередь применяются большие шаги. Диаметры и шаги резьб, указанные в скобках, по возможности не применяются.  [c.138]

Обозначение точности и посадок метрической резьбы. Обозначение поля допуска диаметра резьбы состоит из цифры, показыва-юш,ей степень точности, и буквы, обозначающей основное отклонение (например, 6h, 6g, 6Н). Обозначение поля допуска резьбы состоит из обозначения ноля допуска среднего диаметра, помещаемого на первом месте, и обозначения ноля допуска диаметра выступов (например, 7g6g 5Н6Н). Если обозначение поля допуска диаметра выступов совпадает с обозначением поля допуска среднего диаметра, его в обозначении поля допуска резьбы не повторяют (например, 6g, ()Н). Поле допуска резьбы указывают через тире после размера (например, болт М12—6g гайка М12—бН болт М12х1 — 6g  [c.286]

Стремление определить исходный эталон длины с очень большой точностью, на первый взгляд, представляется неоправданным. Для того чтобы оценить необходимость таких измерений, ернемся к рассмотрению упоминавшейся выше задачи о прецизионном определении важнейшей константы — скорости света ii вакууме (см. 1.4). Напоминаем, что в этих опытах одновременно измеря.тись длина волны и частота стабилизированного инфракрасного лазера и было показано, что погрешность определения с == ). оказывается непосредственно связанной с точ- юстью первичного эталона длины. Действительно, длину волны стабилизированного неон-гелиевого лазера можно интерферо-метрически измерить с очень малой погрешностью ( 10 А). Для у становления абсолютного значения /. необходимо сравнение ее с первичньгм эталоном (длина волны спектральной линии /-вак "  [c.249]

Симметричность величин относительно индексов /г следует из правой части равенства (а). Теперь рассмотрим закон преобразования величин Первый член в правой части преобразуется как компонента смешанного тензора второго ранга, так как величины 6, совпадают со смешанными компонентами метрического тензора, а является абсолютным скаляром. Что касается второго члена, то следует отметить, что радиус-вектор в криволинейной системе координат нужно считать определенным своими компонентарли в местном координатном базисе начало местной координатной системы должно совпадать с началом радиуса-вектора. Зная модуль радиуса-вектора и его направление относительно упомянутой местной координатной системы, можно найти его компоненты, как это отмечалось в первом томе.  [c.78]

Сравним между собой формулы (70), (71) и затем формулы (70) и (72). В первом случае (71) сводится по виду к (70), поскольку можно ввести новую координату ст = рф сразу на всей поверхности цилиндра, после чего различие между (71) и (70) будет только в обозначениях. Поскольку метрический тензор определяет длины кривых на поверхности и углы, которые эти кривые составляют между собой, мы говорим, что плоскость и поверхность кругового цилиндра обладают одинаковой внутренней геометрией. Совпадение внутренних геометрий проявляется в том, что кусок цилиндрической гговерхности можно разогнуть в кусок плоскости без изменения расстояний между точками и углов между направлениями.  [c.476]

Равенства, находящиеся в первых двух строках, выражают антисимметричность тензора Rprst относительно каждой пары индексов р, г н S, t. Учитывая свойства (1.88), после подсчета получаем, что из 81 компонента тензора Римана — Кристоффеля остается только шесть независимых компонентов Я 2 2, Я г ъ, R2323, Ятз, Rim, Rsisz-Известно, что во все евклидово пространство можно ввести декартову систему координат. Так как в последней компоненты метрического тензора постоянны, а следовательно, символы Кристоф-  [c.27]

По сравнению с потенциалом (10.52) потенциал Леннард — Джонса (10.53) представляет больший интерес, так как он достаточно хорошо описывает взаимодействие между частицами ряда реальных веществ, для которых известны многие экспериментальные данные. Система частиц с потенциалом взаимодействия Леннард—Джонса представляет не только теоретический, но и практический интерес. В одной из первых работ, где методом молекулярной динамики исследовалась система частиц с потенциалом взаимодействия Леннард—Джонса, сравнивались результаты численного эксперимента с данными для аргона. Потенциал взаимодействия Леннард—Джонса является двухпара-метрически.м. Результаты расчетов представляют в приведенных единицах, выбирая в качестве единицы энергии е, единицы длины о. Результаты расчетов для каждого конкретного вещества будут отличаться лишь в силу того, что они имеют разные е и о. С другой стороны, экспериментальные данные можно использовать для определения е и а.  [c.206]

Основное содержание СТО, как подчеркивал Г. Минковский, состоит в установлении единой абсолютной пространственно-временной формы бытия материи — пространственно-временного мира (мир Минковского), геометрия которого псевдоевклидова. В этом мире различным системам отсчета соответствует в общем случае различная метрика с коэффициентами y v (х) пространства-времени. Например, в произвольной неинерциальной системе координат S метрические коэффициенты y[ v оказываются функциями координат X этой системы, что приводит в итоге к появлению ускорения свободной материальной точки относительно S и сил инерции, выражающихся через производные первого порядка от тензора по соответствующим координатам. Кинематически силы инерции характеризуются тем, что вызываемые ими ускорения свободных материальных точек не будут зависеть от их масс. Таким же свойством обладают и гравитационные силы, поскольку, как показывает опыт, гравитационная масса тела равна его инертной массе. Этот фундаментальный факт привел Эйнштейна к мысли, что гравитационное поле должно описываться подобно полю сил инерции метрическим тензором, но уже в римановом пространстве-времени.  [c.158]

Направление потока в свободных струях или каналах с прозрачными стенками можно определить при помощи шелковой (или хлопчатобумажной) нити и флюгарок (флажковых угломеров) по их положению В1 потоке. Достаточно просто и точно направление потока может быть определено с помощью пневмо-метрических насадков на основе зависимости давления, воспринимаемого приемными отверстиями, от направления набегающего потока. С этой целью, например, можно использовать насадок для отбора полного давления. Насадок помещают в поток, вращают его вокруг оси и по максимальным показаниям манометра ориентировочно определяют направление потока. Затем насадок поворачивают так, чтобы ось приемного отверстия была установлена примерно под углом 40—45° к ориентировочно определенному направлению потока. В этом положении насадок наиболе чувствителен к углу атаки потока. По лимбу фиксируется его угловое положение, а по манометру — давление. Поворачивая насадок в другую сторону, проходят через максимум давления и находят второе положение насадка, в котором давление будет равно ранее зафиксированному. Направление потока будет совпадать с направлением биссектрисы угла поворота насадка от первого до второго положения.  [c.197]


Первая группа формул носит название деривационных формул Гаусса, вторая — деривационных формул Вейнгартена. Здесь Fij —символы Кристоффеля для поверхности, поднятие индекса у тензора производится с помощью метрического контрава-риантного тензора  [c.424]

Комиссия провела первое организационное собрание 27 июня 1925 года. На заседании с информационным докладом выступил заведующий Уфимской поверочной палатой А.И. Дубинин. Комиссия выполняла большую работу по постановке поверочного дела в Башреспублике проводила совещания по метризации технико-экономических объектов, производству счетных операций в метрических мерах, по ведению метрических систем во всех отраслях народного хозяйства, в том числе в коммунальном хозяйстве, в строительном деле.  [c.31]

Башнаркомпрос провел большую работу по переводу на метрическую систему преподавания в школах первой и второй ступеней. В уездах проводилась работа по замене русских шкал метрическими.  [c.33]

В заключение отметим, что имеется существенное различие между двумя способами установления основной единицы — по прототипам, материализованным в виде узаконенных образцов, и по измерению естественных величин. При первом способе установления единицы эталоном служит некоторое тело (гиря, линейка). Такими прототипами при введении метрической системы мер были прототипы килограмма и метра. Первый из них сохранился до нащего времени. Второй способ предполагает проведение некоторой процедуры измерения. Для ее осуществления необходимо, как правило, использовать сложную оптическую, радиотехническую и другую аппаратуру, совершенство которой в конечном счете определяет то шость установления единицы. Для практических измерений обычно создаются эталоны, обеспечивающие воспроизведение едн1шц с наивысшей возможной точностью. При этом эталоны не обязательно являются мерой самой единицы, а могут определять значение других величин, по которым возможно вьгшсление основной  [c.50]


Смотреть страницы где упоминается термин Метрический первый : [c.6]    [c.123]    [c.183]    [c.98]    [c.365]    [c.357]    [c.33]    [c.415]    [c.157]    [c.329]    [c.45]   
Формообразование поверхностей деталей (2001) -- [ c.508 ]



ПОИСК



Матрица первая основная фундаментальная, (см. метрический тензор поверхности)

Метрическая в минус первой степени

ОГЛАВЛЕНИЙ Раздел первый Общая часть Меры и веса (метрические и британские)



© 2025 Mash-xxl.info Реклама на сайте