Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поглощения процессы переходы свободно-свободны

Возбуждение высших оптических гармоник лазерного излучения — многофотонное рэлеевское рассеяние света атомом — реализуется в результате двух различных процессов в зависимости от интенсивности лазерного излучения. В области субатомной интенсивности возникает многофотонное поглощение электрона за счет связанно-связанных, связанно-свободных и свободно-свободных переходов с последующей релаксацией электрона в исходное основное состояние атома, впервые обнаруженное в работе [1.20]. При этом возникает релаксационное излучение с частотой Кш, где номер возбуждаемой гармоники К может достигать величины в несколько десятков единиц (эта граница не носит принципиального характера она определяется рядом практических причин). Отметим, что этот процесс является конкурирующим к процессу многофотонной ионизации атома.  [c.23]


Свободно-свободные переходы. Поглощение фотонов свободными электронами представляет собой процесс, обратный  [c.367]

В ионизованном газе (плазме) свободный электрон, пролетая в электрическом поле иона, может испустить квант, не потеряв при этом всей своей кинетической энергии и оставаясь свободным, либо же поглотить квант, приобретая дополнительную кинетическую энергию. Эти свободно-свободные переходы часто называют тормозными, так как при испускании электрон как бы тормозится в поле иона, теряя часть своей энергии на излучение. Тормозные процессы дают также непрерывный спектр излучения и поглощения.  [c.101]

Согласно квант, теории, С. с. возникает при квантовых переходах между двумя совокупностями уровней энергии, из к-рых, по крайней мере, одна принадлежит к непрерывной последовательности уровней. Примером может служить С. с. атома И, получающийся при переходах между дискр. уровнями энергии с разл. значениями гл. квантового числа п и непрерывной совокупностью уровней энергии, лежащих выше границ ионизации (свободно-связанные переходы) в поглощении С. с. соответствует ионизации атома Н (переходы эл-на из связанного состояния в свободное), в испускании — рекомбинации эл-на и протона (переходы эл-на из свободного состояния в связанное). При переходах между разными парами уровней энергии, принадлежащими к непрерывной совокупности уровней (свободно-свободные переходы), также возникают С. с., соответствующие тормозному излучению при испускании и обратному процессу при поглощении. Переходы же между разными парами дискрет, уровней энергии создают линейчатый спектр (связанно-связанные переходы).  [c.716]

В ЗТВ в процессе нагрева и охлаждения при сварке, а также в шве при охлаждении получают развитие целый ряд фазовых структурных превращений. Под фазовыми превращениями (переходами I рода) понимают превращения с образованием новых фаз, отличающихся от исходных атомно-кристаллическим строением, часто составом, свойствами, и разграниченных с ними поверхностями раздела (межфазными границами). При образовании новой фазы в ее объеме меняется свободная энергия, скачкообразно изменяются энтропия, теплосодержание и в момент превращения теплоемкость стремится к бесконечности. В связи с этим фазовое превращение сопровождается выделением или. поглощением теплоты. При структурных превращениях (переходах FI рода) происходит перераспределение дефектов кристаллической решетки, легирующих элементов и примесей и изменение субструктуры существующих фаз. Структурные превращения сопровождаются плавным изменением свободной энергии, энтропии и теплосодержания, скачкообразным — теплоемкости, и не сопровождаются выделением теплоты.  [c.491]


Собственное поглощение. Оно связано с переходами электронов из валентной зоны в зону проводимости. Выше уже отмечалось, что в идеальном полупроводнике при 7 = 0К валентная зона заполнена электронами полностью, так что переходы электронов под действием возбуждения в состояние с большей энергией в этой же зоне невозможны. Единственно возможным процессом здесь является поглощение фотона с энергией, достаточной для переброса электронов через запрещенную зону. В результате этого в зоне проводимости появляется свободный электрон, а в валентной зоне—дырка. Если к кристаллу приложить электрическое поле, то образовавшиеся в результате поглощения света свободные носители заряда приходят в движение, т. е. возникает фотопроводимость. Таким образом, для фотонов с энергией hvдлин волн (т. е. больших hv) имеет место сплошной спектр интенсивного поглощения, ограниченный более или менее крутым краем поглощения при hvинфракрасной области спектра. В зависимости от структуры энергетических зон межзонное поглощение может быть связано с прямыми или непрямыми оптическими переходами.  [c.307]

Межзонное рекомбинационное излучение. Выше отмечалось, что поглощение света полупроводником может привести к образованию электрона в зоне проводимости и дырки в валентной зоне. Если межзонный переход является прямым, то волновые векторы этих носителей заряда одинаковы к —к. Образовавшиеся свободные носители заряда участвуют в процессах рассеяния, в результате чего за время релаксации —10 с) электрон опускается на дно зоны проводимости, а дырка поднимается к потолку валентной зоны. При их рекомбинации генерируется фотон, т. е. возникает излучение света. Переходы электронов из зоны проводимости в валентную зону могут быть прямыми и непрямыми (так же как переходы при поглощении света). Прямой излуча-тельный переход изображен на рис. 9.7.  [c.314]

К особому виду коррозии с поглощением кислорода относится коррозия иод слоем осадка — местная точечная коррозия, поражающая обычно металлы, находящиеся под слоем различного рода отложений. Этот процесс связан с перепадами концентрации растворенного в воде кислорода при переходе от одной точки к другой по всей поверхности металла находящийся иод слоем осадка металл становится анодом по отношению к участку, свободному от отложений, который получает значительно больше кислорода. В результате образуется слой продуктов коррозии, а металл под осадком переходит в раствор. Этот вид коррозии встречается в трубчатых конденсаторах и холодильниках при горизонтальном расположении труб такая коррозия наблюдается чаще, чем при вертикальном. Конденсаторы и холодильники, по которым проходит загрязненная вода (особенно с малой скоростью), при наличии условий, благоприятных для развития обрастаний, также подвержены коррозии иод слоем осадка.  [c.22]

Будем считать, что свободный атом может находиться только в стационарных состояниях с определенной энергией Е1, Е2,. ... Переход атома из одного стационарного состояния в другое может происходить скачком в результате поглощения или испускания электромагнитного излучения, причем для такого элементарного процесса выполняется закон сохранения энергии Ет—Еп=Йш — энергия поглощаемого или испускаемого фотона равна разности энергий соответствующих стационарных состояний атома. Эти квантовые представления о строении атома и характере его взаимодействия с излучением, обобщающие гипотезу Планка о гармоническом осцилляторе, были введены Бором в 1913 г. и полностью подтверждаются современной квантовой теорией.  [c.437]

Все происходит совершенно иначе в случае света большой интенсивности. В этом случае столь много атомов совершают переходы в возбужденное состояние, что для процессов поглощения не остается достаточного количества свободных атомов, Кроме того,  [c.174]


В разд. 2.32 мы видели, что при полуклассическом рассмотрении взаимодействия излучения с атомными системами, которые не связаны ни между собой, ни с какой-либо другой системой, возникают специфические трудности. Например, приходилось исключать все случаи, в которых частота некоторой компоненты поля излучения или какая-нибудь суммарная или разностная частота попадает в (острый ) резонанс с одной из частот переходов. [При последовательном квантовом описании удается избежать возникновения таких проблем путем автоматического учета различных механизмов затухания, например радиационного затухания (ср. пп. 3.111 и 3.112).] Указанным способом при применении результатов разд. 2.32 можно трактовать процессы, свободные от потерь (ср. разд. 2.23), такие как генерация высших гармоник и параметрические эффекты вне областей резонанса, но не многофотонное поглощение или излучение или вынужденное комбинационное рассеяние. Поэтому важно расширить модели таким образом, чтобы они позволяли правильно учесть ограниченную память атомной системы и были применимы для исследования резонансных эффектов (ср. разд. 2.31). С точки зрения уменьшения расчетных трудностей весьма целесообразными оказались модели, в которых взаимодействие всех отдельных атомных систем между собой и с другими системами со многими степенями свободы не учитывается в явном виде. Вместо такого учета в уравнения для отдельной атомной системы вводится глобальный механизм потерь в виде связи с тепловым резервуаром . Такой подход мы уже описали в разд. В2.27 и 2.24, и теперь мы можем непосредственно воспользоваться полученными там результатами. При этом мы обсудим наиболее подробно вычисление восприимчивостей первого порядка, а затем обобщим результаты на высшие порядки.  [c.238]

Такая форма записи полезна в случае, когда можно пренебречь рассеянием, а поглощение целиком определяется фотоэлектрическим процессом (связанно-свободными переходами). При этом И (поглощение) и знаменатель подынтегральной функции  [c.384]

Процесс нагрева (охлаждения), при котором металл переходит из одного агрегатного состояния в другое, связан с поглощением или выделением тепла. По второму закону термодинамики все превращения, самопроизвольно протекающие в природе, вызываются стремлением системы к переходу из неустойчивого состояния в более устойчивое, с меньшим запасом свободной энергии. С изменением внешних условий, например, с повышением или понижением температуры, свободная энергия системы изменяется различно для веществ, находящихся в жидком и твердом состоянии. В системе  [c.37]

При действии на поверхность тела импульса давления или энергии возникает волна сжимающих напряжений, распространяющаяся в глубь материала. Волна сжатия чаще всего приводит к разрушению при выходе на свободную поверхность или границы слоев, где она может трансформироваться в волну растяжения. Если нагрузка достаточно кратковременна, то вслед за волной сжатия возникает волна растяжения, которая представляет существенную опасность и может привести к так называемому наружному отколу [130]. В данном параграфе излагаются результаты исследований разрушения материалов в плоских волнах напряжений, вызванных тепловой нагрузкой, недостаточной для начала фазовых переходов первого рода. Рассматриваются случаи весьма кратковременных (10 —10 с) и более длительных процессов. В первом случае временем нагрева тела излучением не пренебрегаем, но используем линейный подход к расчету прочности, во втором случае поглощение излучения полагаем мгновенным процессом и используем развитую выше нелинейную теорию расчета прочности.  [c.184]

Рис, 2.28. Схема электронных переходов в полупроводнике в условиях интенсивного лазерного излучения 1 - межзонное поглощение, 2, 3 - поглощение света свободными носителями. Буквы э - э VI э - ф означают электрон-электронные и электрон-фонон-ные столкновения, Оже - процессы оже-рекомбинации  [c.146]

Такая форма записи удобна для понимания физической сути. Действительная часть проводимости определяет переходы и поглощение энергии, и полученный результат можно понять, рассматривая эти процессы. Вклад в проводимость возникает от состояний к и к, которые связаны матричным элементом возмущения (3.86), причем состояние к должно быть занятым электроном, а состояние к — свободным. Вклад данного перехода в проводимость положителен, если  [c.358]

Переходя к трёхмерному случало, мы можем, если только движение воздуха удовлетворяет условию эргодичности, считать величину а средним коэффициентом поглощения границ и заменить (для косых процессов) длину трубы I средней длиной свободного пробега звуковой волны в объёме V с поверхностью 5  [c.433]

Кинетика абсорбции, сопровождаемой химической реакцией (хемосорбция). Химическая реакция, сопровождающая процесс абсорбции, может оказывать существенное влияние на кинетику процесса. При этом скорость процесса абсорбции определяется не только интенсивностью массопереноса, но также и скоростью протекания химической реакции. Если реакция идет в жидкой фазе, то часть газообразного компонента переходит в связанное состояние. При этом концентрация свободного (т. е. не связанного с поглощенным газом) компонента в жидкости снижается, что приводит к ускорению процесса абсорбции по сравнению с абсорбцией без химического взаимодействия фаз, так как увеличивается движущая сила процесса. В общем случае скорость хемосорбции зависит как от скорости реакции, так и от скорости массопереноса между фазами. В зависимости от того, какая скорость определяет общую скорость процесса переноса массы, различают кинетическую и диффузионную области процессов хемосорбции.  [c.53]


Переползание дислокаций происходит, как правило, перпендикулярно плоскости ее скольжения и осуществляется или присоединением вакансий (приток вакансий), или присоединением атомов (приток междоузельных атомов) к краю полуплоскости, при этом полуплоскость смещается на одно межатомное расстояние (рис. 3.10). На рис. 3.10 представлена краевая дислокация, линия дислокации которой переходит с одной плоскости скольжения на другую, расположенную на одно межплоскостное расстояние выше. Когда вакансия подходит к ступеньке, последняя смещается на одно межплоскостное расстояние, а сама вакансия исчезает. Аналогично поглощаются и междоузельные атомы. Смещение дислокации происходит в противоположных направлениях при поглощении вакансии или междоузельного атома. Оба процесса требуют диффузионного перемещения вакансий или междоузельных атомов к дислокации. Такое движение, носящее диффузионный характер, является результатом стремления системы к уменьшению свободной энергии за счет уменьшения упругой энергии решетки (см. п. 7). Наличие незаполненных (ненасыщенных) связей у атомов полуплоскости облегчает отрыв атомов и вакансий от дислокации или присоединение междоузельных атомов и вакансий к дислокации. Так как скорость диффузии быстро уменьшается с понижением температуры (см. гл. 8), то переползание (в отличие  [c.102]

Наиболее распространенные процессы излучения и поглощения света в среде атомных и молекулярных частиц обусловлены переходами между их электронными состояниями и могут быть подразделены на три типа 1) свободно-свободные переходы (тормозное излучение и поглощение света при рассеяние электронов на атомах и ионах, сплошной спектр) 2) связанно-свободные переходы (фотоионизация атомов и молекул и фоторекомбинация электронов на ионах и нейтральных частицах, сплошной спектр) и 3) связанно-связанные (дискретные) переходы (линейчатый спектр атомов и полосатый спектр молекул).  [c.794]

При связанно-свободных переходах электро-iioB в атомных системах происходят захват свободных электронов ионами ионизированной среды (процесс фоторекомбинации) и возникающее вследствие этого пс-пусканне кванта. Так как свободный электрон мо.жет обладать произвольной энергией, то согласно (1-15) при его переходе в связанное состояние может испускаться любая частота и спектры связанно-свободных переходов являются поэтому непрерывными. Обратный процесс перехода электрона из связанного в свободное состояние происходит при поглощении кванта и носит название фотоионизации.  [c.25]

Первые попытки применения квантово-механической теории энергетического состояния электронов в диэлектриках и полупроводниках к интерпретации фотохимических и фотоэлектрических явлений в щелочно-галоидных кристаллах принадлежат П. С. Тар-таковскому [71]. На основе имевшихся в то время экспериментальных данных и общих соображений об энергетических уровнях в кристаллах Тартаковским впервые была построена схема энергетических уровней для ряда щелочно-галоидных соединений с учетом локальных электронных состояний различных центров окраски. Анализируя электронные переходы между различными уровнями энергии кристалла, можно было объяснить ряд оптических и фотоэлектрических свойств окрашенных кристаллов ще-лочно-галоидных соединений с единой точки зрения. Однако в отличие от полупроводников, для которых свет в области их фундаментального поглощения является фотоэлектрически активным, в щелочно-галоидных кристаллах не наблюдается внутреннего фотоэффекта под действием света в области первой полосы собственного поглощения. По этой причине попытки применения зонной теории к толкованию всей совокупности явлений, связанных с собственным поглощением, фотопроводимостью и люминесценцией щелочно-галоидных кристаллов наталкивались на существенные затруднения. Некоторые фундаментальные экспериментальные факты относительно свойств окрашенных щелочно-галоидных кристаллов не получили объяснения ни в энергетической схеме Тарта-ковского, ни в подобных более всеобъемлющих схемах, предлагавшихся позднее. В частности, оставалась совершенно непонятной сама возможность образования в кристалле столь устойчивой окраски под действием света или рентгеновых лучей, какая в действительности наблюдается у щелочно-галоидных кристаллов. В самом деле, при образовании в процессе фотохимического окрашивания свободных электронов, локализующихся затем на уровнях захвата, в верхней зоне заполненных уровней энергии должны образоваться свободные положительные дырки. Вследствие диффузии этих дырок в верхней зоне заполненных уровней вероятность их рекомбинации с электронами, локализованными в центрах окраски, должна быть достаточной, чтобы кристалл быстро обесцветился даже в темноте. Между тем, известно, что окраска кристалла весьма устойчива и сохраняется в темноте очень продолжительное время. Возможность локализации положительных дырок в предлагавшихся квантово-механических моделях не рассматривалась.  [c.30]

Поглощение свободными носителями. Поглощение фотонов может быть связано с переходами электронов (или дырок) с уровня на уровень в пределах одной и той же разрешенной зоны (рис. 9.4). Поглощение, связанное с этим процессом, наблюдается за краем собственного поглощения при достаточно больших концентрациях коснтелсй заряда в полупроводниках. Оно плавно возрастает с 310  [c.310]

Как только плазма возникла, в ней начинает поглощаться лазерное излучение (обычно этому соответствуют температуры 5000-4- 12000 К). Поглощение в плазме обусловлено обратным тормозным эффектом, при котором свободный электрон погло щает фотон. Электрон переходит в более высокое энергетическое состояние непрерывного спектра. Для сохранения количества движения этот процесс должен происходить в поле иона,, атома или молекулы. На начальных стадиях пробоя число ионов мало, а температура газа остается низкой. Взаимодействие электрона с излучением происходит в этом случае в поле нейтрального атома или молекулы. Коэффициент поглощения связанный с обратным тормозным эффектом в системе, состоящей из нейтрального атома и свободного электрона, вычислен, например, для нейтрального водорода (в единицах СГС) [29]  [c.103]

Экситоны. Как уже указывалось, при возбуждении собственной фотопроводимости электроны из валентной зоны перебрасываются в зону проводимости и становятся свободными. Однако возможно и иное течение процесса, когда возбужденный электрон не разрывает связи с дыркой, возникающей в валентной зоне, а образует с ней единую связанную систему. Такая система была впервые рассмотрена Я. И. Френкелем и названа им экситоном. Экситон сходен с атомом водорода в обоих случаях около единичного положительного заряда движется электрон и энергетический спектр является дискретным (рис. 12.9). Уровни энергии экситоиа располагаются у дна зоны проводимости. Так как экситоны являются электрически нейтральными системами, то возникновение их в полупроводнике не приводит к появлению дополнительных носителей заряда, вследствие чего поглощение света не сопровождается увеличением проводимости полупроводника. При столкновении же с фоноиами, примесными атомами и другими дефектами решетки экситоны или рекомби-иируют, или разрываются . В первом случае возбужденные атомы переходят в нормальное состояние, а энергия возбуждения передается решетке или излучается в виде квантов света во втором случае образуется пара носителей — электрон и дырка, которые обусловливают повышение электропроводности полупроводника,  [c.327]


Испарение — одно из проявлений физико-химического превращения, при котором вещество со свободной поверхности жидкости переходит в газообразное состояние. Этот переход сопровождается поглощением тепловой энергии — теплоты испарения АСисп. При каждом заданном значении температуры между жидкостью и ее паром может установиться равновесие, характеризуемое определенной величиной давления насыщенного пара. В этом случае расход вещества, испаряющегося с поверхности, равен расходу вещества, переходящего обратно из газа в жидкость. Последний процесс называется конденсацией (см. гл. 6, 8).  [c.370]

Особый интерес представляет эмиссионный переход атома при заполнении внутр. вакансии электроном валентной оболочки атома, если она заполнена частично, т. е. когда в ней имеются вакансии. Так, при наличии вакансии на ЙГ-уровне, заполняемой электронами с валентного Мз в-уровня, йГ-электрон в процессе поглощения может быть заброшен на вакансию Д/4 (-уровня, а один из электронов этого же уровня заполняет йГ-ва-кавсию, т. е. абсорбционный и эмиссионный переходы взаимно обратны, и энергия поглощаемого фотона равна энергии испускаемого фотона (линия ЙГР(). С возрастанием 2 оболочка ( полностью заполняется и поглощение возможно лишь при забрасывании Я-элек-трона в более удалённую оболочку, где имеются вакансии. Т. о., при возрастании 2 атом, у к-рого впервые энергия поглощаемого фотона (края поглощения) превысит энергию фотона йГР(-линии, имеет заполненную Мз (-оболочку. Если для свободных атомов эта оболочка впервые заполняется у Си (2 = 29), то в твёрдом теле такое заполнение происходит только у Се (2 = 32). Т. о., Р. с. позволяют получить полную картину заполнения электронных оболочек атома в твёрдых телах при возрастании 2.  [c.363]

Ф. 3. второго типа обусловлены асимметрией элементарных процессов фотовозбуждения носителей, их рассеяния и рекомбинации. Эти Ф. э. не требуют образования пар свободных носителей и наблюдаются как при межзон-ных переходах, так и при возбуждении носителей с примесей и при поглощении света свободными носителями. К этим Ф. э. относятся а) эффект увлечения электронов фотонами, связанный с асимметрией в распределении фотоэлектронов по импульсу, вызываемому передачей им импульса фотонов. В двумерных структурах при оптич. переходах между минизонами фототок увлечения вызван преимуществ, переходами электронов с определ. направлением импульса и может существенно превышать соответствующий ток в объёмны кристаллах.  [c.343]

Прямозонные полупроводниковые кристаллы обладают очень высоким однофотонным поглощением при зона-зонном переходе. Поэтому необходимо очень точно подстраивать частоту излучения, чтобы потери, вносимые межзонным поглощением, не погубили процесс четырехволнового поглощения. В настоящее время в прямозонных полупроводниках наиболее часто используются процессы многофотонного, в частности двухфотоиного, поглощения, например, в кристаллах dS и dSe. При этом коэффициент поглощения определяется мощностью падающего излучения и может регулироваться за счет ее изменения. Возникающая же плазма свободных носителей по-прежнему приводит к изменению показателя преломления.  [c.58]

Для того чтобы продемонстрировать основные особенности процесса формирования заряда в ФРК, связанные с контактными явлениями, будем считать, что кристалл имеет полностью блокирующие электроды, когда электроды не инжектируются в кристаллах, но свободно переходят из кристалла в электрод. Это приводит к граничному условию л = 0прих = 0(л — плотность свободных электронов, ах — координата поверхности кристалла, на которой расположен электрод, находящийся под отрицательным потенциалом). Кроме того, для простоты предположим, что кристалл однородно освещается слабо поглощающимся записывающим светом, так что поглощением можно пренебречь (а 0). Как будет показано в разделе 7.1, основные результаты, полученные здесь для случая однородного освещения, могут быть применены при рассмотрении процесса записи изображения в фоторефрактивных ПВМС.  [c.67]

При взаимодействии у-лучей с атомными ядрами может наблюдаться процесс резонансного возбуждения ядер, если энергия падающих квантов с высокой точностью соответствует энергии одного из возбужденных состояний ядра. Последующий раснад возбужденного состояния сопровождается испусканием у-квантов, энергия к-рых (с точностью до ширины возбужденного уровня) равна энергии поглощенных квантов. Такое явление и наз. Р. р. г.-л. Оно в нринцине аналогично резонансному рассеянию света атомами, однако в случае У Лучей наблюдение резонансного рассеяния существенно осложнено эффектами отдачи. При испускании у-кванта с энергией Е свободное покоящееся ядро вследствие отдачи приобретает кинетич. энергию, равную В = Е 1 1Мс , где М — масса ядра, с — скорость света т. о., энергия испущенного кванта оказывается на величину В меньше энергии соответствующего ядерного возбужденного состояния. Аналогично отдачу испытывает и поглощающее ядро. Вследствие этого линии испускания и поглощения оказываются сдвинутыми друг относительно друга на величину 1В. Этот сдвиг существенно превосходит естеств. ширины у-линий поэтому условие резонанса не реализуется даже в том случае, если в качестве источника и поглотителя у-квантов используются тождественные ядра (исключение — случай весьма мягких у-переходов, когда резонансное поглощение у-лучей может осуществляться благодаря Мёссбауэра аффекту).  [c.399]

NO3. При реакции NO2 с озоном, растворенным в кислороде, образующаяся газовая смесь окрашивается в голубой цвет, который Джонс и Вульф [(346] связали со спектром поглощения свободного радикала NO3, образующегося в процессе реакции. Спектр NO3 недавно исследовался Рамсеем [1044] на приборе с высоким разрешением. В области от 6650 до 5000 А обнаружено около 20 диффузных полос. При введении в реагирующую смесь i N02 в спектре наблюдается небольшое изотопическое смещение полос, свидетельствующее о наличии в молекуле атома N, однако наблюдаемое смещение недостаточно четко, чтобы можно было выполнить анализ колебательной структуры и однозначно идентифицировать молекулу — носитель спектра. Полоса О — О расположена при 6625 A она сопровождается короткой прогрессией с частотой vi = 930 см . Остальные полосы должны соответствовать возбуждению колебаний vj, V3 и V4. Если молекула имеет симметрию Лзл в обоих (верхнем и нижнем) состояниях, возбуждение этих неполносимметричных колебаний должно быть очень слабым. Высокую интенсивность, по крайней мере некоторых из них, можно объяснить, вероятно, наличием взаимодействия по Яну — Теллеру в возбужденном состоянии. Согласно Уолшу [1268], возбужденное состояние является состоянием Е и образуется из основного состояния. .. е ) а 2 при переходе электрона с орбитали е на орбиталь а .  [c.534]

Стремление металлов переходить из металлического состояния в ионное для разных металлов весьма различно и наиболее точно может быть охаракгеризозано величиной уменьшения свободной энергии при протекании соответствующей реакции. В табл. 1 приведены эти величины для некоторых наиболее технически важных металлов для случая, когда ионизация металла сопровождается выделением водорода, и для случая, когда она оопровол<дается поглощением кислорода. Знак минус соответствует уменьшению свободной энергии и показывает термодинамическую вероятность этого процесса, — тем большую, чем больше величина уменьшения свободной энергии знак плюс соответствует увеличению свободной энергии системы и указывает на невозможность самопроизвольного протекания этой реакции.  [c.11]

В рамках квантовомеханических представлений, как будет показано ниже, индуцированное излучение электронных пучков обусловлено неэквидистантностью спектра энергий электрона (как и в строго квантовой системе — лазере на связанных электронах ) и эффектом отдачи, которую испытывает электрон при излучении или поглощении им внешнего фотона. В лазерах на свободных электронах (ЛСЭ) неэквидистантность спектра энергий мала, вследствие чего в такой системе практически всегда задействованы три уровня энергии, т. е. возможны переходы из начального состояния как вниз (с излучением фотона), так и вверх (с поглощением фотона). Частоты этих переходов отличаются друг от друга незначительно (их разность пропороцио-нальна величине порядка Н(о1Е), в то время как в случае лазеров на связанных электронах такие частоты переходов существенно разные. Вследствие указанной особенности энергетического спектра в ЛСЭ процессы индуцированного излучения и поглощения оказываются неотделимыми друг от друга при Н(д/Е—И), что указывает на классическую природу эффекта в случае ЛСЭ.  [c.162]

Массообменные процессы со свободной границей раздела фаз по принципу участия фаз в массопереносе подразделяют на две группы. К одной группе относят процессы, в которых участвутот как минимум 3 вещества 1) распределяющее вещество (или вещества), составляющие 1-ю фазу Фу (например, при поглощении аммиака водой из аммиачно-воздушной смеси воздух не участвует непосредственно в массообмене) 2) распределяющее вещество (или вещества), составляющие 2-ю фазу (вода в данном примере) 3) распределяемое вещество М, которое переходит из одной фазы в другую (процессы абсорбции, десорбции, экстракции).  [c.10]


Смотреть страницы где упоминается термин Поглощения процессы переходы свободно-свободны : [c.165]    [c.325]    [c.304]    [c.468]    [c.123]    [c.132]    [c.30]    [c.408]    [c.151]    [c.156]    [c.250]    [c.15]    [c.106]    [c.56]    [c.189]   
Физическая теория газовой динамики (1968) -- [ c.155 , c.157 ]



ПОИСК



Поглощение

Поглощения процессы

Свободно-свободные переходы



© 2025 Mash-xxl.info Реклама на сайте