Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Турбины газовые на транспорте

На смену паровым машинам на стационарных электрических станциях и крупных морских судах пришли паровые и газовые турбины, а на транспорте двигатели внутреннего сгорания (тепловозы, теплоходы), которые иногда применяют и на небольших стационарных установках.  [c.325]

Пришла газовая турбина и на железнодорожный транспорт. Газотурбовоз вполне возможный конкурент тепловоза и электровоза.  [c.71]


Проектирование турбинных ступеней, предназначенных для работы в условиях значительных изменений параметров рабочего тела и внешних нагрузок [11, должно базироваться на детальном знании аэродинамических характеристик решеток турбинных профилей в широком диапазоне чисел М и углов атаки. Такие данные необходимы для проектирования тяговых турбин силовых установок сухопутного и водного транспорта, регулировочных и последних ступеней паровых турбин, газовых турбин, агрегатов импульсного турбонаддува, мош,ных малооборотных дизелей и др. Однако характеристики лопаточного аппарата в области режимов, далеких от расчетного, изучены недостаточно.  [c.227]

Водный теплоноситель. Вода — наиболее дешевый и распространенный жидкий теплоноситель. Обладая хорошим сочетанием теплофизических свойств теплопроводности, удельной теплоемкости, плотности и вязкости, вода способна отводить большое количество тепла от поверхности нагрева реактора даже при небольшой скорости. Увеличение скорости воды, например, от 0,3 до 5 м/с повышает коэффициент теплоотдачи в 10 раз. Вода радиационно устойчива и требует умеренного расхода энергии на транспорт по контуру. Основной недостаток водного теплоносителя — низкая температура насыщенного пара и ее медленный рост с повышением давления это ограничивает рабочее давление перед турбиной (7—10 МПа). Малая зависимость плотности воды от давления ограничивает возможности самозащиты первого контура при повышении в нем давления поэтому в первом контуре предусматривают газовые компенсаторы объема. Вода — коррозионно-активное вещество и, взаимодействуя с конструкционными материалами, загрязняется продуктами коррозии. Вода также хороший растворитель минеральных примесей. Наличие в воде первого контура продуктов коррозии и минеральных примесей при прохождении через реактор приводит к образованию долгоживущих изотопов, распространяющихся вместе с водным теплоносителем по контуру, что затрудняет ревизию и ремонт оборудования.  [c.340]

Газовая турбина имеет перед паровым двигателем ряд преимуществ отпадает необходимость в паровом котле, конденсаторе, поэтому вся установка легче и меньше по размерам. По экономичности газотурбинные установки могут превосходить небольшие паросиловые установки, в особенности, например, на паровозах. Поэтому газовая турбина имеет перспективы к применению на транспорте на тех участках железнодорожного пути, где используется жидкое топливо.  [c.225]


Несмотря на упомянутые выше недостатки, комбинированные установки, в которых четырехтактный двигатель имеет газовую связь с турбиной и компрессором, получили наиболее широкое распространение в промышленности и на транспорте.  [c.33]

В качестве автономного источника энергии для подвижного состава подвесных однорельсовых дорог помимо аккумуляторных батарей применяют карбюраторные и дизельные поршневые двигатели внутреннего сгорания. Применение газовых турбин в подвесном транспорте распространения не получило, хотя в принципе оно возможно, если отсутствуют ограничения по шуму. Для работы внутри помещений карбюраторные двигатели работающие на бензине из-за токсичности выхлопных газов мало пригодны. В этом случае в качестве топлива следует применять баллоны со сжиженным газом, что не везде доступно. Областью применения дизелей являются подвесные однорельсовые дороги в шахтах взрывоопасных по пыли и газу. Все виды двигателей внутреннего сгорания не имеют ограничений в применении при прохождении  [c.31]

Широкое распространение в авиации, на транспорте и отчасти в энергетике в настоящее время получили газовые турбины. В них, как и в двигателях внутреннего сгорания, рабочим телом служит идеальный газ—продукты сгорания топлива. Газовые турбины имеют ряд преимуществ перед двигателями внутреннего сгорания в них отсутствуют инерционные усилия от возвратно-поступательных движений, они имеют меньший вес, большие удельные мощности и др.  [c.176]

Газовые турбины на транспорте. За последние годы газовая турбина получила широкое распространение в качестве первичного двигателя в различных видах современного транспорта — судового, железнодорожного, авиационного.  [c.440]

В настоящее время преобладающую роль в топливном балансе страны играют газообразные и жидкие топлива. Их транспортировка осуществляется в основном по магистральным трубопроводам, которые оборудуют современными теплосиловыми установками мощными газовыми турбинами, двигателями внутреннего сгорания, электродвигателями, котельными агрегатами и др. Для нормальной эксплуатации систем транспорта и хранения нефтепродуктов и природных газов необходимо значительное количество электроэнергии, причем с повышением производительности труда и совершенствованием технологических процессов затраты электроэнергии как на одного работающего, так и на единицу вырабатываемой продукции непрерывно увеличиваются. Растущая потребность в электроэнергии будет удовлетворяться сооружением новых (в основном тепловых) электростанций, оборудованных котельными агрегатами паропроизводительностью до 300 т/ч и давлением пара до 300 бар, а также паровыми турбинами мощностью до 1,2 млн. кВт.  [c.3]

Изложенные выше соображения позволяют сделать вывод о том, что установка контактных экономайзеров особенно целесообразна в тех случаях, когда необходимо подогревать значительные количества воды, что бывает на предприятиях, потребляющих теплую воду для производственных (технологических) нужд. В соответствии с этим контактные водяные экономайзеры рекомендуется устанавливать в первую очередь за котлами, промышленными печами, сушилками, газовыми турбинами и другими тепловыми агрегатами на предприятиях кожевенной, текстильной, целлюлозной, химической промышленности, на нефтепромыслах, объектах автомобильного и железнодорожного транспорта, в системах вентиляции промышленных предприятий, в коммунальном хозяйстве, в сельском хозяйстве, а также в районных отопительных котельных и котельных ТЭЦ при схемах теплоснабжения с открытым водоразбором.  [c.131]

Тепловые электростанции вырабатывают около 80% всей электроэнергии, расходуемой в народном хозяйстве (промышленностью, транспортом и бытовыми потребителями). Паротурбинные электростанции составляют в настоящее время подавляющую часть тепловых электростанций. Газовые турбины пока применяются на компрессорных станциях магистральных газопроводов и в некоторых отраслях промышленности. Они найдут широкое применение также и на электростанциях, когда возрастет мощность единичных агрегатов и надежность газотурбинных установок станет столь же высокой, как надежность паротурбинных.  [c.5]


Жаровые трубы котлов В 7/00 установка пароперегревателей в них G 7/06) F 22 форма и расположение в камерах сгорания газовых турбин F 23 R 3/42-3/60 Железнодорожные [краны В 66 С 23/50 платформы В 61 В 1/00-1/02 пути <В 61 В 1/00-1/02, Е01 F 1/00 (буферные тупиковые упоры на них 7/18 обнаружение неисправностей 9/00 рельсовые тормоза 7/00) В 61 К (изготовление конструктивных элементов ковкой или штамповкой 7/00-7/10 ремонт рельсов 9/00) В 21 К> станции (В 61 В 1/00-1/02 сортировочные В 65 G 63/00-63/06)] Железнодорожный [подвижной состав (установка на рельсы В 61 К 5/00 взвешивание G 01 G 19/04-19/06) транспорт (обнаружение перегрева осей В 61 К 9/06 установка антенн Н 01 Q 1/32] Железные дороги [В 61 ( зубчатые В 13/02 комбинированные В 15/00 монорельсовые В 13/04-13/06 надземные В 3/00-5/02 (монорельсовые С 13/08 надземные С 13/04) локомотивы и моторные вагоны пневматические В 13/12 подземные В 13/10 предохранительные и сигнальные устройства для переездов L 29/00-29/32 скользящие В 13/08)]  [c.77]

В настоящее время газовые турбины применяются в авиации, в судовых установках, на железнодорожном транспорте и постепенно внедряются в энергетику.  [c.330]

Газовая динамика изучает поведение и свойства газов в движении. Развитие авиации и космонавтики, широкое применение газовых турбин, транспорт газа по магистральным газопроводам, повсеместная газификация городов и промышленных предприятий вызвали бурное развитие газовой динамики и чрезвычайно высоко подняли ее роль в технике. Все расчеты установок, использующих газ в качестве топлива или рабочего тела, базируются на законах газовой динамики, ставшей за последние годы важнейшей инженерной дисциплиной.  [c.3]

Несмотря на значительные прямые потери от коррозии, косвенные потери намного их превышают [3, 8—11]1 К косвенным убыткам относятся расходы, связанные с потерей мощности двигателей внутреннего сгорания, паровых и газовых турбин, котлов, агрегатов, и машин, вырабатывающих электроэнергию расходы связанные с простоем техники, машин, станков и оборудования из-за коррозии с выходом из строя трубопроводов и потерями при этом газа, нефти и других продуктов расходы, связанные с прекращением подачи электроэнергии в результате коррозии механизмов электростанций или линий электропередач. Косвенные убытки возникают также при авариях по коррозионным причинам на химических, нефтеперерабатывающих и других предприятиях, на автомобильном, железнодорожном, морском и авиационном транспорте, при выходе из строя средств связи, приборов, компьютеров, управляющих систем. При этом наблюдаются перерасход горюче-смазочных материалов, угля и других энергетических ресурсов, неоправданно увеличенный расход металла с учетом коррозионных допусков при проектировании и изготовлении техники и повышенные затраты на консервацию, расконсервацию, упаковку и другие мероприятия по защите от коррозии [7—9]. Косвенные потери непосредственно связаны с охраной окружающей среды, так как загрязнение воздуха и водоемов химическими веществами, газом и нефтью часто непосредственно связано с коррозией металла.  [c.7]

Газовые турбины, полностью завоевавшие авиацию, ждут своего внедрения в наземный транспорт. Успехи в создании новых жаропрочных материалов, систем охлаждения и конструкций генераторов должны выдвинуть эти турбины на передний край технического прогресса. Тут я ожидаю, что реальная действительность окажется, как это постоянно и бывает, не только плодотворнее, но и интереснее фантазии.  [c.225]

Однако газовые турбины уже сейчас, когда они способны работать лишь на жидком и газообразном топливе, могут быть эффективно использованы в ряде отраслей народного хозяйства, например на предприятиях черной металлургии, станциях подземной газификации углей, перекачивающих станциях дальних газопроводов, промышленных и коммунальных электростанциях, предприятиях нефтяной промышленности, а также на железнодорожном, морском, речном и автомобильном транспорте. Применение в этих отраслях индустрии газотурбинных установок даст значительный экономический эффект.  [c.386]

Использование газовой турбины для привода доменных воздуходувок позволяет сэкономить несколько миллионов тонн условного топлива в год. Применив ее на тепловых электростанциях, можно сократить расход металла на сооружение станции и ее оборудование в 3 4 раза, уменьшить кубатуру здания в 2 раза, сократить потребность в охлаждающей воде в 4-5 раз. Использование газотурбинного двигателя на железнодорожном транспорте позволит создать мощный локомотив, более экономичный, чем паровоз.  [c.386]

Легковые автомобили повинны в этом меньше, чем оснащенный дизельными моторами грузовой транспорт. Когда в последнем десятилетии XIX века Рудольф Дизель разработал дизельный цикл , он, не подозревая этого, изобрел самый шумный двигатель внутреннего сгорания из всех известных до тех пор. Дизельный двигатель получил такое широкое признание, потому что он преобразует в работу большую долю данного количества тепла, чем любой другой. Несмотря на большую исходную стоимость, дополнительный вес и пониженную мощность при том же рабочем объеме, дизель оказался значительно экономичнее при длительной эксплуатации, чем бензиновые двигатели, и, конечно, он будет широко применяться еще многие годы. День, когда его заменят газовые турбины, электрические машины или ядерные двигатели, настанет очень не скоро. Поэтому ознакомимся подробнее с причинами шума, производимого двигателями внутреннего сгорания вообще и дизелем в частности.  [c.109]

На железнодорожном транспорте поршневые паровые машины почти повсюду заменены электрическим приводом и приводом от двигателей внутреннего сгорания. Б СССР более половины грузооборота осуществляется тепловозами с двигателями внутреннего сгора НИЯ. Известны попытки использования газовых турбин для привода локомотивов, однако они не получили заметного распространения. Единичная мощность тепловозных двигателей достигает 3000 кВт.  [c.15]


На крупных современных электростанциях основным тепловым двигателем является паровая турбина. Паровые поршневые машины также имеют относительно широкое распространение на железнодорожном и водном транспорте и в некоторых других областях народного хозяйства. В этих тепловых двигателях в качестве рабочего тела используется водяной пар. Появление и распространение газовых двигателей (двигатели внутреннего сгорания, газовые турбины, реактивные двигатели) не уменьшило и не может уменьшить значения водяного пара как рабочего тела. Достаточно сказать, что около /з всей электроэнергии вырабатывается на тепловых электростанциях. Водяной пар является пока что единственным рабочим телом, практически используемым в атомных теплосиловых установках.  [c.166]

На современном уровне развития науки и техники идут по пути создания парогазовых установок. Применение паровых и газовых турбин не ограничивается областью энергетики. Они применяются в Химической и других отраслях промышленности для привода мощных насосов и компрессоров. Газовые турбины находят также применение в автомобильном и железнодорожном транспорте и в других отраслях народного хозяйства.  [c.193]

Создание комбинированных двигателей явилось новым этапом в развитии ДВС. Цель создания комбинированных двигателей — получение более экономичного и мощного двигателя при малых его габаритах. Потребность в таких двигателях особенно велика на железнодорожном транспорте. Увеличение мощности двигателя при тех же габаритах осуществляется за счет компрессорного наддува. В комбинированном двигателе в качестве компрессорных машин используются почти все виды компрессоров, а в качестве расширительной машины применяется только газовая турбина.  [c.136]

Как и для компрессоров, для турбин также могут быть построены универсальные характеристики. Опыты показывают, что, начиная от значений Ке = (1,5 2,0)-10 , к. п. д. турбины не зависит от Ке (число Рейнольдса определяется по длине хорды лопатки на среднем диаметре колеса и по относительной скорости и плотности газа за колесом турбины). Для комбинированных двигателей наземного транспорта значение Ве газовой турбины обычно больше указанной величины. Изменение показателя адиабаты выпускных газов от 1,35 до 1,4 практически также не влияет н а протекание универсальной характеристики газовой турбины.  [c.212]

Значительно расширились также процессы автоматизации в промышленности и на транспорте. Если в первые послевоенные годы автоматизация охватывала только отдельные технологические и энергетические агрегаты, то в наше время все чаще внедряются установки комплексной автоматизации в виде автоматических линий, цехов и предприятий. Успешно работают автоматизированные системы управления технологическими процессами в энергетике, черной и цветной металлургии, нефтедобывающей, газовой, нефтехимической, химической, пищевой и других отраслях промышленности. К числу наиболее совершенных относятся принятые в опытнопромышленную эксплуатацию автоматизированные системы управления блоком котел — турбина — генератор мощностью 200 тыс. кет и процессом каталитического крекинга. В обеих системах электронно-вычислительные машины автоматически управляют ходом процесса, выполняя расчет его оптимальных параметров и обеспечивая стабилизацию режимов.  [c.14]

Газотурбинные установки могут сочетаться с паровыми электрическими станциями. Принципиальная схема одного из предложенных парогазовых циклов изображена на рис. 33-8. В этой схеме применен паровой котел высокого давления 5, под которым сжигается топливо (горючий газ или мазут) давлением 2—3 ата. В компрессоре 3 сжимается горючий газ, в компрессоре 2 — воздух. Продукты сгорания охлаждаются в котле 5 до 650—700° С (за счет образования водяного пара) и направляются в газовую турбину /, после чего они поступают в подогреватель питательной воды (водяной экономайзер), где охлаждаются примерно до 160° с. После подогревателя 6 продукты сгорания уходят в дымовую трубу. Высоконапорный (по давлению продуктов сгорания топлива) котел 5 выполняется с применением больших скоростей газов (200— 300 м1сек), поэтому коэффициент теплопередачи получается большим, а котел компактным. Водяной пар направляется в паровую турбину 7 и далее в конденсатор 9. Конденсат при помощи конденсатного насоса 10 через подогреватель низкого давления регенеративного цикла 11 направляется в деаэратор 12, из которого питательным насосом 13 через регенеративный подогреватель высокого давления 14 поступает в водяной экономайзер 6. Применение паро-газового цикла может повысить к. п. д. установки на 3—7% по сравнению с исходным паровым циклом. Такие установки используют в промышленности и на транспорте.  [c.510]

Газотурбинные установки широко применяются в различных отраслях народного хозяйства. Газовые турбины являются основным агрегатом современных авиационных турбореактивных двигателей, используются в энергетических системах для покрытия максимальных нагрузок (они быстро запускаются и набирают нагрузку), в приводах нагнетателей на компрессорных станциях магистральных газо- и нефтепроводов, работают в качестве главных и форсажных двигателей на судах морского флота. Газотурбинные установки весьма перспективны на железнодорожном транспорте, где их малые размеры и маневренность создают большие преимущества. Особое место занимают они в технологических схемах многих химических и металлургических производств (энерготех-НО ЛОГИческие установки), где применяются в приводах различного рода нагнетателей с использованием как рабочего тела продуктов или отходов самих производств.  [c.117]

Авиация — молодая отрасль техники, наименее консервативная, наименее застойная. Новейшие открытия науки и достижения техники нередко в первую очередь в авиации находят еебе применение, а уже затем нисходят на землю. И многие решили, что газовая турбина в ближайшие годы станет самым распространенным двигателем на всех видах транспорта. Ведь она, по расчетам специалистов, может обеспечить невиданный не только по сравнению с паровой турбиной, а и вообще с любым другим тепловым двигателем коэффициент полезного действия — 55—60 процентов, а то и еще выше  [c.61]

Под термином монтаж турбины подразумевается оборка турбинной установки (паровой — ПТУ или газовой — ГТУ) из отдельных узлов и деталей, поступивших с заводов-изготовителей, на фундаментах электрической, компрессорной или насосной станций, обеспечивающая возможность ввода этой установки в эксплуатацию. Основным агрегатом является турбина, а для ГТУ также и воздушный компрессор. В число основных агрегатов турбоустановки, как правило, включаются приводимые ими машины (генератор, компрессор, насос). К вспомогательному оборудованию относят систему регенерации, конденсационную установку, систему маслоснаб-жения агрегата н трубные коммуникации для транспорта по системам турбоустановки пара, газа, воздуха, воды и пр. для ГТУ сюда же относится камера сгорания.  [c.5]


Одним из крупных достижений современной науки и техники является создание нового теплового двигателя — газовой турбины. Этот двигатель при дальнейгаем своем развитии может совершить подлинно революционный переворот в технике некоторых отраслей народного хозяйства — в энергетике, на железнодорожном и автомобильном транспорте, в морском флоте.  [c.384]

Термодинамика, являясь теоретическим базисом теплотехники, всегда имела большое прикладное значение, особенно для теплоэнергетики. К настояш,ему времени около 70% всей потребляемой человечеством электроэнергии вырабатывается на тепловых станциях. Несмотря па то что вырабатываемая на тепловых электростанциях энергия обходится дороже получаемой от гидравлических, почти во всех странах мира предпочтение отдается строительству первых. Такое положение объясняется тем, что тепловые станции могут быть построены значительно быстрее гидравлических и при несравнимо меньших капитальных затратах. По этим причинам основным направлением в развитии отечественной энергетики на ближа1 1шие десятилетия явится всемерное развитие строительства тепловых станций. Это позволит нашему социалистическому государству выиграть время в мирном экономическом соревновании с капитализмом. На тепловых станциях электрогенераторы приводятся в действие от тепловых двигателей (главным образом от паровых турбин). Тепловые двигатели являются основными двигателями различных транспортных устройств большинство локомотивов железнодорожного транспорта приводится в действие от тепловых двигателей (двигатели внутреннего сгорания, паровые двигатели, а в последнее время и газовые турбины) подавляющее большинство самодвижущпхся экипажей безрельсового наземного транспорта оборудовано тепловыми двигателями (двигатели внутреннего сгорания, в последнее время также и газовые турбины). Тепловые двигатели получили исключительное распространение на водном транспорте (паровые и газовые турбины, двигатели внутреннего сгорания, паровые машины) эти двигатели единственные применяемые в авиации (двигатели внутреннего сгорания, газовые турбины, реактивные двигатели) и в ракетной технике (все виды реактивных двигателей).  [c.8]

Газотурбинный привод компрессора имеет и другие преимущества. Компоновка центробежного компрессора и газовой турбины в однороторный агрегат обеспечивает уменьшение габаритов и веса агрегатов наддува. Так, система наддува, примененная на двигателе ЧН 30/38 (пока не используемого на ж.-д. транспорте), позволила увеличить его мощность относительно прототипа более чем в 2,0 раза при этом вес турбокомпрессора составляет всего около 5% от веса поршневой части двигателя, а установка турбокомпрессора практически не изменила габариты силовой установки. Кроме того, свободные турбокомпрессоры (турбокомпрессоры, имеющие только газовую связь с поршневой частью комбинированного двигателя) в большинстве случаев положительно влияют на экономичность двигателя ири работе на частичных нагрузках. Объясняется это следующим. Свободный турбокомпрессор всегда принимает то число оборотов, при котором будут обеспечиваться минимально возможные потери па удар в лопаточном венце газовой турбины прн данной нагрузке, т. е. турбокомпрессор будет работать с относительно высоким к. п. д. на каждом режиме или с иаилучшим использованием энергии выпускных газов.  [c.8]

Семилетним планом 1959—1965 гг. предусмотрено значитель юе расширение энергетической базы СССР, доведение выработки электроэнергии до 540 миллиардов киловатт-часов в год. В развитии электрификации Советского Союза преимущественное значение на ближайшие годы будет иметь строительство теплоэлектростанций с установленной мощностью до 1,2—2,4 миллиона киловатт. Значиг тельно расширяется электрификация транспорта и использование электроэнергии в сельском хозяйстве. Из года в год совершенствуется энергетическое машиностроение, создаются новые конструкции котельных агрегатов, паровых и газовых турбин, а также двигателей внутреннего сгорания.  [c.3]

На железнодорожном транспорте применение газовых турбин обеспечивает большую экономию топлива и значительное упрощение водоснабжения. Газотурболокомотивы вполне могут конкурировать с тепловозами, оборудованными поршневыми двигателями внутреннего сгорания.  [c.395]


Смотреть страницы где упоминается термин Турбины газовые на транспорте : [c.182]    [c.200]    [c.538]    [c.184]    [c.245]    [c.61]    [c.14]    [c.376]    [c.352]   
Технический справочник железнодорожника Том 2 (1951) -- [ c.440 ]



ПОИСК



Транспорт

Турбина газовая

Турбины Газовые турбины

Турбины газовые



© 2025 Mash-xxl.info Реклама на сайте