Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Переходы высокого давления

Из /г,s-диаграммы видно, что при адиабатном дросселировании кипящей воды она превращается во влажный пар (процесс 3—4), причем чем больше падает давление, тем больше снижается температура пара и увеличивается степень его сухости. При дросселировании пара высокого давления и небольшого перегрева (процесс 5—6) пар сначала переходит в сухой насыщенный, затем во влажный, потом снова в сухой насыщенный и опять в перегретый, причем температура его в итоге также уменьшается.  [c.51]


Второй закон термодинамики, как и первый, основан на надежных экспериментальных данных, полученных в результате следующих наблюдений теплота самопроизвольно переходит из области высоких температур в область низких температур, газы самопроизвольно перетекают из области высокого давления в область низкого давления, два различных газа самопроизвольно смешиваются и теплота не может быть количественно превращена в работу в периодически действующей тепловой машине. Объяснение этих наблюдений основано на молекулярной структуре вещества. Однако экспериментальные наблюдения отражают поведение не отдельных молекул, а статистическое поведение большой группы молекул. Следовательно, второй закон термодинамики, который основан на наблюдении макроскопических свойств, по природе своей является статистическим и справедливость его ограничена законом статистики.  [c.189]

Это свидетельствует о том, что в короткие промежутки времени молекулы самопроизвольно движутся из сосуда, содержащего две или меньше молекул (низкое давление) в сосуд, содержаш,ий три или больше молекул (высокое давление). Однако частота таких событий быстро уменьшается, если число молекул в системе возрастает. В реальной наблюдаемой системе число молекул обычно так велико, что вероятность самопроизвольного перехода вещества из области низкого давления в область высокого давления фактически мала. Только в верхних областях атмосферы число молекул на единицу объема настолько мало, что можно обнаружить самопроизвольные отклонения от средней плотности. Кажущийся голубой цвет неба можно объяснить преломлением света в области, где наблюдаются флуктуации плотности.  [c.192]

Диаграмма фазового равновесия при независимых переменных — температура и давление приведены на рис. 176,6. При высоких давлениях возможно образование железа с гексагональной плотноупакованной решеткой (так называемое е-же-лезо). Тройная точка равновесия лежит при /=527°С и Р= = 130 кбар. Выше 527 С при увеличении давления возможен а- у- е-переход, а ниже прямой — ос->е-переход.  [c.234]

В дуговом разряде при высоких давлениях газа также существует переход от холодного электрода к весьма горячей плазме. При низких давлениях, наоборот, — от сравнительно горячего электрода к холодному газу.  [c.69]


Температуры теплоотдатчика и рабочего тела в ряде случаев, например, в паросиловых установках, существенно различны, так как ни свойства рабочего тела, ни свойства конструкционных материалов не позволяют довести температуру рабочего процесса цикла до температуры теплоотдатчика. Применение жаропрочных конструкционных материалов может несколько уменьшить эту разность температур того же самого можно достигнуть переходом на высокие давления рабочего тела в цикле (применительно к воде это будут закритические давления) использованием теплоты отходящих продуктов сгорания для подогрева топлива и предварительного подогрева рабочего тела можно улучшить общее использование выделяющейся при сгорании топлива теплоты. Но более перспективным (во всяком случае в паросиловых установках) является использование горячих продуктов сгорания, после того как завершено нагревание основного рабочего тела, в качестве вторичного рабочего тела (как это осуществляется в парогазовых установках) или применение бинарных циклов с использованием в верхнем цикле наиболее подходящего высокотемпературного рабочего тела. Возможно также использовать в качестве головного звена энергетической установки МГД генератор. В этом случае горячие газы сначала поступают в рабочий канал МГД-генератора, где часть кинетической энергии потока преобразуется в электри-  [c.526]

Область применимости соотношений (7.33) ограничена значениями паросодержаний, соответствующими верхней границе эмульсионного режима течения, т.е. ф < 0,8. (Соответствующие значения j зависят от соотношения плотностей фаз.) При высоких давлениях, как это обсуждалось в 7.3, переход к кольцевому режиму происходит при меньших ф (ф = 0,64—0,7).  [c.324]

При скоростях фазовых переходов, но порядку достаточно близких к реальным, линия amm( ) (штриховая линия на рис. 3.4.6), показывающая степень полноты перехода в фазу высокого давления, круто идет из крайней точки F, где фазовые переходы произошли полностью. Это создает возможность определения уравнения кинетики превращения а е по остаточному эффекту, для чего нужно после соответствующего эксперимента определить действительную глубину этой зоны.  [c.282]

Высокие давления, развивающиеся за ударными волнами, могут изменить структуру энергетического спектра в конденсированных средах. Сокращение межатомных расстояний ведет к расширению и перекрытию энергетических зон. Образующиеся новые фазы состояния веществ за сильными ударными волнами, как правило, являются более плотными и обладают большей симметрией. Переход к более плотным кристаллическим структурам с поглощением скрытой теплоты (фазовый переход I рода) наблюдается при полиморфных превращениях в металлах. При сильных ударных нагрузках могут также происходить потеря стабильности кристаллической решетки и плавление вещества. На рис. 1.8 схематично показан ход ударной адиабаты для веществ, испытывающих фазовый переход. При сжатии вещества из начального состояния (0) в точке А начинается фазовый переход. В случае полиморфного превращения наблюдается уменьшение удельного объема на участке АВ при незначительных приращениях давления. Это объясняется тем, что  [c.39]

Если совместить критическую и сверхкритические изобары теплоемкости Ср на одном графике, то получится картина, показанная иа примере углекислоты на рис. 3-27. Такой ход изобар Ср следует из рассмотрения характера изменения энтальпии в сверхкритической области i. Т-диаграммы. Анализ этой диаграммы показывает, что точки перегиба изобар энтальпии (точки максимумов Ср) при переходе к изобарам более высокого давления смещаются вправо, при этом наклон изобар в этих точках уменьшается. Следовательно, с ростом давления максимумы Ср на изобарах смещаются вправо (достигаются при более высоких температурах), понижаются и постепенно вырождаются.  [c.71]


Как известно, различают твердые, жидкие и газообразные тела, а также плазму. При изменении давления или температуры жидкое тело может переходить в твердое или газообразное. Например, при очень высоких давлениях в обычной воде образуются кристаллы льда наоборот, при снижении давления в жидкости могут появиться пузырьки, заполненные паром (газом).  [c.11]

При воздействии высоких гидростатических давлений характер изменения р у различных металлов может быть весьма различным при этом могут наблюдаться повышения, понижения и обусловленные полиморфическими переходами (изменениями кристаллической структуры вещества) скачкообразные изменения р. Такие скачки р (висмута, бария, таллия, свинца и др.) при изменении гидростатического давления используют в качестве реперных точек при измерениях высоких давлений.  [c.14]

На рис. 1.6 приведена фазовая диаграмма для нормального вещества в координатах р. в, на которой показаны области существования отдельных фаз. Области перехода одной фазы в другую являются двухфазными областями. Каждая из таких областей ограничена пограничными линиями. При этом, если для области парообразования имеется критическая точка, для перехода твердой фазы в жидкую критической точки нет или. по крайней мере, она экспериментально не обнаружена, несмотря на то, что опыты проводились до очень высоких давлений. Исходя из теоретических предпосылок, также трудно ожидать наличия критической точки при плавлении, так как характер взаимодействия молекул в кристаллической и жидкой фазах различен, и поэтому трудно предполагать, что возможен непрерывный переход одной ИЗ фЗЗ Б другую.  [c.12]

Если в паровой фазе образовалась жидкая капелька радиуса р кр, то такая капелька будет находиться в равновесии с окружающим ее паром, причем давление пара р"р будет связано с р кр соотношением (6-20) однако это равновесие не будет устойчивым, вследствие чего с течением времени начнется рост капельки. Для капелек радиуса, большего, чем р р. давление пара оказывается, как это следует из формулы (6-20), слишком высоким. Давление пара может понизиться за счет конденсации части пара на этих капельках в результате этого размеры капелек еще более возрастут. Другими словами, по отношению к каплям радиуса, большего, чем р кр, пар давления р будет неустойчив, так что если поместить подобные капли в пар, последний начнет конденсироваться на них до полного перехода в жидкую фазу. Рост капель сверхкритического размера происходит как за счет присоединения к ним отдельных молекул, так и за счет слияния с ними капелек докритического размера.  [c.221]

Многоступенчатые компрессоры используют для получения газа высокого давления. Переход газа из ступени в ступень и его охлаждение между ступенями сопровождаются в действительном многоступенчатом компрессоре потерями давления, т. е. давление всасывания каждой последующей ступени меньше давления нагнетания каждой предыдущей ступени. Эти потери могут достигать до 15 — 18%. Номинальное межступенчатое давление рт используют для оценки номинального относительного повышения давления в ступенях действительного компрессора е/ ом =  [c.298]

Опытный образец из исследуемого металла монтируют в камере установки, высокое давление в рабочем участке которой создают на гидравлическом прессе. Калибровку камеры выполняют по точкам фазовых переходов висмута или других элементов, используя показания манометра гидравлического пресса. После достижения в камере необходимого давления включают систему электрического нагрева образца. Нагрев, плавление и кристаллизацию проводят под давлением, близким к гидростатическому.  [c.9]

Если вся масса жидкости, поступающей в трубу парогенератора, прогревается до температуры насыщения, то по ходу потока значение коэффициента теплоотдачи (как и при кипении в большом объеме) меняется от значения, устанавливающегося при заданной скорости в однофазной среде, до значения при развитом пузырьковом, кипении насыщенной жидкости. Закономерность изменения коэффициента теплоотдачи ino длине парогенератора а=[ х) для данной жидкости при фиксированном давлении зависит от соотношения между скоростью. парообразования /(гр"), скоростью циркуляции Wo и недогревом жидкости на входе в трубу. А ед. Наиболее простой вид функции а от х наблюдается при высоких давлениях, когда изменение температуры насыщения по ходу потока пренебрежимо мало. При низких давлениях суммар ное сопротивление, обусловленное трением и ускорением смеси, при определенных соотношениях режимных параметров оказывается соизмеримым с абсолютным давлением в системе. При этом температура насыщения по ходу потока заметно. понижается, в связи с чем закон изменения t T, а следовательно, и коэффициента теплоотдачи а по длине трубы может существенно отличаться от зависимостей t T=f(x) и a=f x), устанавливающихся, при высоких давлениях. Обеднение теплоотдающей поверхности активными зародышами паровой фазы при понижении давления также влияет на вид функции ter от х. В этих условиях влияние скорости оказывается более значительным и переход от области конвективного теплообмена в однофазном потоке к области развитого поверхностного кипения происходит на участке трубы большей длины.  [c.261]

Характерным для деталей гидравлических машин является кавитация, когда в потоке жидкости создаются пузырьки пара и газа и при переходе в область с более высоким давлением происходит конденсация пара и создаются условия для местного гидравлического удара. При этом воздействия на поверхность могут быть столь значительны, что появляются глубокие каверны, которые могут сливаться и создавать кратер или даже сквозное отверстие.  [c.87]


С изменением парциального давления кислорода может меняться тип проводимости. Так, при высоких давлениях кислорода оксид может иметь р-проводимость, а при низких давлениях этот же оксид принимает свойства п-проводимости. В таком случае дефекты структуры окалины представляют собой соответственно внедренные атомы кислорода (р-проводимость) и кислородные вакансии (и-проводимость), диффузия во внешнем слое окалины происходит преимущественно путем переноса внедренных ионов, а во внутреннем слое (около металла) путем диффузии вакансии. Это ведет к тому, что внутри окалины существуют р—п-переходы, которые и должны воздействовать на процессы переноса.  [c.57]

Постоянно действующая тенденция в советской теплоэнергетике— снижение средних по стране показателей удельного расхода топлива на отпущенный 1 кВт-ч энергии и 1 Гкал тепла является результатом осуществления комплекса мероприятий внедрение установок высокого давления, переход к энергоблокам большой единичной мощности, строительство теплоэлектроцентралей с их высокими к. п. д. и, наконец, экономически обоснованное использование мощностей тепловых электростанций.  [c.264]

Принципиально новым методом из1 о-товления деталей является плазменное напыление. В камеру плазмотро11а подается порошкообразный конструкционный материал и одновременно инертный газ под высоким давлением. Под действием дугового разряда конструкционный материал плавится и переходит  [c.415]

Из диаграммы хорошо видно, что если подвергается мятию перегретый пар (процесс 1—2), то давление и температура уменьшаются, а объем, энтропия и степень перегрева увеличиваются. При мя-тии пара высокого давления и небольшого перегрева (процесс 7-8), пар сначала переходит в сухой насьщённый, затем во влажный, потом опять в сухой насыш,енный и снова в перегретый. При дросселировании кипящей жидкости (процесс 5-6) она частично испаряется с увеличением степени сухости. При дросселировании влажного пара степень сухости его увеличивается (процесс 3-4).  [c.226]

В теплоэнергетике, использующей как ядерное, так и обычное углеводородное топливо, одной из важнейших является проблема отвода огромного количества тепла с теплоотдающих поверхностей. Наиболее распространенным и используемым для этих целей теплоносителей являются парожидкостные смеси. Поэтому исследователями большое внимание уделяется течению парожидкостных смесей при наличии фазовых переходов в каналах с обогреваемыми и необогреваемыми стенками. Видимо на эту тему появляется наибольшее число публикаций в области неоднофазных течений. Здесь особый интерес представляют исследования структуры потока при различных режимах, кризисов теплообмена, обусловленных нарушением контакта жидкой фазы с теплоотдающей поверхностью, гидравлического сопротивления и т. д. Проблемы безопасности реакторного узла или устройств аналогичного типа привели к необходимости изучения истечений наро-жидкостных смесей из сосудов высокого давления, распространения возмущений и ударных волн в двухфазных парожидкостных потоках. Здесь же отметим течение влажного пара (смесь пара с каплями воды) в проточных частях турбомашин.  [c.10]

В [182] указывается, что ингибитор, примененный в условиях высоких давлений и температур на забое глубоких высокосернистых скважин месторождений Pinewoods и Tho-maswill (штат Миссисипи, США), не обеспечил защиту от коррозии скважинного оборудования. Это привело к разрушению и обрыву колонн насосно-компрессорных труб. Причиной отсутствия защитного действия ингибитора послужил его переход в забое скважин в парообразное состояние. Выше места конденсации ингибитора в направлении от забоя к устью скважины коррозионных повреждений металла труб было значительно меньше.  [c.340]

В трехмерном случае при изучении системы из 500 частиц были получены результаты, которые говорили о том, что при некоторой плотности характер движения частиц принципиально меняется. Пусть вначале система была упорядоченной и образовывала ГПУ структуру, а частицы двигались вблизи некоторых положений равновесия. При увеличении объема на 30% по отношению к плотной упаковке система становилась неустойчивой, и в ней наблюдались переходы из упорядоченной в однородную фазу и обратно, но сосуществования двух фаз обнаружить не удалось. Поэтому были изучены двухмерные системы твердых дисков, так как для них число частиц, необходимых для образования кластеров частиц одной фазы любого заданного диаметра, меньше, чем в случае трехмерных систем. Поэтому рассмотренная система из 870 твердых дисков была намного эффективнее, чем система из 500 твердых сфер. Если же в двухмерном случае рассмотреть систему из небольшого числа частиц (72), то она ведет себя аналогично трехмерной системе имеются две несвязанные ветви, причем в области от 5 = 5/5о=1,33 до 1,35 система резко флуктуирует между ветвью с высоким давлением, соответствующей однородной фазе, и ветвью, соответствующей упорядоченной структуре (5о — площадь, СОбТВетСТВуЮЩаЯ ПЛОТНОЙ упаковке частиц). При упорядоченная фаза всегда  [c.199]

С увеличением нагрузки на забой увеличивается установочная мощность приводящих двигателей машин, а следовательно, и мощность гидропневмоприводов. В связи с этим возникает необходимость перехода на более высокие давления. Это, в свою очередь, требует более точной обработки сопрягаемых деталей в гидромашинах и гидроаппаратах, создания более качественных уплотнений, применения соответствующих конструкционных материалов и др.  [c.282]

В подавляющем большинстве газовых лазеров инверсия населенностей создается в электрическом разряде. При этом электроны разряда возбул<дают газ, создавая инверсию населенностей уровней энергии ионов, нейтральных атомов, устойчивых и неустойчивых молекул. Газоразрядный метод применим для возбуждения лазеров как в непрерывном, так и в импульсном режиме. Электрический разряд в газе бывает самостоятельным и несамостоятельным. Несамостоятельные разряды могут быть получены в газах высокого давления и больших объемах. Переход к несамостоятельным разрядам позволил резко поднять мощность и энергию излучения прежде всего таких лазеров с большим КПД, как С02-ла-зеры.  [c.895]

Пусть 1 кг воды при О °С находится в цилиндре с подвижегым поршнем, оказывающим на жидкость постоянное давление. Ма V—/>диаграмме (рис. 11.2) состояние воды с этими параметрами может быть определено точкой 1. При этом жидкость является ненасыщенной. Затем по мере подвода теплоты температура жидкости увеличивается, объем ее растет, вода переходит в состолиие насыщенной жидкости (точка 2). При дальнейшем подводе теплоты начинается процесс парообразования, вода находится в состоянии влажного насыщенного пара, ее температура остается постоянной. Процесс получе1Н1я сухого насыщенного нара из насыщенной жидкости на диаграмме изображается отрезком 2—3, причем на этом участке изобара совпадает с изотермой. В точке 3 пар находится в состоянии сухого насыщенного если его н дальше нагревать при постоянном давлении, сухой пар становится перегретым (точка 4). Если же подобный процесс парообразования рассмотреть ири более высоком давлении pi, изобара, соответствующая этому давлению, на диаграмме пройдет выше изобары р и точки, характеризующие процесс парообразования, разместятся на диаграмме следующим образом точка 1 лежит почти на вертикали,  [c.194]

При распространении сильных ударных волн, вызывающих фазовые переходы в твердых телах, уровень напряжении, связанных с прочностью и приводящих к иегидростатичиости тензора напряжений, во много раз меньше его гидростатической части, или давления. Дело в том, что прочность материала, хотя и растет с давлением, ограничена, и при высоких давлениях свойства твердого тела в некоторых отношениях приближаются к свойствам жидкости, хотя эффекты иегидростатичиости (прочности) приводят к большим скоростям распространения некоторых возмущений, что можно учесть и в рамках квазижидкостиой  [c.146]


Рассмотрим процесс дросселирования, используя Н—5-диаграмму водяного пара (рис. 8.11). При дросселировании перегретого пара высокого давления (линия 1—2) пар остается перегретым, температура и давление пара в конце процесса становятся меньще, чем в начале процесса. При дросселировании пара высокого давления и небольшого перегрева (линия 3—4) пар вначале становится сухим, насыщенным, затем влажным, далее вновь сухим, насыщенным и, наконец, переходит в перегретый пар, причем температура в результате процесса уменьшается. При дросселировании кипящей воды —линия 5—6 — вода превращается во влажный пар, с уменьщением конечного давления в процессе конечная температура пара снижается, а сухость пара увеличивается.  [c.114]

При высоких давлениях за ударными волнами может произойти закрытие разрыва между валентной зоной и зоной проводимости в диэлектриках и полупроводниках. Рассмотрим упрощенную схему перехода диэлектрика в металл под действием ударных нагрузок. Если под действием ударной нагрузки атомы сближаются, дискретные энергетические уровни уширяются и превращаются в зоны разреженных энергетических состояний. В момент, когда верхняя граница высшей заполненной зоны перекроется с дном нижней незаполненной, в диэлектрике образуется металлическая фаза. На рис. 1.11 показана энерге" тическая диаграмма сжатия ксенона, рассчитанная Россом [17]. На начальном этапе наинизшей зоной проводимости является зона 6s, которая в дальнейшем замещается зоной 5d. При удельном объеме 12 см моль зона 5d перекрывается с валентной зоной и ксенон должен превратиться в металл.  [c.41]

Экспериментальная проверка этой гипотезы показала, что для пластичных материалов она приводит, в общем, к удовлетворительным результатам. Переход от упругого состояния к пластическому действительно с достаточной точностью определяется разностью между наибольшим и наименьшим из главных напряжений и слабо зависит от промежуточного главного напряжения 02- Наложение всестороннего давления на любое напряженное состояние не меняет Тщах и, следовательно, не оказывает влияния на возникновение пластических деформации. В частности, при всестороннем гидростатическом давлении Гтах обращается в нуль. Это означает, что в таких условиях в материале пластические деформации не возникают вовсе. Все опыты, проводившиеся при доступных для техники давлениях, подтверждают это. Сказанное нисколько не противоречит описанному ранее поведению чугуна в условиях высокого давления. Наложение всестороннего давления влияет не на условия пластичности, а на условия разрушения. Граница разрушения отодвигается, и материал приобретает способность пластически деформироваться без разрушения. И это характерно вообще для всех конструкционных материалов. Если представить себе существование цивилизации на самых больших глубинах океана, то для этих воображаемых разумных существ понятия хрупкости и пластичности материалов были бы отличны от наших.  [c.351]

Так как производная д((1др)т = у, а угловой коэффициент кривой ф (/ , Т = onst) при р > ps больше у первой фазы, то объем фазы высокого давления меньше, чем объем фазы низкого давления. Следовательно, при фазовом переходе с повышением давления удельный объем уменьшается, а плотность возрастает, т. е. разность ут — yd) имеет отрицательный знак. Это заключение вытекает и из принципа Ле Шателье—Брауна.  [c.206]

Температуры теплоотдатчика и рабочего тела, например в паросиловых установках, существепно различны, так как ни свойства рабочего тела, ни свойства конструкционных материалов не позволяют довести температуру рабочего процесса до температуры продуктов сгорания топлива. Применение жаропрочных конструкционных материалов может несколько уменьшить эту разность температур такого же результата можно частично достичь при переходе на высокие давления рабочего тела в цикле (применительно к воде это будут закритические давления). Использование теплоты отходящих продуктов сгорания для подогрева топлива и предварительного подогрева рабочего тела дает возможность повысить эффективность применения выделяющейся при сгорании топлива теплоты. Перспективно (во всяком случае в паросиловых установках) использование горячих продуктов сгорания, после того как с их помощью завершен нагрев основного рабочего тела, в качестве вторичного рабочего тела в дополнительном цикле (как это осуществляется в парогазовых установках) нли применение бинарных циклов с использованием в верхнем цикле оптимального высокотемпературного рабочего тела. Можно также использовать в качестве головного звена энергетической установки МГД-генератор. В этом случае горячие газы вначале поступают в рабочий канал МГД-генератора, где кинетическая энергия потока преобразуется в электрическую энергию. На выходе из канала газы направляются в основную энергетическую установку, где отдают теплоту рабочему телу. Кроме использования МГД-генератора возможно создание термоэмиссиоиной надстройки . Целесообразным представляется также использование высоких температур продуктов сгорания для осуществления высокотемпературных химических реакций, в частности для получения водорода из водяного пара.  [c.516]

Точность уравнения Ван дер Ваальса невысока, особенно в области высоких давлений. Кроме того, это уравнение лишь качественно описывает фазовые переходы при температурах ниже критической, так как на изотермах Ван дер Ваальса при Т<Т р имеется участок А —В (рис. 7.3) неустойчивого термодинамического состояния dpldv)r>Q.  [c.66]

Одноступенчатые поршневые компрессоры с водяным охлаждением цилиндра применяются в основном для сжатия газов до давлений менее 0,6 МПа. Более высокие давления получают в многоступенчатых компрессорах с охлаждением газа Б холодильнике после каждой ступени (причины перехода на много-стугенчатое сжатие рассмотрены в 5.6).  [c.228]

Полная схема зон парогенерирующего канала дана на рис. 6-49. Вышеуказанная последовательность зон характерна для умеренных тепловых нагрузок и высоких давлений. Высокие тепловые нагрузки вызывают переход к пленочному режиму кипения при малых паро-содержаниях, тем меньших, чем больше qa и относительное давление р/ркр Такой переход может возникать задолго до выхода на кольцевой режим течения в зоне не только развитого, но и поверхностного кипения. В этом случае наблюдается сильное возрастание темпе-  [c.187]

При высоких давлениях во всем диапазоне изменения относительной энтальпии наблюдается положительное влияние массовой скорости на <7крь Следовательно, в данных условиях доминирующее влияние на процесс перехода от пузырькового кипения к пленочному оказывает механизм турбулентного обмена, хотя его воздействие с ростом паросодержания ослабляется радиальным потоком пара, затрудняющим подпитку жидкостью двухфазного пристенного слоя.  [c.290]

Из результатов исследований последних лет в области сверхпроводимости важно отметить открытие того, что помимо понижения температуры появлению сверхпроводимости способствует и повышение давления у некоторых веществ, не переходящих при нормальном давлении в сверхпроводящее состояние, удалось обнаружить сверхпроводимость при воздействии на вещество высокого гидростатического давления. Установлены даже сверхпроводящие свойства не только у веществ, являющихся при нормальных условиях проводниками (прежде всего у металлов, сплавов металлов н интерметаллических соединений), но и у полупроводников (например, у анти-монида индия InSb —см. стр. 263, который имеет температуру сверхпроводящего перехода около 5 К при давлении около 30 ГПа). В Институте высоких давлений Академии наук СССР открыта сверхпроводимость у серы (Тс = 9,7 К) и ксенона (Т,. = 6,8 К).  [c.209]

Еще студентом он увлекся астрономией и проблемами межпланетных полетов. К концу 1921 г. им была завершена разработка проекта межпланетного корабля-аэроплана, сочетавшего конструктивные особенности самолета и ракеты. Снабженный авиационной винтомоторной установкой высокого давления и реактивной двигательной установкой ( ракетным мотором ), этот корабль должен был взлетать с Земли и совершать полет в плотных слоях атмосферы с помощью авиационного двигателя, а затем на высоте около 28 км — по достижении расчетной скорости 350—АЪО Mj en— переходить на ракетный полет, причем части самолета, изготовленные из сплавов  [c.414]

Для изготовления металлостеклянных и металлокерамических уплотнений (переходов) обычно применяются аустенитные тройные сплавы Ре—N1— Со, имеющие коэффициенты термического расширения, близкие к соответствующим параметрам стекла или керамики. В работе [117] было исследовано поведение в условиях на-водороживания и высокого давления водорода (69 МПа) двух таких сплавов Ре—29 N1—17 Со (ковар) и Ре— 27 N1—25 Со (керамвар), пределы текучести которых после отжига составили 320 МПа. Данные для второго сплава представлены на рис. 20. Оба сплава полностью сохраняли пластичность при испытаниях в водороде [117]. Их структура представлена довольно стабильным аустенитом и не должна проявлять склонность к непланарному скольжению. Этот вопрос следует исследовать в рамках общей проблемы корреляции между типом скольжения и стойкостью к индуцированному водородом охрупчиванию.  [c.78]


В бинарных сплавах N1—Ре наблюдается уменьшение склонности к индуцированным водородом потерям пластичности по мере возрастания содержания железа [108, 109], особенно в интервале 20—50% Ре. Этот эффект интересен в сравнении с поведением сплавов, содержащих 20—30% Ре в дополнение к 20% Сг. Подобные тройные сплавы N1—Сг—Ре, к числу которых относятся, например, Ни-о-нель, Инколой 800 и Инколой 804, подвержен-ны КР в некоторых средах [241, 262, 265—268], причем при определенных обстоятельствах их стойкость к КР оказывается ниже, чем у сплавов на основе системы №—20 Сг [241]. Более того, последовательное замещение РенаИ при переходе от Инколой 800 (33% N1) к Инколой 825 (42% N1) и Инконель 625 (61% N1) сопровождается возрастанием стойкости сплава к КР [66, 67, 241, 267, 269]. Разрушения вследствие КР могут, однако, происходить во всех перечисленных сплавах, а на сплавы Монель 625 и Хастел-лой X, как было показано, отрицательно влияет также и водород при высоком давлении [39, 84, 122, 270]. В отсутствие систематических исследований поведения железа, можно предположить, что оно оказывает отрицательное воздействие на тройные и более сложные системы, обусловленное, в частности, еще не изученными синергитическими эффектами, которые подавляют поведение, свойственное Ре в бинарных сплавах. Следует, однако, также учитывать, что сплавы 800, 804, 825 (и даже 625) могли быть состарены с образованием упрочняющей у -фазы (см. ниже). Такая возможность вытекает из представленных в табл. 7 составов сплавов. В некоторых из упомянутых выше работ нет данных о термической предыстории исследованных материалов и поэтому микроструктура сплавов неизвестна. Следовательно, сравнение подобных сплавов с такими, в которых у -фаза не образуется (в частности. Инконель 600 и Хастеллой X), может быть неправомочным. По-видимому, в этой области нужны дальнейшие исследования при соответствующем контроле однофазной структуры.  [c.112]


Смотреть страницы где упоминается термин Переходы высокого давления : [c.176]    [c.639]    [c.820]    [c.168]    [c.252]    [c.42]    [c.349]   
Справочник по монтажу тепломеханического оборудования (1960) -- [ c.431 ]



ПОИСК



Давление высокое



© 2025 Mash-xxl.info Реклама на сайте