Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминий сплавы высокопрочные

Основным способом повышения прочности технического алюминия, сплавов низкой и средней прочности является деформация, высокопрочных сплавов — термообработка. Кроме этого, отдельные виды полуфабрикатов с целью упрочнения подвергают термомеханической обработке по различным режимам [6.1].  [c.225]

Как показывают длительные испытания, в морской агрессивной атмосфере легирование меди алюминием, цинком, никелем и оловом повышало их сопротивляемость коррозии и поэтому алюминиевые бронзы, томпак, сплавы меди с никелем и цинком, сплавы с никелем и оловом оказываются более стойкими, чем чистая медь. Алюминий оказывает благотворное влияние также в субтропической морской и в сельской атмосферах. Алюминиевые бронзы в этих условиях обнаружили более высокую стойкость. В других атмосферах, и в особенности в промышленных, легирование меди положительных эффектов не давало. Более того, оно часто приводило к понижению стойкости основного компонента сплава. Высокопрочные латуни, содержащие, кроме меди, цинк (20—24%), марганец (2,5—5,0%), алюминий (3—7%) и железо (2—4%), оказались во много раз менее стойкими по сравнению с чистой медью более подробно о коррозионных свойствах различных медных сплавов см. в гл. V).  [c.253]


Алюминий И его сплавы........ Высокопрочные алюминиевые сплавы. . Медь................. Латуни. ............... Бронзы................ Углеродистые стали.......... Легированные стали.......... Коррозионностойкие стали. ..... . Высокопрочные жаростойкие стали и сплавы, титановые сплавы...... 0,04—0,06 0,08—0,18 0,1—0,15 0,15—0,20 0,20—0,25 0,20—0,30 0,25—0,35 0,3—0,45 0,4 0,55 0,06—0,09 0,12—0,25 0,12—0,22 0,12—0,22 0,25—0,35 0,3—0,45 0,35—0,5 0,4—0,67 0,45-0,72 0,08—0,14 0,15—0,35 0,15—0,35 0,18—0,37 0,35—0,45 0,4—0,65 0,45—0,70 0,50—1,1 0,55—1,2  [c.61]

Механические свойства указанных сплавов в различном состоянии приведены в табл. 6, Как видно, в результате легирования, нагартовки и термической обработки удается в несколько раз повысить прочность (со 100 до 560 МПа) и твердость НВ (20—150) алюминия, У высокопрочных алюминиевых сплавов удельная прочность, т, е. отнесенная к плотности, оказывается больше, чем у сталей и других сплавов. Именно это и предопределяло их применение в летательных аппаратах.  [c.202]

Титан и его сплавы — высокопрочные и теплопрочные металлы. В самолетостроении распространены отечественные сплавы ВТ1 и ВТ6, которые используются для деталей н элементов, работающих при температурах 400—450° С. Обладают высокой удельной прочностью и пределом прочности при растяжении (550—1000 Н/мм ) наряду с малой плотностью. Жаростойкость титановых сплавов увеличивается путем легирования хромом, алюминием и кремние.м. Сплавы имеют высокую коррозионную стойкость к действию кислот, щелочей и морской  [c.25]

Алитирование 203 Алюминий определение 230, 271 сплавы высокопрочные 276, 277  [c.315]

Свариваемость металлов при холодной сварке зависит от их пластичности и качества подготовки поверхности. Чем пластичнее, металлы, ровнее и чище их поверхности, тем качественнее они свариваются. Хорошо свариваются пластичные сплавы алюминия, меди, никеля, серебра, золота и подобные металлы и сплавы в однородных и разнородных сочетаниях. В недостаточно пластичных металлах при больших деформациях могут образовываться трещины. Высокопрочные металлы и сплавы холодной сваркой не сваривают.  [c.116]

Присутствие в алюминии больших количеств цинка (4—20 %) также вызывает склонность к растрескиванию напряженных сплавов в присутствии влаги. При этом для растрескивания достаточно следов НаР, которые содержатся в покровной оксидной пленке тщательно высушенные образцы в сухом воздухе не разрушаются [31 ]. Для того чтобы протекало растрескивание, не требуется присутствия кислорода или жидкой водной фазы. Эти данные, а также склонность высокопрочного алюминиевого сплава 7075 к разрушению в органических растворителях [32 ] свидетельствуют о том, что КРН в этих случаях является следствием ад-  [c.353]


Алюминий, цинк и их сплавы успешно используются в качестве металлизационных покрытий для защиты высокопрочных алюминиевых сплавов типа алюминий — цинк — магний от коррозии под напряжением и коррозионного растрескивания. Разрушение этих сплавов на практике случается очень редко. Напыляемые металлические покрытия толщиной 125 мкм обеспечивают полную защиту сроком более 10 лет, а также протекторную защиту в случае повреждения основного металла.  [c.81]

Коррозионные свойства чистого алюминия и некоторых обычных его сплавов во многом одинаковы, исключение составляют высокопрочные материалы, например алюминий с 5 % Мп и 1 % Mg и медьсодержащие сплавы, имеющие гораздо большую склонность к коррозии.  [c.122]

В композициях на основе титана и его сплавов, армированных волокнами бора, карбида кремния, двуокиси алюминия, отсутствует проблема физической совместимости, так как коэффициенты линейного расширения титана (ат1 = 8,4-10 °С ) и указанных волокон (ад = 6,3-С ) различаются несущественно с точки зрения внутренних остаточных напряжений. Однако химическая несовместимость компонентов является главной причиной, по которой в настоящее время отсутствуют высокопрочные титановые композиции, способные конкурировать с обычными титановыми или никелевыми сплавами даже по удельной прочности.  [c.76]

Высокопрочные титановые сплавы системы Ti—А1 при содержании алюминия более 5 % могут быть подвержены коррозионному растрескиванию при наличии концентратов напряжений в водных растворах хлоридов. Склонность к растрескиванию устраняется комплексным легированием молибденом и вольфрамом и оптимальными режимами термообработки (закалка с 900—950 С). Сопротивление коррозионному растрескиванию снижается при наличии в сплавах кислорода и водорода. Положительное влияние оказывают легирование никелем около 2 % и палладием около 0,2 %, наличие в сплавах небольшого количества р-фазы.  [c.76]

Высокопрочные сплавы алюминия  [c.320]

Рассмотрим рост коррозионного питтинга или КР в высокопрочном алюминиевом сплаве, погруженном в нейтральный или слабощелочной раствор, содержащий хлориды (бромиды и иодиды могут быть с одинаковым, результатом заменены хлоридами), В вершине растущего питтинга или трещины свежеобразованная поверхность металла взаимодействует и, по общему мнению, растворяется с образованием АР+ [8 , 221]. Плотность тока, соответствующая этой реакции, составляет несколько десятков ампер на 1 см в случае питтинга [221], однако она будет более высокой в зоне вершины трещины при КР [139]. Только часть этого тока затрачивается на вывод из трещины ионов алюминия,, так как распределение тока зависит от активности других присутствующи.х ионов. Значительная часть тока приходится на транспортировку к вершине  [c.290]

Часто из стеклотекстолита, текстолита и других высокопрочных пластмасс изготовляют зубчатые колеса. Режимы их нарезания почти такие же, как и при обработке цветных сплавов. Пластмассы склонны к выкрашиваниям и сколам на выходе фрезы. Чтобы этого не допустить, деталь по торцам должна обжиматься накладками из дерева или алюминия.  [c.46]

За последние ]годы были разработаны, новые высокопрочные, коррозионностойкие, жаропрочные стали и сплавы на основе никеля, меди, алюминия, титана и других металлов.  [c.3]

Многослойные металлические материалы, например на основе высокопрочного алюминиевого сплава, состоящие из наружных плакирующих и промежуточных внутренних слоев из чистого алюминия, могут быть эффективно использованы для торможения трещин, если объем мягких прослоек выбирается таким, что не приводит к заметному снижению стандартных характеристик прочности при значительном повышении трещино-стойкости.  [c.16]

Редкоземельные металлы — лантаноиды, достраивающие электронный подуровень также находят применение в мащиностроении как в чистом виде, так и в соединениях (огнеупоры) например, церий входит в состав высокопрочных сплавов алюминия и магния. Однако получение редкоземельных металлов очень трудоемкий и дорогой процесс.  [c.12]

Порошки из высокопрочных алюминиевых сплавов приготовляют методом распыления жидких сплавов. Величина частиц готового порошка не должна превышать 60—100 мк. Содержание окиси алюминия в САСах должна быть в пределах 3—5%.  [c.106]

При рабочих температурах 700—750° С жаропрочные сплавы на никелевой основе, легированные титаном, алюминием, ниобием и другими элементами, по сопротивлению термической усталости обычно превосходят аустенитные хромоникелевые стали. Однако, с одной стороны, при больших упругопластических деформациях за цикл хромоникелевые аустенитные стали нередко превосходят по сопротивлению термической усталости малопластичные высокожаропрочные сплавы не только в рассматриваемом диапазоне температур, но и при более высоких температурах (до 900° С). С другой стороны, при длительном действии термических напряжений временная зависимость сопротивления термической усталости в интервале температур 700—750° С более резко выражена у высокопрочных сплавов [2j.  [c.144]


Упрочнение алюминия, магния и титана и их сплавов высокопрочными или выебкомодульными волокнами позволяет создавать КМ с высокой удельной прочностью и жесткостью и регулируемой анизотропией. Под удельной прочностью понимают прочность материала, отнесенную к его плотности = <3jy. Под удельной жесткостью понимают отношение модуля упругости материала к его плотности уд = Е/у. В качестве армирующих элементов используют волокна бора, борсика, углерода (УВ), карбида кремния, высоко-  [c.120]

Все примеси и легирующие элементы алюминиевых сплавов уменьшают поляризуемость и, тем самым, ухудшают коррозионную стойкость. Наиболее опасны, так как устраняют пассивность, электроположительные металлы. Присутствие железа и меди в десятых долях процента заметно ухудшает коррозионную стойкость алюминия. Сплавы (см. 13.2), содержащие до 5 % Си, — дуралюмины, высокопрочный сплав с цинком В95, сложные силумины АК8М, жаропрочные сплавы АК4 и другие по коррозионной стойкости значительно уступают чистому алюминию.  [c.476]

Одним из высокопрочных силуминов является сплав ВАЛ5 (6,5—8,5% 51 0,35—0,55% Mg 0,15-0,4% Ве 0,1—0,3% Т1 примеси не более 0,6% Ре не более 0,3% Си не более 0,3% 2п остальное — алюминий). Сплав ВАЛ5 обладает высокими литейными свойствами, герметичностью и прочностью, превосходя-  [c.344]

Высокопрочные стали Алюминий Сплавы алюмишш Титан  [c.11]

Упрочняемые сплавы (дюралюминии) типа А1—Си—Mg и высокопрочные сплавы В-95 типа А1—2п—Mg—Си после термической обработки приобретают высокие механические свойства (предел прочности 40—60 кПмм при относительном удлинении 8—18%). Однако дюралюминии, как правило, плохо свариваются дуговой сваркой, причем прочность сварного соединения составляет менее 40% прочности основного металла. Недостаточна также коррозионная стойкость термически упрочняемых сплавов, особенно легированных медью. С точки зрения сочетания высокой коррозионной стойкости и хорошей свариваемости наибольший интерес представляет группа термически неупрочняемых сплавов. Это в основном однофазные сплавы, т. е. такие, в которых содержание легирующего элемента меньше предка растворимости при комнатной температуре (рис. 5). Исключение составляют сплавы с магнием, содержащие более 2,95% магния. К этой группе относятся сплавы типа А1—Мп и А1—Mg, а также так называемый технический алюминий — сплавы АД и АД1.  [c.22]

Чистый алюминий мягок и непрочен. Легируют его в основном для повышения прочности. Для того чтобы можно было воспользоваться высокой коррозионной стойкостью чистого алюминия, высокопрочные сплавы покрывают слоем чистого алюминия или более коррозионностойкого сплава (например, сплава Мп—А1 с 1 % Мп), который более электроотрицателен в ряду напряжений, чем основной металл. Наружный слой называют плакирующим, а сам двухслойный металл — алькледом. Плакирующий металл катодно заш,ищает основу, выполняя функцию протекторного покрытия. Его действие аналогично действию цинкового покрытия на стали. Помимо катодной защиты от питтинга покрытие из менее благородного металла защищает также от межкри-сталлитной коррозии и коррозионного растрескивания под напряжением (КРН). Это особенно важно, когда основной высокопрочный сплав приобретает склонность к этим видам коррозии в процессе производства или при случайном нагреве до высокой температуры.  [c.342]

Для модифицирования сплавов на основе алюминия применяют хлористые и фтористые соли натрия, а при плавке высокопрочных чугунов широко используют специальные иттриевые и РЗШ-моди-фикаторы, способствующие образованию вермикулярного и шаровидного графита.  [c.276]

Сравнение рис. 12, а и 12, б показывает, как важны механические свойства матрицы для того, каким будет вид роста трещины и усталостная прочность композита. Матрица из высокопрочного алюминиевого сплава 6061-МТ6 ) фактически не давала трещинам разветвляться, что привело к сокращению усталостной долговечности по величине почти на порядок. Этот результат можно качественно объяснить, используя понятие относительных упругих модулей компонентов, и для того, чтобы учесть пластическое поведение, мы рассматриваем эффективные модули. Так, алюминий 1235 течет при низком уровне напряжений, отношение эффективных модулей волокна и матрицы увеличивается, что способствует ветвлению трещин. Пластическое течение в матрице с низким пределом текучести также затупляет конец трепцнны и сводит к минимуму напряжения около него. С другой стороны, напряжения у конца трещины в алюминиевом сплаве 6061-МТ6 высоки, отношение эффективных модулей более низкое и ветвление трещин минимально. Более того, вязкие волокна являются особенно чувствительными к высоким напряжениям вблизи конца трепщны, и поэтому рост усталостных трещин будет быстрым.  [c.420]

Еще более усложняет изучение проблем, связанных с разрушением, разнообразие материалов арматуры и матрицы, которые позволяют создавать композиты с любыми необходимыми свойствами. Наиболее распространены следующие типы армирующих волокон. Волокна Е- и S-стекля—низкомодульные, умеренно прочные при растяжении и сжатии с большими предельными деформациями. Волокна бора — высокомодульные, высокопрочные при растяжении и сжатии. Углеволокна могут сочетать различные свойства — высокую прочность и низкий модуль упругости или низкую прочность и высокий модуль. Органоволокна (Кевлар-49) — высокомодульные, высокопрочные при растяжении, весьма низкопрочные при сжатии. Волокна FP ) —высокомодульные, высокопрочные при сжатии, довольно низкопрочные при растяжении. В качестве связующего (матрицы) используются, как правило, синтетические смолы (термореактивные и термопластичные), графит и сплавы алюминия.  [c.38]


Биметаллы успешно применяются во многих отраслях промышленности при решении конструктивных и технологических вопросов (гибка, сварка, отделка поверхности). Для изготовления емкостного оборудования используют биметалл углеродистая стальЧ-нержавеющая сталь . Весьма эффективно применение биметаллических конструкций из высокопрочных сталей с титаном. В этом случае удается получить высокую прочность и высокую коррозионную стойкость. Обычно такие биметаллические конструкции производят с применением взрывной технологии или диффузионной сваркой. В практике нашел широкое применение биметалл сталь-f медь , особенно для труб, подвергающихся высокому внутреннему давлению и действию коррозионной среды. Путем наплавки (иногда с последующей деформацией) производят биметаллические полуфабрикаты и изделия из биметалла сталь-f бронза . Большинство листов из алюминиевых сплавов производится с технологической планировкой чистым алюминием или сплавом алюминия с цинком, которая выполняет роль более коррозионностойкого слоя.  [c.77]

Имеется две группы алюминиевых сплавов — литейные и обрабатываемые давлением. Первые менее пластичны, чем вторые, вторые сильнее упрочняются под влиянием термической обработки. Вообще термическая обработка оказывает большое влияние на механические свойства алюминиевых сплавов. На основе алюминия созданы как высокопрочные, так и жаропрочные сплавы. О последних говорится в разделе 13 настоящего параграфа. Дюралюминий прекрасно рабогает  [c.319]

Поскольку коррозионная стойкость алюминия и его сплавов опре-деляетс я сохранностью пассивной окисной пленки, то эти материалы обычно более стойки в таких условиях, где поверхность металла находится в контакте с хорошо аэрированной морской водой или атмосферой. Многие алюминиевые сплавы, особенно высокопрочные, подвер-женны локальному разрушению, принимающему форму питтииговой, щелевой или расслаивающей коррозии, а также склонны к коррозионному растрескиванию под напряжением.  [c.130]

Советскими исследователями Ю. А. Нехендзи, Ф. Ф. Химушиным, Б. Б. Гуляевым, И. Ф. Колобневым и др. в последние годы проведены большие работы по изысканию новых высокопрочных и жаропрочных сплавов на основе алюминия, железа и тугоплавких сплавов. Расширение области применения легких сплавов непосредственно связано с возможностями использования алюминия и его сплавов, производство которых в СССР непрерывно увеличивается. К отливкам из алюминиевых сплавов предъявляются все возрастаюш ие требования в отношении их герметичности, прочности, жаропрочности и коррозионной стойкости.  [c.93]

Машиностроение на всех этапах своего развития стимулировало возникновение новых материалов,с такими физико-механическими свойствами которые, в свою очередь, обеспечивали его непрерывный прогресс. Так например, непрерывное развитие авиационной промышленности предо пределило появление огромного числа высокопрочных сплавов на алюминие вой и магниевой основах, а развитие реактивной техники — новых жаро прочных сплавов. Одновременно с этим происходит непрерывное повышение физико-механических свойств ранее появившихся материалов.  [c.318]

Технически чистый титан ВТ1—О имеет микрос1руктуру глобулярного типа, представляющую собой зерна а-фазы полиэдрической неравновесной формы. Сплав ВТ5 содержит около 5 % А1 как а-стабилизатора. Структура представляет собой зерна, расчлененные собранными в пачки крупными о-пластинами. Псевдо-а-сплав АтЗ содержит около 3 % А1, до 1 % Сг, Fe, Si, 0,01 % В, имеет умеренно зернистую структуру с четко выраженными границами, состоящую из крупных пластин а-фазы. Сплав ПТ-ЗВ имеет структуру а -фазы мартенситного типа. Он отличается от сплава ВТ5 более мелким зерном и гетерогенизацией внутризвренной структуры. Сплав легирован до 5 % алюминием и около 2 % 0-стабилизатором-ванадием. Термически упрочняемый высокопрочный сплав ВТ14 мартенситного класса имеет умеренно зернистую структуру пластинчатого типа, представляющую собой механическую смесь а- и 0-фаз.  [c.72]

Увеличение содержания алюминия в бронзах этой системы приводит к повышению механических свойств. Однако, при содержании алюминия свыше 10% отмечается резкое снижение пластичности сплавов, связанное с появлением в структуре хрупкого эвтек-тоида. Р1оэтому верхним пределом содержания алюминия в сплавах этой системы обычно является 9—10%. Увеличение содержания железа в бронзах системы Си—А1—Ре способствует улучшению технологических и повышению их прочностных свойств. Однако, уже небольшие добавки железа ( 1,0%) приводят к появлению в структуре сплавов железистой составляющей в виде мелких рассеянных точечных включений. Повышение содержания железа, особенно в сочетании с нарушением режима литья (пониженная температура заливки и др.), приводит к увеличению числа этих включений и к укрупнению их формы. Иногда на поверхности отливок наблюдается образование сыпи железистой составляющей. Эти места отливок отличаются высокой твердостью и пониженной коррозионной стойкостью. Даже при недлительном хранении отливок в местах скопления включений железистой составляющей появляются ржавые пятна. Все это ограничивает верхний предел содержания железа до — 3—5%. Таким образом, нет основания рассчитывать на получение новых высокопрочных сплавов системы Си—А1—Ре за счет увеличения содержания легирующих  [c.85]

Более перспективна для разработки новых сплавов система Си—А1—Мп. Это положение основывается на ряде положительных свойств марганца как легирующего компонента. Введение марганца в алюминиевые бронзы повышает их прочностные и улучшает технологические свойства. Легирование марганцем способствует также повышению стойкости сплавов против кавитационного разрушения и наиболее полному раскислению меди в процессе выплавки бронзы. Химические составы и механические свойства бронз системы Си—А1—Mg, наиболее широко применяемых в отечественной и зарубежной промышленности, приведены в табл. I. 35. При этом следует отметить, что зарубежные сплавы системы Си— А1—Мп по составу практически не отличаются от отечественной бронзы Бр. АМц9-2. В мировой промышленности, таким образом, нашли применение сплавы, лежащие на диаграмме состояния системы Си—А1—Мп в области повышенного содержания алюминия при нижнем, ограниченном содержании марганца. В связи с этим в настоящее время преждевременно считать, что с точки зрения изыскания высокопрочных сплавов система Си—А1—Мп полностью исчерпана для дальнейших исследований. Определенный интерес представляет изучение свойств сплавов с повышенным содержанием марганца, который положительно влияет на уровень механических и технологических свойств легированных бронз. Алюминиевые бронзы с повышенным содержанием марганца, очевидно, могут найти себе применение как новые литейные и деформируемые сплавы. При этом для методически наиболее правильных изысканий необходимо более конкретное представление о медном угле диаграммы состояния системы Си—А1—Мп.  [c.86]

Рис. 1. Образцы биметаллических материалов 1 — низколегированная корпусная сталь, плакированная нержавеющей аустенит-иой сталью 2 — низколегированная сталь с введешиамв нее трещиноостановителем из вязкого сплава специального состава 3 — сварное соединение конструкционной стали, плакированное нержавеющей аустенитной сталью 4 — многослойный материал из высокопрочного алюминиевого сплава с наружными плакирующими слоями и внутренними прослойками из технически чистого алюминия 5—8 — различные сочетания металлов и сплавов, при которых достигается высокий комплекс свойств жаропрочность, повышенные теплопроводность и износостойкость, малая плотность, высокая демпфирующая способность Рис. 1. Образцы биметаллических материалов 1 — низколегированная корпусная сталь, плакированная нержавеющей аустенит-иой сталью 2 — <a href="/info/58326">низколегированная сталь</a> с введешиамв нее трещиноостановителем из вязкого <a href="/info/59795">сплава специального</a> состава 3 — <a href="/info/2408">сварное соединение</a> <a href="/info/51124">конструкционной стали</a>, плакированное <a href="/info/161844">нержавеющей аустенитной сталью</a> 4 — <a href="/info/134125">многослойный материал</a> из <a href="/info/626652">высокопрочного алюминиевого сплава</a> с наружными <a href="/info/183873">плакирующими слоями</a> и внутренними прослойками из <a href="/info/543860">технически чистого алюминия</a> 5—8 — различные сочетания металлов и сплавов, при которых достигается высокий комплекс <a href="/info/537100">свойств жаропрочность</a>, повышенные теплопроводность и износостойкость, малая плотность, высокая демпфирующая способность

Штамповки изготовляют из труднодефор-мируемых металлов и сплавов, алюминия, меди, различных сталей и высокопрочных сплавов с минимальными штамповочными уклонами и без них. Высокоскоростной штамповкой изготовляют штампованные заготовки типа стержня с головкой, с утолщением типа фланца, турбинные и компрессорные лопатки, типа  [c.144]

По специальным свойствам чугуны можно разделить на четыре группы 1) износостойкие — высокопрочный чугун с шаровидным графитом, ковкий и др. 2) антифрикционные — хромонпкеле-вые серые чугуны, высокопрочный и ковкий 3) жаростойкие — чугуны, легированные хромом, никелем, кремнием, алюминием, маг нием и др. 4) кислотостойкие — ферросилиды (железокремнеугле- родистые сплавы, в состав которых входит 14,5—18% кремния), антихлор.  [c.6]

Для упрочнения алюминия, магния и их сплавов применяют борные (Ов = 2500-ь3500 МПа, Е — 38-=-420 ГПа) и углеродные (Ов = 1400- -3500 МПа, Е = 160-ь450 ГПа) волокна, а также волокна из тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модуль упругости. Так, волокна карбида кремния диаметром 100 мкм имеют Ов = = 2500-ь3500 МПа, Е = 450 ГПа. Нередко используют в качестве волокон проволоку из высокопрочных сталей.  [c.424]

Повышение жаропрочности никелевых сплавов достигается армированием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда требуются высокие теплопроводность и электропроводимость. Пер-спективньши упрочнителями для высокопрочных и высокомодульных волокнистых композиционных материалов являются нитевидные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбида бора и др., имеющие = 15 000-н28 000 МПа и Е = 400 4-600 ГПа.  [c.424]

Важно и то, что при изготовлении деталей из полимерных композитов в отходы идет не более 10-30% материала, в то время как у аналогичных деталей из высокопрочных сплавов алюминия и титана, применяемых в авиации, отходы могут в 4-12 раз гфевышать массу изделия. Кроме того, при изготовлении деталей из ПКМ требуются меньшие трудовые и энергетические затраты, уменьшается количество производ-  [c.142]


Смотреть страницы где упоминается термин Алюминий сплавы высокопрочные : [c.240]    [c.153]    [c.636]    [c.140]    [c.120]    [c.143]    [c.67]    [c.109]   
Основы металловедения (1988) -- [ c.276 , c.277 ]



ПОИСК



Алюминий и сплавы алюминия

В95 высокопрочные

Высокопрочные и жаропрочные сплавы алюминия с медью и марганцем

Высокопрочные сплавы алюминия с, магнием, цинком и медью

Высокопрочные, жаропрочные и конструкционные сплавы алюминия с литием

Сплав алюминия



© 2025 Mash-xxl.info Реклама на сайте