Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кориолисово взаимодействие состояний типа Ai:z и Bli

Колебательно-вращательные взаимодействия в пределах каждого электронного состояния, обусловленные центробежным искажением и кориолисовым взаимодействием, смешивают вра-щ,ательные уровни одинакового типа симметрии Frv Эти взаимодействия удовлетворяют правилам отбора Дуз — четное и АКа = 0 или Av3 — нечетное и А/(а== 1 (симметрия не накладывает ограничений на значения Awi, Дг 2 и АКс). Чисто колебательные возмущения, обусловленные ангармоническими членами в потенциальной функции, в каждом электронном состоянии смешивают уровни одинакового типа Fv. Поэтому для таких возмущений Avi — четное. Так как все рассматриваемые состояния относятся к различным типам электронной симметрии, между ними отсутствуют чисто электронные взаимодействия. Однако конфигурационное взаимодействие может смешивать каждое электронное состояние с более высоковозбужденными электронными состояниями.  [c.341]


Аналогичным образом, когда два колебательных состояния принадлежат к различным типам симметрии, но между ними возможно кориолисово взаимодействие (А/ = 1), это кориолисово взаимодействие обусловит вблизи точки пересечения кривых смещение уровней энергии по сравнению с нормальным положением, т. е. обусловит вращательное взаимодействие. Так как, однако, кориолисово взаимодействие возрастает с ростом квантового числа /, то в отличие от предыдущего случая смещение из нормального положения не становится опять равным нулю для больших значений 7, хотя разница энергий уровней с одним и тем же значением J и весьма велика.  [c.408]

Для сферического волчка все три момента инерции одинаковы и, следовательно, в первом приближении формула для вращательной энергии очень простая. Она совершенно такая же, как и для линейных молекул [см. выражение (1,131)]. Естественно, что в этом приближении мы должны получить очень простую структуру полос. В действительности же структура полос сильно усложняется из-за кориолисовых взаимодействий. Ниже будет рассмотрен только электронный переход Р2 — Ах в молекулах точечной группы Т а (т. е. в тетраэдрических молекулах). Это единственный тип перехода, разрешенный при поглощении излучения молекулами, находящимися в полносимметричном Ах) основном состоянии (табл. 9).  [c.243]

Здесь кориолисово взаимодействие может вызвать появление слабых запрещенных подполос при разрешенных электронных переходах. Например, при переходе А" — А в молекуле точечной группы типа s почти симметричного волчка, для которого нормально происходят только переходы с АК = = 1, с возрастанием / становятся возможными переходы с АК = О и +2 (как на фиг. 113, б), если вблизи состояния А" находится другое состояние типа А, которое с большой интенсивностью комбинирует с нижним состоянием А.  [c.268]

Кориолисово взаимодействие может также индуцировать переход А о — At, если вблизи нижнего состояния Ai расположено третье состояние, которое может комбинировать с состоянием А2). Если третье состояние, взаимодействующее с состоянием А , относится к типу Л1, то смешивание обусловлено вращением вокруг оси 2 если же третье состояние относится к типу Bi или В, , то — вращением соответственно вокруг осей х или у. Если ось z совпадает с осью а, то в первом случае (кориолисово взаимодействрге состояний Al и Л 2) возмущать друг друга могут уровни с одинаковыми значениями К , а в двух других случаях — со значениями К а, отличающимися на 1. На фиг. 113, а приводится схема энергетических уровней для первого случая, а на фиг. ИЗ, б — для второго случая (кориолисово взаимодействие состояний Bl и А 2).  [c.266]


Корио.тисово взаимодействие может иметь место лишь между состояниями, имеющими одинаковые значения J и относящимися к одинаковым олектрон-но-колебателъно-вращателъным типам симметрии. Следовательно, как можно видеть из фиг. 113, а, в первом случае (кориолисово взаимодействие состояний Л i и А 2) может наблюдаться полоса с Ь.Ка = О, подобная обычной параллельной полосе, в которой, однако, отсутствует подполоса с Ка = О, а при Аа = = О в переходах участвуют компоненты асимметрических дублетов, противоположные по сравнению с нормальной парал.тельной полосой типа А — Al (или А 2 — А 2). Подполосы с А = 1, 2,. . ., появление которых в спектре возможно в результате кориолисова взаимодействия, запрещены правилами отбора (11,97) и (11,98) для типов симметрии асимметричного волчка. Однако, как указывалось ранее, эти правила отбора нестрогие рассматриваемые подполосы подчиняются правилу отбора для электронно-колебатель-но-вращательных типов симметрии (табл. 15).  [c.266]

Точечная группа симметрии для равновесной конфигурации ядер в молекуле определяется легко (см. гл. 3). При использовании точечной группы для преобразования волновых функций молекулы элементы точечной группы рассматриваются как вра-н1ения и отражения вибронных переменных (колебательных смещений и электронных координат) в системе координат, закрепленной в молекуле (см, разд. 5.5 и рис. 5.7 в книге [121]). Молекулярная точечная группа является группой симметрии вибронного гамильтониана, так как расстояния между частицами при действии операций этой группы остаются неизменными. Операции молекулярной точечной группы не влияют на углы Эйлера, компоненты углового момента Ja и ядерные спиновые координаты. Если в гамильтониане мы пренебрегаем членами, связывающими вибронные координаты с другими степенями свободы (особенно с членами кориолисова взаимодействия и центробежного искажения), то мы получаем приближенный гамильтониан, который коммутирует с элементами молекулярной точечной группы. Следовательно, молекулярная точечная группа является группой приближенной симметрии полного молекулярного гамильтониана, а возмущения типа кориолисова взаимодействия и центробежного искажения являются основными эффектами, понижающими симметрию гамильтониана. Поэтому молекулярная точечная группа обычно используется для классификации колебательных и электронных состояний и для изучения вибронных взаимодействий, но не используется для классификации ровибронных состояний. Точечная группа является группой точной симметрии вибронного (и электронного) гавильтониана.  [c.299]

Для вращательных состояний молекулы типа жесткого симметричного волчка число К является точным квантовым числом, однако для колебательно-вращательных или ровибронных состояний оно является приближенным квантовым числом. Это квантовое число теряет смысл за счет эффектов центробежного искажения и кориолисова взаимодействия. Так как гамильтониан молекулы коммутирует с операцией обращения времени (которая переводит любую волновую функцию в ее комплексносопряженную см. гл. 6), каждая собственная функция всегда содержит суммы или разность собственных функций с k = К н k == —К. Поэтому энергетические уровни могут быть классифицированы по значениям положительного квантового числа К, а не квантового числа k, получающего положительные и отрицательные значения. Квантовое число J является приближенным для полных внутренних состояний Е и теряет смысл, например, при учете взаимодействия Япзг, зависящего от ядерного спина. Однако число F является точным квантовым числом для изолированной молекулы в свободном пространстве.  [c.309]

Таким образом, в молекуле типа симметричного волчка доминирующее взаимодействие, обусловленное оператором fer, может иметь место между, такими электроино-вращательными состояниями, у которых произведение тннов симметрии электронных функций содержит тип симметрии вращения, а вращательное квантовое число К удовлетворяет правилам отбора АК = О или 1 в зависимости от тина симметрии вращательного оператора, связывающего электронные состояния. Правила отбора по К теряют смысл при учете эффектов центробежного искажения и кориолисова взаимодействия, которые смешивают состояния с различными К в пределах одного электронного состояния [см. (11.105) и (11.108)]. Если для молекулы типа асимметричного волчка используется молекулярная группа вращений Ог, то произведениям типов симметрии взаимодействующих электронных состояний, содержащим типы симметрии операторов Ja, h и 1с, соответствуют вращательные правила отбора (Д/Са — четное, Д/Сс —нечетное), (ДА а — нечетное, А/(с — нечетное) и (Д/Са — нечетное, Д/Се — четное) соответственно. Если в рассматриваемых состояниях молекула близка к вытянутому симмет-рич1юму волчку (т. е. Ка является полезным приближенным квантовым числом), то правило Д/(а —четное (или нечетное) можно заменить на Ка — О (или 1) для почти сплюснутого волчка такая замена применима к ts.K -  [c.327]


В отсутствие резонансов вычисление поправок на центробежное искажение и кориолисово взаимодействие методом возмущений приводит к эффективному вращательному гамильтониану или уотсониану [113, 118, 133, 134, 136 ], в котором последовательные члены содержат вторую, четвертую, шестую и т. д. степени компонент оператора углового момента. Эффективный вращательный гамильтоииан коммутирует с операциями молекулярной группы вращений и в отсутствие резонансов между состояниями, вызываемых центробежным искажением или корнолисовым взаимодействием, число К остается приближенным квантовым числом для симметричного волчка, а неприводимые представления группы D2 дают хорошую классификацию уровней асимметричного волчка. Для молекул типа сферического волчка центробежное искажение и кориолисово взаимодействие приводят к важному явлеиию частичного расщепления (2/+ 1)-кратного вырождения по k каждого уровня. Максимальное число расщепленных компонентов равно полному числу неприводимых представлений группы МС, входящих в приводимое представление Frv. Например, вращательный уровень с / = 18 основного колебательного состояния молекулы метана состоит из уровней с различными типами симметрии группы МС (см. табл. 10.14)  [c.331]

Приближенные квантовые число G и ( 1). Центробежное искажение и кориолисово взаимодействие в симметричном волчке могут смешивать состояния с различными значениями К [см., например, правила отбора (11.105), (11.108)]. Если эти взаимодействия сильные, то число /С теряет смысл даже как приближенное квантовое число. Однако па основании принципов симметрии можно ввести другие квантовые числа G и Gv для классификации колебательно-вращательных состояний молекулы типа симл етричного волчка [54]. Введем эти квантовые числа для частного случая молекулы СНзР. Полную колебательно-вращательную волновую функцию в нулевом приближении можно записать в виде  [c.332]

Vi = 2 уровню с /4 = О не приписывается символ ( /), та как этот уровень расщепляется кориолисовым взаимодействием первого порядка. В произвольном колебательном состоянии типа Е молекулы H3F колебательно-вращательные типы симметрии (+/)- и (—/)-уровией зависят от значения К, как это показано в табл. 11.8. Следует отметить, что отнесение чисел ( 0 к уровням определяется именно типами симметрии МС, а не относительными знаками квантовых чисел k м h (см. примеры U4 = 1 и У4 = 2 для H3F, рассмотренные выше). Для классификации вырожденных вибронных состояний мы используем квантовое число gev вместо gw. Тогда выражение (11.125), записанное в более общем виде [62]  [c.335]

Итак, мы показали, что энергетические уровни молекул можно классифицировать по типам точной симметрии, базисной симметрии и приближенной симметрии, а также по точным и приближенным квантовым числам. Наиболее полезными символами для классификации уровней являются Г (или четность), F, Frve, /, /, S, N, колебательные квантовые числа Vt и вращательные квантовые числа К, ( /) для симметричного волчка, Ка, Кс ДЛЯ асимметричного волчка и R для сферического волчка. Для определенных целей можно использовать также базисные типы симметрии Гг, Fv, Ге, Frv и Fve группы МС. Эти типы симметрии могут быть использованы для выявления смешивания уровней различными возмущениями и при определении правил отбора для электрических дипольных переходов. Среди наиболее важных правил отбора для возмущений особое место занимают правила, согласно которым ангармонические возмущения связывают уровни одинакового типа Fv, центробежное искажение и кориолисово взаимодействие связывают уровни одинакового типа Frv, а вибронное взаимодействие связывает состояния одинакового типа симметрии Fve. Получены также правила отбора по колебательным и вращательным квантовым числам. Выведены правила отбора для электрических дипольных переходов по колебательным, вращательным и электронным квантовым числам и по типам симметрии переходы, не подчиняющиеся этим правилам отбора, называются запрещен  [c.362]

Те.м не менее, не каждая пара колебаний оказывает такое влияние. Как мы видели выше (фиг. 100), в случае линейной молекулы типа Х сила Кориолиса обусловливает взаимодействие только между колебаниями v, и ни не между колебаниями Vj и vj или колебаниями Vj и v . Общее правило, указывающее, для каких колебательных состояний имеет место кориолисово взаимодействие, было дано Яном [470]. Это правило сразу же сл1 дует из (4,10), если учесть, что составляюпше /7j, принадлежат к тому же типу симметрии, что и а составляющие рх, Ру и р — к тому же типу симметрии, что и повороты вокруг оси X, у и г. Поэтому два колебания вращающейся молекулы будут взаимодействовать вследствие возникновения сил Кориолиса только в том случае, когда произведение их типов симметрии (см. табл. 31 и S3) содержит тип симметрии вращения. Так, для колебаний ч., и Чц линейной симметричной молекулы типа XYa произведение" типов симметрии т. е. получается тип симме-  [c.404]

ОНО Происходит с состоянием т- е. состояние П будет обнаруживать аномально большое (или малое) удвоение типа I. Такое аномально высокое расщепление было наблюдено (но не объяснено) Функе и Линдгольмом [342] для верхнего состояния 2у1- -Уд- -полосы 10,413 см , принадлежащей молекуле С Н,, для которого = 0,0084 см , между тем как для всех других наблюденных состояний, для которых возбужден один квант колебания 74 (П ), значение д лежит между 0,0059 и 0,0067 см . Возмущающим состоянием в этом случае является, вероятно, состояние v 27 -)-Уд (Е ). Некоторые наблюденные нерегулярные изменения значений В в случае молекулы СоН также, повидимому, обусловлены кориолисовым взаимодействием.  [c.408]


Обе причины возмущения — резонанс Ферми и кориолисово взаимодействие— могут также приводить к типичным вращательным возмущениям. Пусть взаимодействие Ферми между двумя состояниями одного и того же типа симметрии очень мало, но оба уровня все же находятся очень близко друг к другу (это может иметь место в случае более высоких колебательных уровней), и пусть в то же время значения постоянных В таковы, что кривые, изображающие зависимость невозмущенного члена от квантового числа У, пересекаются между собой (см. фиг. 124, в книге Молекулярные спектры I). Тогда будут возмущаться только уровни, лежащив вблизи этой точки пересечения, и мы будем иметь типичный случай вращательного возмущения.  [c.408]

Если бы не было эффектов более высокого порядка, уровни Ai и А2 при данных J ж К имели бы одинаковую энергию точно так же, как две компоненты уровней с данным J в электронно-колебательном состоянии П линейной молекулы. Когда возбуждено вырожденное колебание v , из-за кориолисова взаимодействия или просто из-за колебательно-вращательного взаимодействия возникает расщепление уровней на две компоненты, которое называется -удвоением, несмотря на то что в молекулах типа симметричного волчка в отличие от линейных молекул момент количества движения (колебательный) равен не (hl2n), а Сг h 2n) (см. стр. 67). Гаринг, Нильсен и Pao [406] показали, что точно так же, как в линейных молекулах, при А = 1 удвоение в первом хорошем приближении равно  [c.97]

Тонкая структура невырожденных электронно-колебательных состояний. Во вращательных уровнях данного электронно-колебательного уровня, имеюпщх одно и то же /, но различные типы, по-разному проявляется влияние кориолисова взаимодействия с вращательными уровнями других электронно-колебательных уровней, влияние центробежного растяжения или других взаимодействий более высоких порядков. Поэтому в достаточно высоком приближении существует расщепление на столько уровней, сколько показано числом горизонтальных линий на фиг. 38. Иными словами, когда молекула деформирована центробежными силами или неполносимметричными колебаниями, она перестает быть строго симметричным волчком и исчезает причина для (21 - - 1)-кратного вырождения. Вырождение снимается в той мере, в какой нарушена симметрия. Получающиеся расщепления подробно рассмотрены Яном [617], а затем Хехтом [485]. К сожалению, эти расщепления нельзя описать простыми формулами. Они зависят от матричных элементов различных возмущающих членов.  [c.103]

Одни из них, гомогенные, обусловлены взаимодействием между двумя электронно-колебательными состояниями одинаковых тинов, случайно имеющими почти одинаковые энергии в небольшой области значений / (взаимодействие Ферми). Другие, гетерогенные, вызваны взаимодействием двух электронноколебательных состояний различных типов кориолисово взаимодействие). Отличие от других похожих случаев, встречающихся в колебательно-враща-тельных спектрах [см. [23], стр. 495], состоит в том, что теперь два взаимодействующих состояния могут принадлежать к различным электронным состояниям. Гомогенные возмущения обусловлены электронно-колебатель-ным взаимодействием, а гетерогенные — взаимодействием вращения с электронным (или электронно-колебательным) движением. Кориолисовы силы, возникающие при вращении, приводят к взаимодействию между электронноколебательными состояниями, типы которых отличаются от вращательных типов. Из-за низкой симметрии молекул тина асимметричного волчка такие возмущения, по-видимому, бывают здесь чаще, чем в более симметричных молекулах. Однако их труднее обнаружить, так как формулы вращательной энергии более сложны. Конкретных примеров известно очень мало.  [c.119]

Следует отметить, что поворот осей вызывает появление запрещенных подполос независимо от наличия какого-либо другого близко расположенного электронного состояния. При кориолисовом взаимодействии вблизи верхнего или нижнего состояния должно находиться соответствующее третье электронное состояние. Единственными запрещенными электронными или электронно-колебательными переходами в молекулах с достаточно низкой симметрией (достаточно низкой для того, чтобы мог происходить поворот осей) являются переходы типа g — gnu — и. Поворот осей не может пндуцп-ровать эти переходы.  [c.268]


Смотреть страницы где упоминается термин Кориолисово взаимодействие состояний типа Ai:z и Bli : [c.297]    [c.317]    [c.323]    [c.477]    [c.481]    [c.237]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.2 , c.266 , c.267 ]



ПОИСК



Взаимодействие состояний

Кориолисово взаимодействие



© 2025 Mash-xxl.info Реклама на сайте