Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двигатель ядерный

Следует отметить, что хотя тяга ядерных ракетных двигателей невелика по сравнению с тягой химических ракетных двигателей, ядерный двигатель может работать в течение гораздо большего (на много порядков) времени, чем ракетный двигатель с химическим топливом. Поэтому ЯРД является весьма перспективным типом двигателя для управляемых межпланетных космических кораблей. Для старта такого корабля с Земли, по-видимому, должны быть использованы двигатели с химическим топливом, а ЯРД используется для полета за пределами земного притяжения.  [c.355]


Отдельные части аппаратов, имеющих высокие скорости, двигателей, ядерных реакторов, возвращаемых с орбиты аппаратов  [c.12]

Проводятся опыты по пропитке трущихся поверхностей подшипников (прн этом износоустойчивость повышается в 5 раз), по облицовке поверхности металла керамикой, упрочнению режущего инструмента, соединению различных металлов. Изучается возможность формования деталей автомобильного кузова н моторной лодки, разнообразных деталей самолетных и ракетных двигателей, ядерных реакторов из циркониевого сплава и нержавеющей стали. Высказываются мысли о применении этого процесса для резки, чеканки, полировки. В 1961 г. проводились подготовительные работы по электровзрывной формовке полусфер значительных размеров так, например, была изготовлена камера шириной 2100 мм и глубиной 2400 мм.  [c.281]

Обычно ползучесть учитывается при расчете и конструировании деталей машин, находящихся в процессе эксплуатации длительное время в нагретом состоянии. В таких условиях работают, например, элементы конструкций паровых и газовых турбин, реактивных двигателей, ядерных реакторов, паровых котлов, узлы оборудования нефтяной промышленности, детали химических аппаратов и тепловых приборов.  [c.244]

Принципы работы ЯРД не вызывали сомнений. Однако конструктивное выполнение (и характеристики) его во многом зависели от сердца двигателя — ядерного реактора и определялись прежде всего его начинкой — активной зоной.  [c.670]

Жидкие металлы используют в технике в качестве нагревающей среды при термической обработке металлов (РЬ), для охлаждения клапанов двигателей внутреннего сгорания (Na — рис. 102), в качестве теплоносителя в котлах бинарного цикла (Hg—Н2О) и в ядерных реакторах, особенно в реакторах на быстрых нейтронах (Na, К, Na + К, Li, Ga Hg, Sn, Bi, Pb, Pb -f- Bi и др.).  [c.142]

С развитием электрификации и химизации в СССР роль теплотехники с каждым годом возрастает. Мощные паротурбинные установки на электростанциях с применением пара высоких параметров, внедрение комбинированных установок с одновременным использованием в качестве рабочих тел как водяного пара, так и продуктов сгорания, теплофикация городов, развитие реактивных двигателей и газотурбинных установок, отвод огромных тепловых потоков в ядерных реакторах для получения электроэнергии, переход к промышленному использованию магнитогидродинамического метода для непосредственного преобразования теплоты в электрическую энергию, широкое использование в народном хозяйстве холода и многие другие проблемы современной науки и техники необычайно расширили область теплотехники и все время ставят перед ней новые исключительно важные физические задачи.  [c.3]


Тематику этих исследований, публикуемых в журналах прикладной физики, механики и математики, в общих чертах можно охарактеризовать следующим образом. Первая группа дисциплин объединяет химическую, топливную и пищевую промышленность, агротехнику, целлюлозно-бумажную промышленность, коллоидную химию и физику грунтов. Каждая из дисциплин рассматривает ряд вопросов, касающихся транспортеров, пневматических конвейеров, гетерогенных реакторов, распылительных сушилок, псевдоожижения, осаждения, уплотненных слоев, экстракции, абсорбции, испарения и вихревых уловителей. В группе дисциплин, включающих метеорологию, геофизику, электротехнику, сантехнику, гидравлику, фоторепродукцию и реологию, мы сталкиваемся с такими вопросами, как седиментация, пористость сред, перенос и рассеяние, выпадение радиоактивных осадков, контроль за загрязнением воздуха и воды, образование заряда на каплях и коалесценция, электростатическое осаждение и ксерография. В механике, ядерной и вакуумной технике, акустике и медицине исследуются процессы горения, кипения, распыления, кавитации, перекачивания криогенных жидкостей, подачи теплоносителя и топлива в реакторах, затухания и дисперсии звука, обнаружения подводных объектов, течения и свертывания крови. В общих разделах космической науки и техники исследуются сопротивление движению искусственных спутников, взаимодействие космических аппаратов с ионосферой, использование коллоидного топлива для ракетных двигателей, рассеяние радиоволн, абляция, ракетные двигатели на металлизированном топливе, МГД-генераторы и ускорители.  [c.9]

Задача 1074. Для регулирования ядерного реактора нужно сообщить управляющему стержню массой 50 к колебательное движение вдоль горизонтальной прямой с амплитудой а = 30 см и периодом т=0,5 сек. Какова потребная максимальная мощность двигателя, приводящего в движение стержень  [c.373]

В 1957—1959 гг. построен ледокол Ленин водоизмещением 16 тыс. ш и мощностью двигателей 44 тыс. л. с. с ядерной силовой установкой. Суточный расход ядерного горючего в атомоходе составляет 45 г.  [c.322]

Первый ядерный реактор был построен из урана и графита Ферми с сотрудниками в конце 1942 г. в США. Первый советский ядерный реактор построили И. В. Курчатов с сотрудниками несколько позже. В настоящее время энергия деления широко используется в науке, промышленности, сельском хозяйстве, медицине и других областях. Наиболее перспективными направлениями использования атомной энергии является создание мощных атомных электростанций (в комбинации с опреснительными установками и регенераторами ядерного горючего) и транспортных средств с атомными двигателями.  [c.412]

Исследование элементарного явления или совокупности явлений, составляющих рабочий процесс в машине или аппарате или какую-либо стадию этого процесса, можно осуществить также с помощью физического или технического эксперимента. Такой эксперимент выполняется на специально созданной для этих целей экспериментальной установке, рабочий участок которой устроен так, что позволяет изменять и измерять важные для процесса параметры. Иногда в качестве рабочего участка используется элемент машины или аппарата (например, активная зона ядерного реактора, камера сгорания газотурбинного двигателя).  [c.7]

В реальных тепловых двигателях теплоприемником является окружающая среда, т. е. атмосфера, а теплоотдатчиком — продукты сгорания топлива, имеющие температуру, большую температуры Т окружающей среды. Исключение составляют ядерные энергетические установки, в которых тепло выделяется в результате расщепления ядер атомов.  [c.345]

К нехимическим ракетным двигателям относятся ядерные (ЯРД) и электрические (ЭРД). Энергия ЯРД используется для газификации и нагрева рабочего тела, которое не меняет своего состава, истекает из реактивного сопла и создает тягу. Рабочие тела в ЭРД состоят из заряженных частиц, которые разгоняются с помощью электростатических или электромагнитных полей.  [c.259]


При полетах в атмосфере Земли в качестве окислителя можно использовать атмосферный кислород. Забираемый для этой цели из атмосферы воздух вместе с топливом, имеющимся на борту летательного аппарата (в перспективе вместо энергии горения для подогрева рабочей среды можно использовать энергию ядерных реакций), можно использовать для образования реактивной струи, создающей тягу. Важно, что обычно в рабочем газе вес воздуха значительно превышает вес топлива. Этот процесс непосредственно осуществляется в воздушно-реактивных двигателях (ВРД). Атмосферный воздух используют также в поршневых и газотурбинных двигателях, в которых энергия продуктов горения с помощью турбины преобразуется в механическую энергию, используемую в свою очередь для вращения винта (компрессора), передающего механическую энергию воздуху или воде для создания реактивной струи, обусловливающей появление тяги.  [c.130]

При прогнозировании энергетики будущего многие ученые называют перспективной и водородную энергию.[Еще в 1927 г. немецкая фирма Цеппелин выпустила двигатели внутреннего сгорания, работавшие на водородном топливе. По мнению некоторых ученых, водород может стать одним из самых удобных и чистых энергоносителей и сможет заменить в энергетике природный газ, в частности на ТЭС, а на автотранспорте и в авиации сможет использоваться в качестве топлива. Особенно широким может стать его применение в сочетании с ядерной реакцией.  [c.324]

Для реализации текущих и будущих авиакосмических программ по использованию ядерной энергии в силовых установках необходимы данные по механическим и физическим свойствам конструкционных материалов в условиях, близких к эксплуатационным. Применительно к ракетам с ядерным двигателем следует учитывать влияние интенсивной радиации. Другими основными факторами являются низкая температура (жидкого водорода) и высокий (космический) вакуум.  [c.92]

Каким средствам предстоит осуществить полеты на ближайшие планеты Это будут, вероятно, ракеты, работающие на химическом топливе того типа, что используется сегодня для запуска космических кораблей. А более дальние рейсы — за пределы орбиты Марса,— вероятно, сделает возможными только ракетный двигатель, работающий на ядерном топливе. Однако создание таких двигателей — дело совсем не простое.  [c.189]

Критическая масса ракеты, расчет которой был произведен в предыдущем разделе, весьма велика, порядка 1000 т. Есть основания полагать, что в не слишком отдаленном буд тцем можно будет говорить об уменьшении этой величины до 100 т. Следует сказать несколько слов о том, каковы возможные пути уменьшения критических размеров. Естественно заключить, что для уменьшения критического размера реактора можно применить отражатель. Однако следует иметь в виду, что при констр ирова-нии таких ядерных установок, какой является ядерная ракета, ядерный реактивный двигатель, ядерный турбореактивный двигатель, одним из важнейших факторов, определяющих общие свойства машины, является вес двигателя. Вес должен быть сведен к минимуму. Поэтому, если с применением отражающей оболочки удельный вес двигателя, т. е. вес, приходящийся на единицу производимой этим двигателем энергии, при этом увеличивается, то это означает, что применять отражатель невыгодно. Элементарный подсчет показывает, что если отражающий слой тонок, так что толщина его того же порядка, что и средняя длина поглощения материала отражателя для нейтронов, то критический размер реактора уменьшается приблизительно на толщину отражающей оболочки. Другими словами, общий размер реактора, считая вместе с отражающим слоем, остается приблизительно таким же, как и для случая реактора без отражателя. Для реактора, рассмотренного в предыдущем разделе, средняя плотность материалов равна всего 0,68 г/см . Если в качестве отражающей оболочки применить бериллий, то плотность материала отражателя будет  [c.204]

У пятидекадных мостов или компенсаторов D = 10 . Быстро развивающиеся области теплотехники (ракетные двигатели, ядерные установки и т. п.) нуждаются в приборах с полным диапазоном 10 , 10 и даже в некоторых случаях 10 [91 ].  [c.68]

Оценивая преимущества использования ЭРД для исследований Солнечно системы, необходимо сравнить их с другими классами перспективных космиче( ких двигателей (ядерные, термоядерные и другие типы двигателей). Провод такой анализ, следует также обратить внимание на одну особенность межпланетны полетов, выявленную в табл, 6,1 в ряде случаев они требуют весьма длительны даомежутков времени - до 10 лет и даже более. При использовании ЭРД это врем возрастает. Между тем увеличение продолжительности межпланетных полето ведет к существенному усложнению требований к надежности и долговечност оборудования, а также к удорожанию экспедиции. Рассмотрим оба вопроса на пр1 мере полета автоматического космического аппарата к Нептуну с целью создани искусственного спутника этой планеты [7].  [c.204]

Водород является перспективным топливом на автомобильном транспорте, практически идеальным топливом тепловых двигателей. Основные положительные свойства — широкий диапазон воспламеняемости по составу смеси (а = 0,15. .. 10,0), высокая скорость горения, низкая энергия воспламенения смеси. При сгорании водорода единственным токсичным компонентом могут быть окислы азота (не считая продуктов сгорания моторных масел). Широкие пределы воспламенения водородовоздушных смесей в двигателях с искровым зажиганием позволяют перейти на качественное регулирование, исключить дроссельные потери, присущие бензиновым двигателям, тем самым повысить индикаторный КПД на малых нагрузках. Снижение выбросов окислов азота в водородном двигателе возможно за счет существенного обеднения смеси (а> 2). Водород как самостоятельное топливо пока не может получить широкого распространения из-за отсутствия технологии производства в широких масштабах и трудностей хранения на борту автомобиля (необходимы криогенные или металлогидридные емкости). В перспективе водород, полученный из воды с помощью ядерной энергии, может быть использован для полной замены бензина и синтетических топлив.  [c.55]


На экипаж космического корабля могут воздействовать различные виды излучений галактическое космическое.излучение, излучение радиационных поясов Земли, корпускулярное излучение солнечных вспышек, излучение бортовых ядерных установок и ядерных ракетных двигателей. С учетом особенностей этих излучений на космическом корабле могут быть применены общая защита обитаемых отсеков, радиационное убежище, локальная з ащита бортовых ядерных установок и т. д. Таким образом, возникает необходимость оптимального распределения общего веса защиты между различными ее составными элементами.  [c.290]

Основными областями технического применения термодинамики являются анализ циклов тепловых двигателей и теплосиловых установок, в которых полезная внешняя работа производится за счет выделяющейся при сжигании топлива теплоты анализ циклов ядерных энергетических установок, в которых источником теплоты служит реакция деления расщеп-ляюпгихся элементов анализ принципов и методов прямого получения электрической энергии, в которых стадия превращения внутренней энергии тел или, как говорят еще, химической энергии в теплоту не имеет места, и последняя непосредственно преобразуется в полезную внешнюю работу в форме энергии электрического тока анализ процессов тепловых машин (компрессоров и холодильных машин), в которых за счет затраты работы рабочее тело приводится к более высокому давлению или к более высокой температуре анализ процессов совместного или комбинированного производства работы и получения теплоты (или холода) для технологических или бытовых нужд анализ процессов трансформации теплоты от одной температуры к другой.  [c.513]

Таким образом, определение полей термодинамических величин для невязких течений газа с учетом химических реакций диссоциации и ионизации представляет собой весьма важную задачу. Аналогичные задачи возникают при исследовании высокоэнтальпийных течений газа в реактивных двигателях, при решении некоторых задач ядерной энергетики (диссоциирующие теплоносители) и химической -ех-нологии.  [c.356]

Как одна из перспектив использования газотурбинного двигателя (ГТД) в авиации рассматривается комбинированный двигатель для межконтинентального самолета, летающего без дозаправки горючим. В тако Ч установке к рабочему телу ТКВРД теплота подводится в теплообменнике от горячего гелия, циркулирующего в ког-туре атомного ГТД. Изобразить циклы гелия и воздуха в координатах s, Т и рассчитать суммарную теоретическую тягу двигателя в полете, если скорость самолета 850 km/i температура и давление окружающего воздуха О °С и 0,09 МПа мощность ядерного реактора 150 МВт степень повышения давления гелия в компрессоре 2,5 степень пс-нижения давления воздуха в турбине 6,0 давление в тег -  [c.139]

Основными областями технического приложения термодинамики являются анализ циклов тепловых двигателей и теплосиловых установок (в которых полезная внешняя работа производится за счет теплоты, выделяющейся при сжигании топлива) циклов ядерных энергетических установок (где 1 сточннком теплоты служит реакция деления расщепляющихся элементов) принципов и методов прямого получения электрической энергии (в которых стадия превращения внутренней энергии тел — химической энергии в теплоту отсутствует, и последняя преобразуется в полезную внешнюю работу в форме энергии электрического тока) процессов тепловых машин — компрессоров и холодильных машин, где за счет затраты  [c.502]

В реальных тепловых двигателях теплоприемником является окружающая среда с температурой Т, т. е. атмосфера, а теплоогдатчиком — продукты сгорания топлива, имеющие температуру, намного большую температуры окружающей среды и доходящую до 2000 К. Исключение составляют ядерные энергетические установки, в которых теплота выделяется в результате расщепления ядер атомов. В некоторых тепловых двига-  [c.507]

B изолированной системе запас энергии не изменяется, поэтому совершение работы возможно в течение некоторого времени только при неравновесном п эо-цессе (механическом, термическом, химическом, ядерном) за счет уменьшения внутренней энергии. Нельзя получать работу от тел, находящихся, например, в температурном равновесии, хотя эти тела и обладают определенным запасам внутренней энергии. Отсюда очевит.на невозможность создания вечного двигателя первого рода, который производил бы работу без внешнего источнгжа энергии, и вечного двигателя второго рода, совершающего работу с рабочим телом, находящимся в тепловом равновесии.  [c.16]

Местная закрутка потока широко используется в энергетических установках и других технических устройствах для организации и интенсификации различных процессов. Закрутка является эффективным средством стабилизации пламени в камерах сгорания авиационных двигателей, используется для интенсификации тепло- и массообмена в каналах, защиты стенок камеры и стабилизации электрической дуги в плазмотронах [ 18] и т. д. Ёольшие перспективы имеет использование закрутки в вихревых МГД-генераторах, для регулирования тяги ракетных двигателей [ 30], удержания тяжелых атомов урана в камерах ядерных энергетических установок [35], в химической, нефтяной, газовой и других отраслях промышленности.  [c.7]

Во многих теплообменных устройствах современной энергетики и ракетной техники поток теплоты, который должен отводиться от по- верхности нагрева, является фиксированным и часто практически не зависит от температурного режима теплоотдающей поверхности. Так, теплоподвод к внешней поверхности экранных труб, расположенных в топке котельного агрегата, определяется в основном за счет излучения из топочного пространства. Падающий лучистый поток практически не зависит от температуры поверхности труб, пока она существенно ниже температуры раскаленных продуктов сгорания в топке. Аналогичное положение имеет место в каналах ракетных двигателей, внутри тепловыделяющих элементов (твэлов) активной зоны атомного реактора, где происходит непрерывное выделение тепла вследствие ядерной реакции. Поэтому тепловой лоток на поверхнасти твэлов также является заданным. Он является заданным и в случае выделения теплоты при протекании через тело электрического тока.  [c.322]

Теплоположительные термоэлектрические ПЭ могут применяться с учетом соображений по их экономичности и иредельной мощности элементов, изложенных выше в 12 и 14. Пока их КПД не превышают 10—15% (МГДГ не рассматривается, так как его мощности не позволяют использовать этот ИЭ), а удельные мощности ничтожны. Поэтому применение этих ПЭ целесообразно в особых случаях, когда требуется, например, бесшумная работа, независимость от давления окружающей среды, небольшая чувствительность экономичности к изменению реншма и т. д. Возможно они окажутся полезными в качестве вспомогательных установок в сочетании с термомеханическими ПЭ, даже с ядерными, например, в соплах реактивных двигателей для питания электротоком приборов.  [c.133]


В СССР, как и во многих других странах, во все возрастающем количестве ведется строительство атомных электростанций, вырабатывающих электрический ток и тепло для производственных и бытовых нужд. Атомные энергетические установки, заменяющие обычные паросиловые агрегаты и двигатели внутреннего сгорания, вводятся на морских транспортных судах и на кораблях военно-морского флота. Мощные источники ядерных излучений — ядерные реакторы и ускорители заряженных частиц — все шире используются в исследовательской практике и в промышленности для эффективного проведения технологических процессов. Широкое распространение получили радиоактивные изотопы, используемые как источники тепла в специальных генераторах электрического тока и как источники излучений в различных промышленных, исследовательских и медицинских приборах, аппаратах и установках. Не менее широко распространены стабильные изотопы ( тяжелая вода, изотопы урана, бора, азота, неона и многих других химических элементов), применяемые во многих областщ научных исследований, в промышленности и в медицинской практике.  [c.161]

Исследования влияния ядерных излучений на смазочные масла и топлива для летательных аппаратов относились преяоде всего к гидравлическим жидкостям и маслам для газотурбинных двигателей и авиационных приборов. Благодаря широкому применению в газотурбинных самолетах машинное масло MIL-L-7808 интенсивно изучалось как в статических [3, 16, 20, 23, 24], так и динамических условиях облучения или непосредственно в источнике излучения [9, 25].  [c.127]

Следовательно, гидравлические жидкости на основе нефтепродуктов (MIL-L-5606) из-за существенных изменений вязкости и коррозионного воздействия на металлы совершенно непригодны для использования в самолетах с ядерными двигателями даже в условиях относительно низкой интенсивности излучения. Жидкости типа дисилоксанов (MLO-8200 и MLO-8515) могут работать до доз у-облучения 1-10 эрг/г, хотя относительно высокое газообразование в последней жидкости может вызывать трудности при работе. Жидкости, содержащие соли эфира кремневой кислоты (OS-45), по-видимому, сохраняют свои физические свойства до доз порядка 5-10 эрг/г. Однако их реакционная способность с точки зрения окисления и коррозионных воздействий является предельно допустимой уже в отсутствие радиации, а при дозах излучения 1-10 эрг/г она становится чрезмерной.  [c.129]

Взаимосвязи между различными элементами тепловых машин Земли невероятно сложны. Нельзя быть уверенными в том, что, даже если бы не существовало рода человеческого, тепловой баланс планеты находился бы в устойчивом равновесии. Математические модели еще слишком примитивны для того, чтобы в Hffx учитывались абсолютно все переменные параметры. Известно, что деятельность человека, особенно за последние несколько десятилетии, в немалой степени отразилась на состоянии Земли например, ощутимо возросла концентрация двуокиси углерода. Верхние слои стратосферы — это чрезвычайно чувствительная область воздушной оболочки, так как в них крайне низка концентрация газов и происходят фотохимические реакции, играющие исключительно важную роль. Проведение испытаний термэ- ядерного оружия в стратосфере, выброс огромного количества твердых частиц и газов двигателями высоко летящих самолетов, вулканические извержения, производство искусственных газов могут весьма заметно нарушить тепловой баланс в этой крайне уязвимой области.  [c.308]

Преобразование энергии Усовершенствование ядерных реакторов-конверторов, применение новых видов топлив для двигателей, реакторов-размножителей, гидро-геиизаиии угля Применение комбинированных циклов (включая газификацию с получением газа с низкой теплотой сгорания и сжиганием в топках кипящего слоя под давлением), топлива из биомассы, газификации с получением высококалорийного газа Применение топливных э.пементов, термоядерной энергии, использование газификации угля с получением газа с низкой и средней теплотой сгорания, МГ Д-генераторов, систем производства водорода из неорганических продуктов  [c.28]

Сплав А453 обычно применяют при повышенных температурах, так как он имеет превосходные прочность, сопротивление ползучести и окислению в этих условиях. Сплав используют для деталей крепежа, дисков и лопаток турбин, деталей форсажных камер реактивных двигателей. Он был применен в качестве криогенного материала в космической технике. Многие металлы с г. ц. к. решеткой являются прекрасными материалами для использования их при низких температурах, а сплав А453 содержит достаточно никеля для стабилизации аустенита при таких температурах. Поэтому его рассматривают в качестве конструкционного материала для ракет с ядерными силовыми установками, где необходимы исключительно высокие характеристики как при низких, так и при повышенных температурах. Сплав считается перспективным материалом для его применения при температуре 4К. Аустенитные нержавеющие стали серии 300 уже используют в прототипах сверхпроводящего оборудования сплавом А453 предполагают заменять их в  [c.321]


Смотреть страницы где упоминается термин Двигатель ядерный : [c.84]    [c.292]    [c.435]    [c.565]    [c.75]    [c.36]    [c.131]    [c.459]    [c.41]    [c.194]    [c.6]    [c.85]   
Механика космического полета в элементарном изложении (1980) -- [ c.38 , c.50 , c.52 ]

Основы техники ракетного полета (1979) -- [ c.196 ]

Космическая техника (1964) -- [ c.287 , c.504 ]



ПОИСК



Возможности ядерных ракетных двигателей (Р. У. Бассард)

Г лава восьмая. Электростанции на ядерном горючем и ядерные двигатели

Газодинамический расчет ядерного сверхзвукового прямоточного воздушно-реактивного двигателя

Двигатель внутреннего сгорания ядерный

Импульсный ядерный ракетный двигатель

Проблема тяги Дальние межпланетные экспедиции и проблема тяги Межпланетные корабли с ядерными двигателями Советские ядерные двигатели. Электротермические двигатели. Звездолет с термоядерным двигателем. Фотонная ракета. К вопросу о внешних ресурсах. Солнечные паруса и парусолеты

Рабочее тело ядерного ракетного двигателя

Ракета с ядерным двигателем

Ракеты и другие реактивные двигатели, использующие ядерную энергию (с обзором использования пористых материалов в котле) (Цзянъ Шенъ-сю)

Статические испытания ядерных ракетных двигателей

Тела рабочие ядерных двигателей

Ядерные ракетные двигатели

Ядерные реактивные двигатели

Ядерные тепловые двигатели



© 2025 Mash-xxl.info Реклама на сайте