Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения активные остаточные

Состояние поверхности сказывается на прочности вследствие концентрации напряжений и остаточных напряжений во впадинах и проникновения в микротрещины поверхностно-активных веществ (эффект Ребиндера).  [c.48]

Особенно опасны напряжения растяжения, увеличивающие активность металла. Значение остаточных или внешних напряжений в металле будет зависеть от объема металла, в котором аккумулирована энергия  [c.294]


Белый слой, характеризующийся благоприятным сочетанием остаточных макронапряжений и структуры, наиболее эффективно повышает трещиностойкость стали и является весьма перспективным способом повышения стойкости стальных деталей к коррозионному растрескиванию. Сопротивление стали коррозионному растрескиванию зависит от содержания в ней углерода. Так же, как и сопротивление коррозионной усталости, максимальная стойкость к коррозионному растрескиванию наблюдается у стали с содержанием углерода 0,4-0,65 % (рис. 31). Это связано с тем, что при указанном содержании углерода количество остаточного аустенита небольшое (до 10 %) и увеличивается с ростом содержания углерода в стали. При этом уменьшается способность металла к релаксации локальных напряжений вследствие уменьшения подвижности дислокаций. В сталях, легированных хромом в количестве 12 % и более, релаксация напряжений облегчается вследствие уменьшения активности углерода, переходящего в карбиды. В результате этого, а также из-за увеличения пассивирующего действия хрома рост трещин резко замедляется.  [c.116]

В материалах с хорошо выраженной площадкой текучести на диаграмме напряжение — деформация кривая зависимости активности эмиссии от приложенного напряжения (рис. 115) имеет один максимум, соответствующий пределу текучести материала а . На кривой зависимости пиковой амплитуды от напряжения имеется три максимума, последний из которых совпадает с пределом прочности Ор, и не более двух минимумов, совпадающих обычно с пределом упругости Оу и текучести. Начальная амплитуда сигналов Uo зависит, в частности, от уровня остаточных напряжений в материале.  [c.315]

Другим типом примеси в металле является водород, энергия взаимодействия которого с дислокациями в железе (0,1 эВ) значительно меньше, чем для углерода и азота, и который поэтому не вытесняет атомов углерода и азота из облаков на дислокациях. Сравнительно менее значительное влияние водорода в железе на деформационное упрочнение путем изменения подвижности дислокаций не означает, однако, отсутствие заметного влияния поглощенного водорода на механохимическую активность, поскольку при абсорбции металлом водорода в металле возникают значительные остаточные напряжения и локальный наклеп, стимулирующие анодное растворение. Так, по данным рентгеновских исследований электролитически наводороженного железа вакуум-116  [c.116]

Сварные соединения в результате влияния термодеформационного цикла сварки обладают значительной неоднородностью распределения физико-механических свойств по сравнению с основным металлом. При совместном влиянии коррозионно-активной среды и механических напряжений (остаточных и эксплуатационных) комплекс физико-механических неоднородностей проявляется в большей степени и сопровождается усилением электрохимиче-  [c.235]


Уменьшение внутренних растягивающих напряжений. При анализе причин возникновения КР отмечалось, что необходимым условием для развития процесса КР является действие растягивающих напряжений. По, своему происхождению эти напряжения могут быть различными внешними (активными), проявляющимися в результате приложенной нагрузки или давления и т. п. термическими (из-за наличия градиента температур в металле) или внутренними (остаточными), которые возникают в результате различных технологических операций при изготовлении деталей (термической обработки, сварки, деформаций и т. д.). Вследствие неизбежной неравномерности распределения напряжений различного рода по поверхности металла, в отдельных местах ее создаются наиболее опасные участки с высокими растягивающими напряжениями. Доказано, что даже в отсутствие активных внешних нагрузок на таких участках может быстро развиваться КР.  [c.74]

В теоретическом определении остаточных напряжений, возникающих вследствие неравномерных температурных воздействий (при термической обработке, сварке, литье и т. д,), существуют два направления. К первому направлению относятся работы, в которых применен так называемый метод фиктивных сил, сущность которого состоит в использовании температурной кривой в данном поперечном сечении полосы и гипотезы плоских сечений для определения зоны пластических деформаций, возникающих при нагреве. Далее принимается, что последующее остывание должно вызвать появление остаточных напряжений обратного знака. Соответствующую этим напряжениям нагрузку принимают за активную нагрузку, приложенную к полосе. Основные параметры, характеризующие распределение остаточных напряжений, определяют при помощи гипотезы плоских сечений и условия равновесия внутренних сил в данном поперечном сечении полосы. Однако метод фиктивных сил может быть использован лишь в случае применимости гипотезы плоских сечений, т. е. в одномерных задачах. Только в наипростейших случаях двухмерной задачи этот метод может дать достаточно удовлетворительное первое приближение.  [c.211]

Задачами конструктивных мероприятий уменьшения проявления остаточных напряжений являются получение наиболее равномерного распределения по сечению детали напряжений от рабочей нагрузки устранение всевозможных концентраторов напряжений (как активных, так и остаточных) получение наиболее благоприятного распределения по сечению детали остаточных напряжений.  [c.223]

К внутренним факторам относят химический состав и его неоднородность, строение металла, состояние и протяженность границ зерен, наличие неметаллических включений, градиент остаточных напряжений, состояние поверхности и др. Следует отметить, что упруго-пластическая деформация металла меняет его энергетический уровень и, как правило, увеличивает коррозионную активность. Механические напряжения могут усиливать работу гальванических пар. Это особенно важно при циклическом нагружении, обусловливающем значительную локальную деформацию металла, что приводит к увеличению его электрохимической гетерогенности.  [c.9]

Изучение влияния условий нагружения на характер изменения остаточных напряжений II рода показало [34], что при упруго-пластическом деформировании железа (выше предела выносливости) в воздухе уже при малой базе числа циклов нагружения (10 — 5 10 циклов) остаточные напряжения растут до 300—350 МПа и при дальнейшем увеличении базы испытания изменяются мало. В присутствии такой поверхностно-активной среды, как 2 %-ный раствор олеиновой кислоты в вазелиновом масле, характер изменения остаточных напряжений существенно меняется. При малых базах испытания уровень напряжений ниже, чем при испытании в воздухе, а при больших базах — значительно выше и достигает 900 — 950 МПа. Отсюда следует, что поверхностно-активные среды уменьшают энергию выхода на поверхность дислокаций и при напряжениях, превышающих предел выносливости, упрочнение металла происходит медленнее, но степень упрочнения с увеличением числа циклов нагружения значительно выше, чем при испытании в воздухе. При этом по данным рентгеновского анализа зерна феррита в поверхностно-активных средах более интенсивно дробятся на различно ориентированные субзерна, что выражается в большой степени наклепа. При низких уровнях напряжений вследствие охвата пластическим течением большого количества зерен поверхностно-активная среда разупрочняет металл.  [c.16]


Если сравнить интенсивность релаксации остаточных напряжений а обкатанных образцах,, испытанных в поверхностно-активной и неактивной средах с практически одинаковой охлаждающей способностью, то заметной разницы не наблюдается, что, как показано выше, связано с незначительным различием в характере неупругого деформирования упрочненных образцов в данных средах.  [c.164]

Исследование изломов поверхностно-упрочненных образцов показало, что во всех случаях очаг разрушения располагается на некоторой глубине. Положение очага определяется характером распределения остаточных напряжений по сечению и совпадает с максимумом остаточных напряжений растяжения. Присутствие коррозионной среды не влияет на глубину залегания очага начала усталостного разрушения. В зависимости от состояния поверхности и активности коррозионной среды может изменяться только форма первичной зоны усталости.  [c.167]

Поляризационно-оптический метод изучения остаточных напряжений в деталях из металлов и их сплавов в этом случае заменяют исследованием модели прозрачных и полупрозрачных оптически активных материалов (эпоксидных смол, стекла, плексигласа, целлулоида и др.), обеспечив в ней геометрическое, тепловое и механическое подобие.  [c.112]

Рис. 7.15. Кинетика изменения активных (кривые 1, 2) и остаточных ( , 2 ) напряжений в зоне сопряжения патрубка с оболочкой при отсутствии (7, V) и воздействии однократной перегрузки (2, 2 ) исследованных сосудов давления Рис. 7.15. Кинетика изменения активных (кривые 1, 2) и остаточных ( , 2 ) напряжений в зоне сопряжения патрубка с оболочкой при отсутствии (7, V) и воздействии однократной перегрузки (2, 2 ) исследованных сосудов давления
Как показали результаты исследований, при закалке токами промышленной частоты глубина активного слоя получается в тех же пределах и даже несколько больше остаточное напряжение в валках примерно в 2 раза меньше переходная зона от закаленного (мартенситного) слоя к незакаленной (перлитной) более узкая, изменение твердости более резкое, чем у валков с объемной закалкой. Более низкие остаточные напряжения поверхностной зоны, отсутствие структурных изменений в центральной зоне и весьма низкое напряжение в ней дали возможность выполнять центральное отверстие без расточки канала в области бочки. Ряд заводов не производит сверления отверстий. Это изменение резко снизило загрузку станков глубокого сверления. Отпала также необходимость в такой трудоемкой операции, как сборка валков под закалку.  [c.235]

В этом состоянии машину можно условно рассматривать как твердое тело, у которого во многих областях материал сопротивляется нагрузкам, следуя законам упругости и приобретая в основном упругие деформации, а в некоторых менее значительных областях концентрации напряжений, являющихся наиболее активными в работе машины, тело при определенных условиях сопротивляется нагрузкам, обнаруживая признаки сдвиговых процессов, приобретая также остаточные деформации и усталостные разрушения.  [c.233]

НАКАЧКА — процесс возбуждения активной среды лазеров и других квантовых генераторов и усилителей, в результате которого нарушается равновесное распределение микрочастиц среды по их энергетическим уровням НАМАГНИЧЕННОСТЬ <—векторная физическая величина, характеризующая состояние вещества и равная отношению магнитного момента малого объема вещества к величине этого объема насыщения характеризует состояние ферромагнетика, при котором увеличение абсолютного значения напряженности внешнего магнитного поля не ведет к увеличению намагниченности ферромагнетика остаточная определяется намагниченностью, которую имеет ферромагнетик при напряженности внешнего магнитного поля, равной нулю) НАМАГНИЧИВАНИЕ- возрастание намагниченности магнетика при увеличении напряженности магнитного поля НАПОР в гидравлике -линейная величина, выражающая удельную механическую энергию жидкости в данной точке потока  [c.252]

При вылеживании или эксплуатации в латунных изделиях иногда возникают трещины — сезонное растрескивание. Это явление наблюдается главным образом в латунях с содержанием более 20% Zn и отчетливо обнаруживается в изделиях, полученных холодной деформацией (прутках, полых изделиях и др). Сезонное растрескивание усиливается в химически активных средах. Образование трещин является в этом случае результатом совместного действия остаточных напряжений, вызванных холодной деформацией, и химически активными средами.  [c.205]

На сопротивление усталости деталей машин и частей сооружений оказывает существенное влияние ряд факторов состав и структура материала вид напряженного состояния и характер изменения его во времени форма и размеры нагружаемых объектов состояние поверхности остаточная напряженность температура активность окружающей среды и др. В связи с этим определить расчетным методом пределы выносливости для реальных конструкций, в которых, как правило, действуют многие из перечисленных выше факторов, чрезвычайно трудно. В настоящее время ведутся активные исследования, касающиеся вскрытия природы усталостного разрушения [65, 145, 177] и разработок аналитического прогнозирования усталостных характеристик для различных конкретных практических случаев [73].  [c.17]

Эти эффекты описать математически достаточно сложно. Разработаны варианты теории течения, в которых сделаны попытки учета этих эффектов. Для учета анизотропии упрочнения введены понятия микронапряжений , или добавочных напряжений, характеризующих сопротивление остаточным деформациям, и активных напряжений, определяющих нагружение. В простейшем случае трансляционной анизотропии уравнение поверхности деформирования (3.66) представляется в виде  [c.88]


После полной разгрузки величине сТи=0, как видно из рис. 5, будет соответствовать интенсивность тензора деформаций которая описывает пластическую (остаточную) деформацию. При повторном монотонном (активном) нагружении образца связь между интенсивностями тензоров напряжений и деформаций будет описываться прямой, изображенной на рис. 5 штриховой линией, и только после достижения точки (е , сти ) снова можно пользоваться зависимостью (5.4).  [c.35]

Термическая и термохимическая обработки поверхности стали, а также гальванические покрытия стали другими металлами, применяемые для повышения износостойкости и коррозионной стойкости, а также для декоративных целей, изменяют физико-химические и механические свойства поверхности и относительно тонкого приповерхностного слоя стали. Этот слой изменяется, претерпевая фазовые превращения либо в связи с появлением твердых растворов, благодаря диффузии инородных элементов, либо в связи с появлением на поверхности химических соединений стали. При гальванопокрытиях поверхностный слой изделия образует уже новые металлы. Все эти процессы образования новых приповерхностных слоев сопровождаются возникновением остаточных напряжений, изменением механических свойств стали и его активности в физико-химических процессах. Хотя указанные виды обработки поверхности изменяют только тонкий приповерхностный слой стали, однако они значительно влияют на ее прочность в коррозионных средах.  [c.149]

Выявленное соответствие периода роста трещины и долговечности гидрофильтров до и после ГП свидетельствует о том, что возникающие в материале остаточные напряжения оказывают влияние не только на длительность периода возникновения трещины, но и препятствуют раскрытию берегов трещины на стадии ее роста. Этот эффект может быть следствием того факта, что развитие трещины происходит в большей мере по внутренней поверхности агрегата вдоль впадин резьбы, нежели вглубь, поперек толщины стенки. В этом случае возникающие остаточные напряжения сжатия по поверхности на некоторую глубину крышки все время препятствуют раскрытию берегов трещины именно у поверхности. С ростом длины полуэл-липтического фронта трещины все меньшая доля его присутствует в зоне активного влияния остаточных напряжений на раскрытие берегов трещины. Это, в свою очередь, приводит ко все более неравномерному распределению напряжений вдоль фронта трещины, что способствует возникновению компоненты сдвига вдоль контура фронта трещины. С возрастанием уровня ГП глубина проникновения остаточных сжимающих напряжений возрастает, а следовательно, возрастает период роста трещины, когда реализуется наиболее неравномерное распределение энергии вдоль фронта трещины, и тем больше глубина трещины, на которую распространяется влияние ГП. Возникающие компоненты сдвига вдоль фронта трещины создают  [c.772]

Несмотря на сложно-напряженное состояние в данном случае также наблюдается хорошая корреляция между физико-механическим состоянием и электрохимическими параметрами поверхности обработанной стали. При этом знак остаточных напряжений не играет существенной роли минимальная механохимическая активность (минимум плотности тока активного растворения, минимум плотности тока пассивации, минимум потенциала пассивации и максимум потенциала транспассивации) соответствует нулевым напряжениям с ростом напряжений механохимическая активность и скорость растворения стали увеличиваются.  [c.193]

Таким образом, в области активного растворения нержавеющая сталь после токарной обработки ведет себя аналогично конструкционной стали и ее коррозионная стойкость определяется уровнем остаточных напряжений и микроэлектрохимической гетерогенностью поверхности. Эти параметры зависят от режимов обработки и могут 1ть приведены к оптимальным значениям подбором режимов резания по электрохимическим показателям. Действительно, измеренные значения скорости коррозии обработанной поверхности стали оказались минимальными для оптимального режима П1.  [c.189]

В качестве иллюстрации результатов экспериментального определения скалярных функций на рис. 17, а для стали Х18Н9Т представлены зависимости характеристики эффекта Баушингера б и напряжения от величины активной пластической деформации бр по параметру температуры на рис. 17, б — зависимость функции от тензора остаточных микронапряжений по параметру температуры.  [c.25]

На рис. 12 приведены полученные для хтали Х18Н10Т при 650° С данные по величинам остаточных деформаций за полуцикл при выдержке 1 мин для уровней напряжений а = 24,5 А) и 19,9 кПмм (Б). Аналогичные данные были получены при амплитудах напряжений б = 14—24 кГ/мм и выдержках Тц = 1, 5, 50 и 500 мин. Скорость активного нагружения составляла iOO кГ/мм мин. Из рис. 12 видно, что в первом приближении Fj к, t) = Ф2 к, t) и необратимая остаточная деформация, необходимая для расчетов по критерию разрушения (6),  [c.51]

Степень остаточной деформации стали 12Х18Н10 при формировании гибкой части компенсатора из ленты методом сварки вследствие технологической наследственности, по данным литературных источников, не превышает 13 % (соответствует остаточным напряжениям менее 400 МПа). Таким образом, проведенные исследования показали, что суш,ественного образования мартенсита деформации как анодной составляющей микроструктуры стали (у- Мд превращение) в количествах, достаточных для усиления коррозии, при принятой технологии изготовления гибкой части компенсаторов не происходит. Исследованный диапазон варьирования скоростей деформирования (скоростей сварки) не оказывает практического влияния на повышение коррозионной активности стали.  [c.10]

Имеются многочисленные экспериментальные данные, свидетельствующие как о термической стабильности наноструктур, так и об их активной рекристаллизации даже при комнатных температурах. В последнее время появились работы (см. обзор [3]), в которых делается попытка оценить роль различных факторов роста зерен применительно к наноматериалам. Теоретически показано, например, что инжекция вакансий внутрь зерен, которая имеет место при движении межзеренной границы, повышая свободную энергию системы, делает термодинамически невыгодным рост зерен, но только в определенном интервале размеров последних. Наличие тройных етыков, доля которых в структуре наноматериала значительна (см. рис. 2.3, б), также замедляет рост зерен. Таким же образом действуют поры, сегрегации на границах и сжимающие напряжения. В то же время неоднородное начальное распределение зерен по размерам и растягивающие остаточные напряжения инициируют рост зерен. Здесь также следует иметь в виду, что в случае легированных наноструктур влияние размера кристаллитов на интегральную свободную энергию О может быть немонотонным [3, 82]. Характер зависимости 0= /(Т) означает, что из-за существования минимума при Т рит рост зерен в интервале Ь < Крит становится, так же как и в упомянутом выше случае инжекции вакансий, термодинамически невыгодным.  [c.100]

Испытуемая конструкция должна подвергаться воздействию некоторого обобщенного спектра нагружения, учитывающего взаимодействие постоянных и повторно-переменных нагрузок, остаточных напряжений, температурных и других физических полей, коррозионных сред и поверхностно-активных веществ. Спектр натружения устанавливается на основе анализа статистических данных об изменениях напряженно-деформированного состояния рассматриваемой зоны повреждений в процессе изготовления, монтажа, эксплуатации и ремонта конструкции. Во время испытаний регистрируют нагрузку и размеры - трещины, по которым определяют величины ее приростов и скорости распространения в том или ином направлении. С их помощью строят диаграммы статического или усталостного разрушения.  [c.287]


Растягивающие напряжения, остаточные или от внешней нагрузки, раскрывают ультрамикротрещины и способствуют проявлению эффекта Ребиндера. Наоборот, при сжимающих напряжениях трещины замыкаются, может даже произойти самозалечивание их, и эффект может и не проявиться. При упругой, а тем более при пластической деформации, в отдельных местах поверхности возникают трещины (щели) с незагрязненными стенками. Адсорбируясь по этим стенкам, активные молекулы производят расклинивающий эффект и усиливают деформацию. Последняя создает предпосылки для проявления расклинивающего действия, которое затем интенсифицирует саму деформацию.  [c.67]

Несмотря на то, что наклепанные поверхности поддаются более сильному действию внешних активных сред благодаря интенсификации диффузионного проникновения и коррозионного разъедания, наклеп значительно повышает выносливость стали в коррозионно-ак-тивных средах при не очень длительных нагружениях. Одними из первых исследований, освещающих влияние наклепа и остаточных напряжений на коррозионно-усталостную прочность стали, были работы О. Фепля [195, 196], Тума [229, 230] и их сотрудников, которые показали, что поверхностный наклеп, образовавшийся вследствие накатки роликами, повышает выносливость стали в коррозионных средах.  [c.134]

Наши исследования [68], а также исследования А. В. Рябченкова [132] показали, что накатка роликами или дробеструйный наклеп могут устранить понижение выносливости при действии коррозионноактивных сред (при базе исследования N = 2-10 циклов), и даже усталостная прочность стальных деталей в этих случаях может оказаться большей, чем усталостная прочность ненаклепанных деталей в воздухе. Это объясняется уплотнением поверхностного слоя и закрытием (завальцовыванием) путей для проникновения активных сред внутрь металлов через дефекты поверхности, а также возникновением при наклепе благоприятно действующих остаточных напряжений сжатия. Повышению выносливости стали в активных средах в результате наклепа поверхности способствует также замазывание дефектов поверхности ферритом, который течет по поверхности стали при ее пластической деформации.  [c.134]


Смотреть страницы где упоминается термин Напряжения активные остаточные : [c.29]    [c.268]    [c.84]    [c.41]    [c.654]    [c.50]    [c.225]    [c.163]    [c.179]    [c.159]    [c.355]    [c.115]    [c.980]    [c.562]    [c.73]    [c.176]   
Термопрочность деталей машин (1975) -- [ c.392 ]



ПОИСК



В остаточное

Напряжение остаточное

Напряжения активные



© 2025 Mash-xxl.info Реклама на сайте