Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Слои Влияние механической обработки

Авторы, объясняющие влияние механической обработки на усталость одними остаточными макронапряжениями, исключают деформационное упрочнение металла поверхностного слоя. Например, повышение усталостной прочности после упрочняющей обработки связывают с остаточными напряжениями сжатия, которые, накладываясь на растягивающие напряжения от внешней нагрузки, снижают результирующее напряжение в поверхностном слое.  [c.164]


Комплексное влияние на усталость параметров качества поверхностного слоя после механической обработки. Для установления аналитической зависимости между характеристиками уста-  [c.203]

Возникающие под влиянием механической обработки неравномерность структуры поверхностного слоя и шероховатость поверхности оказывают большое влияние на эксплуатационные свойства деталей машин. Определено, что чем ниже шероховатость отделки, тем выше предел усталости. Существует следующая закономерность снижения предела усталости (кгс/мм ) при понижении класса шероховатости (сталь Ст.З)  [c.122]

ВЛИЯНИЕ МЕХАНИЧЕСКОЙ ОБРАБОТКИ И СВОЙСТВ ПОВЕРХНОСТНОГО СЛОЯ МАТЕРИАЛА НА ВЫНОСЛИВОСТЬ  [c.370]

Травление поверхностного слоя после механической обработки уменьшает влияние концентраторов напряжений на переход в хрупкое состояние стали при низких температурах и сдвигает порог хладноломкости в сторону низких температур.  [c.604]

Подготовка поверхности изделий перед осаждением на них покрытий заключается не только в удалении имеющихся на ней загрязнений. Эта поверхность и прилегающий к ней тонкий слой металла формируются под влиянием механической обработки, неизбежной в процессе превращения заготовки в изделие. Образующаяся при этом химическая, структурная, микрогеометрическая неоднородность неблагоприятно сказывается на качестве покрытий.  [c.48]

Положительное действие операции травления заключается в удалении химически связанных с металлом загрязнений, а также выявлении его структуры. Однако последнее в обычных условиях ведения процесса трудно достижимо. Дело в том, что изменения, которые происходят с металлом под влиянием механической обработки, не ограничиваются его поверхностью, а распространяются на тонкий поверхностный слой. Чтобы выявить истинную структуру металла, необходимо удалить этот некондиционный, обогащенный дефектами слой. Наиболее успешно такой результат может быть достигнут электрохимическим полированием. Однако оно весьма ограниченно применимо из-за значительного съема 48  [c.48]

Влияние механической обработки на свойства слоев 6, 7  [c.279]

Дефектный поверхностный слой образуется при получении заготовок и при механической обработке заготовок из стали. Глубина дефектного слоя после механической обработки чугунов и цветных металлов, а также после термической обработки, при определении припуска не учитьшается в случае применения расчетных методик. При расчетах припуска можно установить более полно и влияние термической обработки. В этом преимущества расчетного метода перед табличным. В частности на переходах, предшествующих термической обработке, следует обеспечить такую точность заготовки, чтобы переходы механической обработки после термической обработки позволяли получить стабильный термообработанный поверхностный слой.  [c.28]


Если при статических нагрузках состояние рабочих поверхностей незначительно влияет на их прочность, то при циклических нагрузках разрушение деталей связано с развитием усталостных трещин, возникающих в поверхностном слое. Развитию этих трещин способствует шероховатость поверхности в результате механической обработки. При расчетах это явление учитывается коэффициентом влияния шероховатости поверхности  [c.248]

Влияние состояния поверхности. В большинстве случаев поверхностные слои элемента конструкции, подверженного действию циклических нагрузок, оказываются более напряженными, чем внутренние (в частности, это имеет место при изгибе и кручении). Кроме того, поверхность детали почти всегда имеет дефекты, связанные с качеством механической обработки, а также с коррозией вследствие воздействия окружающей среды. Поэтому усталостные трещины, как правило, начинаются с поверхности, а плохое качество последней приводит к снижению сопротивления усталости.  [c.671]

Вредное влияние микронеровностей поверхности во многих случаях смягчается пластической деформацией, вызываемой в поверхностном слое механической обработкой и распространяющейся на некоторую глубину, зависящую от режимов резания и, в частности, от величины подачи. При грубой обточке она может достигать 1 мм и более, а при шлифовании и полировании измеряется сотыми долями миллиметра и микрометрами. Пластическая деформация поверхностного слоя может повысить предел выносливости на 10—20 %.  [c.672]

Рассмотренный пример наглядно показывает, что точность и качество поверхностного слоя заготовки оказывают существенное влияние на структуру технологического процесса механической обработки заготовки. И то, и другое имеет непосредственное отношение к себестоимости изготавливаемых деталей. Поэтому в каждом конкретном случае надо искать такой компромиссный вариант получения заготовки, который обеспечивал бы минимальную себестоимость изготовления детали. Для этого необходимо более детально познакомиться со структурой себестоимости изготовления детали.  [c.35]

Влияние качества обработки поверхностей деталей. При статических нагрузках качество обработки рабочих поверхностей деталей оказывает незначительное влияние на их прочность. При циклических нагрузках разрушение деталей связано с развитием усталостных трещин, возникающих в поверхностном слое. Развитию этих трещин способствует возникшая в результате механической обработки детали шероховатость поверхности в виде рисок, царапин, следов резца и т. п., которые являются концентраторами напряжений. С увеличением шероховатости поверхности предел выносливости снижается, что учитывается коэффициентом влияния шероховатости поверхности Ki , представляющим собой отношение предела выносливости образца с данной шероховатостью поверхности к пределу  [c.23]

Влияние шероховатости поверхности. С увеличением шероховатости поверхности детали предел выносливости понижается. При переменных напряжениях первичные усталостные микротрещины возникают обычно в поверхностном слое. Этому способствуют дефекты механической обработки (следы резца.  [c.14]

Особое влияние на работоспособность изделий оказывает механическая обработка, которая придает окончательные форму и свойства рабочим поверхностям деталей. Обработка металлов резанием сопровождается сложными физическими процессами, вызывающими пластические деформации, наклеп и нагрев поверхностного слоя. В результате получается поверхностный слой со своеобразными физическими свойствами, которые являются следствием данного метода обработки и его режимов (см. гл. 2, п. 2).  [c.469]

Вид механической обработки оказывает существенное влияние на характер штрихов, чистоту поверхности, геометрию и характер расположения единичных микронеровностей, а также на механические характеристики тонкого поверхностного слоя.  [c.9]


Рассмотрим влияние основных видов механической обработки и особенно шлифовки на усталостную прочность титановых сплавов. Установлено, что после абразивной шлифовки, особенно при форсированных режимах, титановые сплавы имеют наиболее низкую усталостную прочность. Шлифовка по сравнению со стандартной обработкой для одних и тех же титановых сплавов может снизить предел выносливости в 2—3 раза. Многие исследователи объясняют неблагоприятное влияние шлифовки на усталостную прочность возникновением в поверхностном слое высоких растягивающих напряжений.  [c.178]

Режим и технология точения также могут определенным образом влиять на усталостную прочность. Высокая скорость резания и большая подача заметно снижают предел выносливости вследствие повышения шероховатости поверхности и появления неблагоприятных поверхностных напряжений. Однако имеются режимы резания, которые создают поверхностный наклеп и сжимающие напряжения, повышающие предел выносливости титана. Замечено отрицательное влияние на усталостную прочность титановых сплавов охлаждения жидкостями (вода, эмульсия и пр.) при высоких скоростях резания точением. В этом случае происходит поверхностное наводороживание и даже появление гидридных пленок и слоев, способствующих возникновению растягивающих напряжений и хрупкости поверхности. Во всех случаях конечные операции механической обработки деталей из сплавов титана, подвергающихся систематическим циклическим нагрузкам, необходимо строго регламентировать, а еще лучше предусмотреть специальную поверхностную обработку, снимающую все неблагоприятные поверхностные явления и упрочняющую металл.  [c.181]

При анализе разрушения деталей из алюминиевых сплавов выявляется большое влияние различных концентраторов напряжений следов от грубой механической обработки, забоин, малых радиусов переходов и т. д. По-видимому, еще недостаточно обращается внимания на совершенствование технологии изготовления и рациональное конструирование этих деталей. Фактором, суш,ественно снижающим усталостную прочность деталей, является также наличие анодного слоя большой толщины. Так. местное увеличение толщины анодного покрытия до 20 мкм (вместо допустимых 7—10 мкм) при одновременном наличии в этом месте механической забоины привело к возникновению первичного очага усталостного разрушения в детали из сплава В91 после 420 000 циклов нагружения ( r i,=0,07 ГН/м , а = = 0,05 ГН/м2).  [c.115]

Трещины, имеющиеся на поверхности детали не только поблизости, но и вдали от излома, могут указывать на наличие хрупкого слоя, образовавшегося в результате неправильного проведения термической, химико-термической или механической обработки, влияние активных насыщающих сред или на коррозионные повреждения.  [c.175]

При исследовании влияния низкотемпературного нагревания на старение или снятие напряжения после механической обработки установлено, что нагревание в смеси азота с водородом и в чистом аргоне вызывает очень незначительные изменения в поверхностных слоях по сравнению с нагреванием в воздухе. Эти изменения меньше, чем при высокотемпературном нагревании, но они отрицательно влияют на прочность и устойчивость к усталости, если не удалить поверхностный слой механическим или химическим способом.  [c.88]

Физическое состояние поверхностного слоя деталей и его напряженность, обусловленные механической обработкой, оказывают существенное влияние на эксплуатационные свойства и прежде всего на их усталостную прочность. Остаточные напряжения и деформационное упрочнение поверхностного слоя в условиях циклического нагружения и рабочих температур могут положительно и отрицательно влиять на сопротивление материала усталости. В связи с этим представляет большой научный и практический интерес изучение устойчивости поверхностного наклепа и остаточных макронапряжений после механической обработки в зависимости от температуры и продолжительности нагрева.  [c.131]

При исследовании влияния на усталость качества поверхностного слоя деталей после механической обработки вначале рассматривали только шероховатость поверхности, считая, что чем меньше микронеровности поверхности, тем выше усталостная прочность. Позже были введены еще три параметра остаточные напряжения, глубина и степень поверхностного наклепа, обусловленные пластической деформацией металла поверхностного слоя.  [c.164]

Основными параметрами качества поверхностного слоя деталей после механической обработки металлическим или абразивным инструментом является шероховатость поверхности, глубина и степень наклепа и технологические макронапряжения. Для определения степени влияния каждого из них в отдельности на характеристики усталости, в данной работе использован метод изотермических нагревов в вакууме образцов после заданных режимов механической обработки. Вакуум необходим для предохранения от окисления поверхностного слоя образцов при нагревах. Для этой цели образцы после механической обработки на заданных режимах разделены на три группы. Образцы первой группы испытывали на усталость непосредственно после механической обработки, образцы второй и третьей групп до испытания на усталость подвергали изотермическим нагревам в вакууме для снятия технологических макронапряжений (вторая группа) и для снятия поверхностного наклепа (третья группа). Относительную значимость каждого параметра качества поверхностного слоя в отдельности оценивали путем сравнения характеристик усталости образцов после термообработок для снятия остаточных напряжений, поверхностного наклепа и образцов, не подвергавшихся термической обработке.  [c.173]


Для изучения совместного влияния параметров качества поверхностного слоя на характеристики усталости использован многофакторный регрессионный анализ данных исследования качества поверхностного слоя и результатов испытания на усталость серий образцов после различных методов и режимов механической обработки.  [c.173]

Бллъшое значение для стабилйза11ЕИ свойств поверхностного слоя после механической- обработки и уменьшения отрицательного влияния на усталость локальных дефектов типа прижогов имеет заключительная термическая обработка, например стабилизирующий отпуск. Термическая обработка лопаток из титановых сплавов повышает предел выносливости (Р = 1,2. .. 1,3). Если после нее в качестве заключительной операции применяют глянцевание, предел выносливости повышается более чем на 30%. При этом р стальных лопаток изменяется от 0,9 до 1,0.  [c.135]

Влияние механической обработки на механические свойства микрообразцов. При статических испытаниях гладких крупных образцов влияние наклепа поверхностного слоя обычно не учитывают. Однако при испытаниях микрообразцов влияние наклепа для некоторых материалов может оказаться существенным.  [c.96]

Однако кроме указанного выше изменения химического состава поверхности, связанного со способом изготовления образцов,, важное значение могут иметь и физические воздействия. Пакстон и Проктер [8] в своем обзоре привели некоторые сведения о влиянии механической обработки и шлифовки на чувствительность к коррозионному растрескиванию. Это влияние обусловлено топографией поверхности и образованием внутренних напряжений в поверхностных слоях образцов. Первое наиболее важно для высокопрочных материалов, чувствительных к надрезу напряжения сжатия, возникающие в поверхностных слоях, по-видимому, оказывают обычный эффект,, способствуя торможению или предотвращению растрескивания.  [c.317]

Таким образом, несмотря на то, что влияние п редварительной деформации индивидуально и зависит от сплава и температурно-временнйх условий, для материалов реальных конструкций, работающих при малых упругопластических деформациях (до 0,2—0,5%), возможно принимать кривые ползучести и характеристики длительной прочности, не зависящими от предварительного пластического деформирования, а. мгновенные диаграммы растяжения и характеристики кратковременной прочности, не зависящими от предварительно накопленной деформации ползучести. Большие степени холодных пластических деформаций, возникающие на поврежденных слоях при механической обработке, оказывают значительное влияние на характеристики прочности и пластичности при длительном статическом разрушении. Снижение сопротивления длительному статическому разрушению и способности к пластическому деформированию материала, наклепанного при механической обработке (фрезерование, шлифование абразивом), являются в ряде случаев причиной образования статических трещин в поверхностных слоях деталей, работающих при высоких температурах.  [c.36]

Характер деформации металла сильно сказывается на его склонности к коррозионному растрескиванию. Так, как правило, глубокая штамповка оказывает более сильное влияние, чем холодная прокатка или гибка. Те виды механической обработки, при которьЕх в верхнем слое металла образуются сжимающие напряжения (проковка, обдувка дробью, обкатка роликами, опе-скоструирование и др.), уменьшают склонность металла к коррозионному растрескиванию. Эти виды обработки обычно рекомендуются для борьбы с коррозионным растрескиванием сварных швов.  [c.102]

Модификация структуры основывается на влиянии изменений параметров микроструктуры (размер зерна, кристаллографическая текстура, плотность дислокаций) на механические свойства и износостойкость материалов. Примерами структурной модификации приповерхностного слоя являются дробеструйная обработка, накатывание роликом, вибрационное накатывание, ультразвуковая упрочняющая обработка, алмазное выглаживание, электромеханическое упрочнение 13]. Известно, ч го поверхностная закалка после нагрева приводит к уменьшению размера зерен вблизи поверхности и увеличению локального напряжения течения. Поэтому поверхностный нагрев с применением направленных источников энергии, таких, как лазер и электронный луч, может использоваться для оплавления и последующего быстрого затвердевания (кристаллизации) поверхностного слоя. Названные мегоды обработки вызывают yny4nJ HHe размеров зерна, формирование мелкой, субзеренной структуры, увеличивают концентрацию выделений и упрочнение, приводят к появлению новых полезных фаз. растворению или удалению инородных включений [19]. Перечисленные эффекты структурной модификации делают ее весьма перспективной, а развитие метода входит в число актуальных задач гриботехнологии.  [c.39]

В процессе механической обработки деталей в поверхностных слоях происходит изменение rpyKrypi.i металла и его механических свойств. Названные изменения являются следствием процессов, развивающихся в поверхностном слое под влиянием внешнего энергетического воздействия в виде контак ного давления и относительного перемеа(ения (скольжения) режущего инструмента. При этом основная часть механической энергии преобразуется в тепловую, создавая градиент температур по глубине слоя. В результате этих процессов в материалах деталей при резании как при термической обработке развиваются остаточные напряжения.  [c.41]

Величина и знак остаточных напряжений после механической обработки зависят от обрабатываемого материала, его структуры, геометрии и состояния режущего инструмента, от эффективности охлаждения, вида и режима обработки. Величина остаточных напряжении может быть значительной (до 1000 МПа и выше) и оказывает существенное влияние на эксплуатационные характеристики деталей машин, их износостойкость и прочность. Выбором метода и режима механической обработки можно получить поверхностный слой с заданной величиной и знаком остаточных напряжений. Так, при точении закаленной стали 35ХГСА резцом с отрицательным передним углом 45° при скорости резания 30 м/мин, глубине резания 0,2-0,3 мм было получено повышение предела выносливости образцов на 40-50% и обнаружены остаточные сжимающие напряжения первого рода, доходящие до 600 МПа [25]. При шлифовании закаленной стали в поверхностном слое были обнаружены остаточные сжимающие напряжения до 600 МПа [26]. В некоторых случаях напряжения первого рода создаются намеренно в целях упрочнения. Например, для повышения усталостной прочности. Такой эффект получают наложением на поверхностный слой больших сжимаюп их напряжений путем обкатки поверхности закаленным роликом или обдувкой струей стальной дроби. Такой прием позволяет создать остаточные напряжения сжатия до 900-1000 МПа на глубине около 0,5 мм [25].  [c.42]


В табл. 25 приведены данные по влиянию остаточных напряжений, возникающих при различных видах механической обработки в поверхностном слое металла, на сопротивление стали марки ЗОХГСИА к коррозионному растрескиванию (по данным Ажогина Ф.Ф.).  [c.99]

В работе [146] было установлено, что скорость коррозии стали в 3%-ной H2SO4 уменьшается при переходе от грубой механической обработки к более тонкой в следующей последовательности грубая обработка резцом, пескоструйная обработка, обдувка дробью, обкатка роликами, шлифование, полировка бязевыми кругами, электролитическая полировка. Измерение электродных потенциалов в водопроводной воде показало, что более грубой обработке поверхности соответствует более отрицательное значение начального электродного потенциала. В результате соноставления зависимостей высоты микронеровностей и скорости коррозии стали в кислоте от скорости резания при токарной обработке с постоянным шагом витка (при различных Скоростях резания) авторы пришли к выводу о решающем влиянии наклепа поверхностного слоя на скорость коррозии особенно при малых скоростях резания и отсутствии заметного влияния шероховатости ( истинной поверхности).  [c.186]

Предыстория изготовления труб или технологическая наследственность , в первую очередь механическая и термическая обработка, во многом обусловливают коррозию под напряжением. Так, формование уиоминаемых выше разрушившихся спиральношовных труб без должной настройки формующих машин привело к созданию в металле остаточных напряжений до 125 МПа (табл. 4). Кроме того, формующие ролики оставили спиральные вмятины на поверхности с соответствующим наклепом и понижением коррозионной стойкости (наблюдались полосы избирательной механохимической коррозии). Остатки прокатной окалины также создают на поверхности коррозионные гальванопары, которые могут привести электрохимический потенциал локальных участков к значениям, при которых возникают трещины. Механическая обработка поверхности (например, при зачистке поверхности трубы скребками) создает неоднородность физико-механического состояния поверхностного слоя и вызывает сильную электрохимическую гетерогенность поверхности, способствующую развитию значительной локальной коррозии. Большое влияние формы и количества неметаллических включений, т. е. степени загрязнения стали, на коррозионную усталость (снижение выносливости) также обусловлено электрохимической гетерогенностью в области включения, усиливающейся при приложении нагрузки вследствие концентрации напряжений. В этом отношении является неудовлетворительным качество стали 17Г2СФ непрерывной разливки в связи с большой загрязненностью неметаллическими включениями (в частности пластичными силикатами), что привело к почти полной потере пластичности листа в направлении поперек прокатки.  [c.229]

Формирование технологических макронапряжений. Макронеоднородность пластической деформации по глубине поверхностного слоя и местный мгновенный и неравномерный нагрев зоны деформации являются основными факторами, определяющими величину и знак остаточных макронапряжений, возникающих в процессе механической обработки. Величина, знак и характер распределения макронапряжений по глубине поверхностного слоя есть результат наложения макронапряжений, созданных пластической деформацией, увеличения от нагрева объема поверхностного слоя и диффузионных превращений. Плотность пластически деформированного металла поверхностного слоя меньше исходного, неде-формированного. Это различие и приводит к образованию в поверхностном слое сжимающих макронапряжений. Следовательно, технологические факторы, определяющие глубину наклепанного слоя, должны оказывать влияние и на формирование макронапряжений.  [c.126]

Взаимосвязь между макронапряжениями и степенью наклепа при нагреве. Деформационное упрочнение (наклеп) по глубине поверхностного слоя неоднородно. В первом приближении эта неоднородность характеризуется степенью наклепа, которая непосредственно связана со степенью деформации. Поскольку неоднородность пластической деформации по глубине поверхностного слоя детали, возникшая в результате механической обработки ее, является одной из основных причин образования в детали остаточных макронапряжений, то можно полагать, что между макронапряжениями и степенью наклепа существует взаимосвязь. Для установления этой взаимосвязи параллельно исследовали влияние температуры нагревов на деформационное упрочнение поверхностного слоя и релаксацию остаточных макронапряжений. С этой целью на образцах из жаропрочных сплавов ЭИ617, ЭИ826 и ЭИ929 после фрезерования, шлифования и обкатки роликом замеряли микротвердость по глубине деформированного поверх-150  [c.150]


Смотреть страницы где упоминается термин Слои Влияние механической обработки : [c.439]    [c.370]    [c.99]    [c.74]    [c.60]    [c.317]    [c.152]    [c.80]    [c.158]    [c.47]    [c.99]   
Узлы трения машин (1984) -- [ c.0 ]



ПОИСК



Влияние Механическая обработка

Влияние обработки

Механические Влияние механической обработки

Механические слои

Обработка механическая



© 2025 Mash-xxl.info Реклама на сайте