Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процессы абсорбции

Второй процесс — абсорбция. Происходит на границе газ — металл и состоит в поглощении (растворении) поверхностью свободных атомов. Этот процесс возможен только в том случае, если диффундирующий элемент В способен растворяться в основном металле Л.  [c.318]

Большинство технологических аппаратов отличаются следующим. В одних аппаратах происходит обдувка (обтекание) или продувка потоком жидкости или газа постоянных рабочих элементов, с помощью которых осуществляется технологический процесс. К таким элементам относятся пучки труб, стержней или пластин, а также слоевые или другие насадки, предназначенные для нагрева или охлаждения одной рабочей среды другой осадительные электроды электрофильтров тканевые, волокнистые, сетчатые, зернистые и другие фильтрующие перегородки сетчатые или решетчатые тарелки, слои кускового, зернистого,-кольцевого и другого насыпного материала, используемые для различных массообменных процессов (абсорбции, десорбции, ректификации, регенерации, катализа и др.).  [c.6]


Модели течений в газожидкостных системах и модели элементарных актов тепло- и массообмена используются при построении моделей процессов абсорбции и ректификации.  [c.3]

Рис. 89. Система координат для процесса абсорбции в вертикальной колонне при кольцевом режиме течения. Рис. 89. <a href="/info/9040">Система координат</a> для процесса абсорбции в вертикальной колонне при кольцевом режиме течения.
Полученные в данном разделе соотношения (8. 2. 29)— 8. 2. 32), (8. 2. 35)—(8. 2. 37) представляют собой общее решение задачи о совместном тепломассообмене в газожидкостной системе с дисперсной газовой фазой и могут быть использованы при расчете процессов абсорбции в барботажном слое.  [c.315]

ПРОЦЕССОВ АБСОРБЦИИ И РЕКТИФИКАЦИИ  [c.333]

Уравнение для толщины теплового пограничного слоя 8. (9. 1. 33) в явном виде не решается. Поскольку конечной целью расчета процесса абсорбции является определение распределения  [c.337]

В табл. 2.1.1 проведено сравнение скорости абсорбции малорастворимого газа струей жидкости по предложенным формулам (2.1.22)-(2.1.24) с экспериментальными данными работы 7]. Из таблицы следует удовлетворительное согласие теории и эксперимента, к тому же характерные параметры процесса абсорбции струей жидкости изменялись в заметных интервалах (Re в 2 раза, Fr в 6 раз. We в 5 раз). В связи с этим для изученного интервала гидродинамических и физико-химических величин формулы (2.1.22)-(2.1.26) могут быть рекомендованы для практических расчетов.  [c.56]

Водоаммиачная холодильная машина (рис. 12.3) работает по тому же циклу, что и парокомпрессионная, но в абсорбционной машине процесс сжатия заменен следующими процессами абсорбция пара водой в процессе растворения повыщение давления раствора в цикле получение пара при нагреве раствора. Таким образом, в абсорбционных мащинах нет компрессора, сжимающего пар холодильного агента, и в связи с этим нет затраты значительной работы на процесс сжатия. Повышение давления раствора в абсорбционных машинах осуществляется в насосе, затрачиваемая работа на привод которого пренебрежимо мала по сравнению с работой сжатия пара в компрессионных холодильных машинах. Вместе с тем в абсорбционных машинах расходуется теплота, подводимая к рабочему телу от внешних источников.  [c.179]


В качестве первого примера построим динамическую модель процесса абсорбции в насадочном аппарате идеального вытеснения.  [c.13]

Таким образом, математическая модель процесса абсорбции в насадочной колонне включает в себя уравнения  [c.16]

В качестве примера выберем реактор идеального вытеснения, а также реактор с продольным перемешиванием диффузионного типа. Вывод уравнений динамических моделей названных реакторов аналогичен выводу уравнений (1.2.19), (1.2.28) процесса абсорбции.  [c.37]

Таким образом, динамика процесса абсорбции в насадочном аппарате в режиме идеального вытеснения без труда может быть описана с помощью формул, аналогичных уже полученным для противоточного теплообменника. Значительно сложнее исследовать динамику насадочного абсорбера в том случае, когда нельзя пренебречь продольным перемешиванием. При использовании одно-параметрической диффузионной модели абсорбер описывается уравнениями (1.2.30), (1.2.31) с граничными условиями (1.2.37) (считаем, что расходы по жидкости и газу постоянны). Как и раньше, будем полагать, что функция 0 (0 ) имеет линейный вид 0д = Г01. При этом функциональный оператор А, задаваемый с помощью уравнений (1.2.30), (1.2.31), граничных условий (1.2.37) и нулевых начальных условий будет линейным. Но поскольку уравнения математической модели являются уравнениями в частных производных второго порядка, исследовать этот линейный оператор очень трудно. С помощью применения преобразования Лапласа по t к уравнениям и граничным условиям можно получить выражение для передаточных функций. Однако они будут иметь столь сложный вид по переменной р, что окажутся практически бесполезными для описания динамических свойств объекта. Рассмотрим математическую модель насадочного абсорбера с учетом продольного перемешивания при некоторых упрощающих предположениях. Предположим, что целевой компонент хорошо растворяется в жидкости, и поэтому интенсивность процесса массообмена между жидкостью и газом пропорциональная концентрации целевого компонента в газе. В этих условиях можно считать 0 (в ) 0. Физически такая ситуация реализуется, например, при хемосорбции, когда равновесная концентрация поглощаемого компонента в газовой фазе равна нулю. При eQ( i,) = 0 уравнение (1.2.30) становится независим мым от уравнения (1.2.31), поскольку в (1.2.30) входит только функция 0g(->i , t)- При этом для получения решения o(Jf, t), системы достаточно решить одно уравнение (1.2.30) функцию L x,t), после того как найдена функция можно найти  [c.206]

Использование в качестве хладоагента аммиака, а в качестве абсорбента воды получило широкое распространение в абсорбционных холодильных установках. Важным является то, что аммиак хорошо растворим в воде, например, при О °С в одном объеме воды растворяется около 1150 объемов паров аммиака. Вместе с тем значительная теплота растворения (до 1220 кДж/кг), выделяющаяся при поглощении аммиачных паров в абсорбере, должна постоянно отводиться из последнего, ибо в противном случае рост температуры в абсорбере приводит к снижению растворимости аммиака в воде и процесс абсорбции замедляется.  [c.234]

При растворении аммиака в воде температура раствора возрастает, что уменьшает растворимость аммиака, и если не отводить теплоту из раствора, то процесс абсорбции прекращается.  [c.106]

В абсорбционных холодильных установках циркуляция хладагента осуществляется в результате процесса абсорбции (поглощения паров хладагента жидким растворителем — абсорбентом). В связи с этим у них в отличие от компрессорных холодильных установок круговой процесс обеспечивается не одним рабочим веществом, а бинарной смесью веществ (раствором), имеющих значительную разницу в температурах кипения при одинаковом давлении. Наиболее часто применяются водоаммиачные абсорбционные установки, в которых аммиак слул<ит хладагентом, а вода — абсорбентом .  [c.136]

Описаны современные методы наводороживания и водородной хрупкости сталей при осаждении гальванических покрытий. Обобщены представления о механизмах процесса абсорбции водорода катодной основой при формировании электролитического осадка. Дан детальный анализ методов снижения и устранения наводороживания и водородной хрупкости сталей при гальванической обработке. Приведены практические рекомендации по контролю процесса наводороживания и водородной хрупкости высокопрочных и пружинных сталей.  [c.318]


Поскольку детальное рассмотрение процессов в растворах выходит за рамки настоящей книги, мы только кратко остановимся на процессе абсорбции.  [c.445]

Схема абсорбционной холодильной установки представлена на рис. 13-19. В качестве одного из возможных хладоагентов в такой установке используется влажный пар аммиака. Жидкий насыщенный аммиак, дросселируясь в редукционном вентиле 1 от давления Pi до давления р , охлаждается от температуры до температуры Т . Затем влажный пар аммиака поступает в испаритель 2, где степень сухости пара увеличивается до х=1 за счет притока тепла от охлаждаемого объема. Сухой насыщенный пар аммиака при температуре поступает в абсорбер 3, куда подается также раствор аммиака в воде имеющий температуру Ti. Поскольку при одном и том же давлении вода кипит при значительно более высокой температуре, чем аммиак, то легкокипящим компонентом в атом растворе является аммиак. Этот раствор абсорбирует пар аммиака тепло абсорбции 5, 01 выделяющееся при этом, отводится охлаждающей водой . Концентрация аммиака в растворе в процессе абсорбции увеличивается, и, следовательно, из абсорбера выходит обогащенный раствор (при температуре Тл парциальное давление водяного пара  [c.446]

При растворении аммиака в воде температура раствора возрастает, при атом уменьшается растворимость аммиака в воде. Поэтому, если не отводить от раствора тепло, процесс абсорбции вскоре прекратится,  [c.446]

Фиг. 6-18. Схема процесса абсорбции. Фиг. 6-18. Схема процесса абсорбции.
В абсорбционных аппаратах часто имеет место абсорбция из газовой смеси, содержащей некоторые неабсорбируемые компоненты. Как показывает практика работы таких аппаратов, даже незначительная примесь неабсорбируемого газа может приводить к существенному снижению интенсивности процесса абсорбции.  [c.333]

В данном разделе рассмотрим пленочную абсорбцию из двухкомпонентной смеси газов и оценим влияние неабсорбируемой примеси на интенсивность массопереноса. В соответствии с [118] будем предполагать, что стенки абсорбционной колонны являются изотермическими. Жидкая пленка толщиной I стекает по стенке со среднемассовой скоростью п течение жидкости в пленке является ламинарным. Свободная поверхность пленки находится в непрерывном контакте с бинарной смесью газов, один из которых абсорбируется пленкой. При атом изменение.м объема жидкости, обусловленным абсорбцией, будем пренебрегать. Будем также считать, что все тепло, которое выделяется в процессе абсорбции, целиком идет на нагревание жидкости. В силу малости толщины пленки по сравнению с диаметром колонны можно считать, что газовая фаза занимает полубесконечный объем, ограниченный то.лько поверхностью пленки. На бесконечности газ покоится.  [c.333]

Известно [118], что в присутствии неабсорбируемой примеси процесс абсорбции определяется не только тепломассопереносом в жидкой фазе, но и процессами переноса в газовой фазе. Для описания процессов переноса в газовой фазе будем использовать следующую систему уравнений  [c.333]

Система, состоящая из капель или пузырьков (ламинарный режим). Перенос массы в каплях или пузырях имеет большое практическое значение в самых разнообразных процессах. Это связано с тем, что в каплях или пузырях, так же как и в пленке жидкости при пленочном течении, подвижная поверхность раздела фаз способствует значительной интенсификации массообмена. Конвективная диффузия па подвижной поверхности контакта фаз протекает в более благоприятных условиях, чем на поверхности раздела жидкость - твердое тело. Этим обусловливается широкое использование элементарных актов переноса массы через поверхность раздела капель или пузырей в различных промышленных процессах процесс экстрагирования из жидкой фазы проводится из капель, процессы абсорбции, хемосорбции, ректификации и з .д. проводятся в колонных аппаратах в интенсивньзх режимах взаимодействия контактирусмых фаз, представляющие собою систему капель или пузырей. Ьолыпая част ь работ посвящена исследованию конвективной диффузии в стационарных условиях [38]. В интенсивных режимах, в которых член, ответственный за нестационарность, соизмерим с конвективным членом, необходимо решать полные уравнения нестационарной диффузии.  [c.32]

Кроме агрегатов осушки газа от влаги на основе новых контактных прямоточноцентробежных элементов были разработаны агрегаты, в которых одновременно с сепарацией, осушкой газа гликолем и фильтр-сепарацией осуществляется процесс абсорбции газа конденсатом с целью увеличения степени извлечения из него тяжелых углеводородов (рис. 10.15) [23].  [c.300]

Построим теперь динамическую модель процесса абсорбции в насадочном аппарате, учитывающую продольное перемешивание фаз. В реальных аппаратах продольное перемешивание фаз объясняется рядом причин прежде всего различием скоростей движения фаз в разных точках аппарата и, кроме того, турбулентной диффузией фаз, уносом частиц одной фазы (например жидкости) потоком другой фазы (газа). Подробное теоретическое описание продольного перемешивания, учитывающее все перечисленные факторы, в настоящее время отсутствует. Для описания структуры потоков в аппарате обычно используют упрощенные модельные представления. Наиболее распространенными из них являются ячеечная и диффузионная модели. В данной книге для описания структуры потоков используем вторую из этих моделей, согласно которой перемешивание фаз в аппарате аналогично процессу диффузии. В диффузионных процессах при наличии градиента концентрации какого-либо вещества возникает поток этого вещества, называемый диффузионным потоком, который пропорционален градиенту концентрации. Поскольку процесс перемешивания аналогичен процессу диффузии, можно считать что и в насадочном аппарате возникает поток вещества определяемый законом Фика / = = —pZ)grad0, который в одномерном случае имеет вид / =  [c.17]


На рис. 1.82 изображена схема АХУ, в которой в качестве хладагента применяется влажный пар аммиака. Жидкий аммиак, проходя через дроссель 1, понижает свое давление от pi до р2 и температуру от Ti до Тг- Затем влажный пар аммиака поступает в испаритель 2, где он за счет притока теплоты qi увеличивает свою степень сухости до xj = 1. Сухой насыщенный пар аммиака с температурой Тг поступает в абсорбер 3, куда подается из парогенератора 5 обедненный аммиаком раствор через дроссель 7 с температурой Т > Т2, в котором легкокипящим компонентом является аммиак. Раствор абсорбирует пар аммиака, а выделяющаяся при этом теплота абсорбции q ss отводится охлаждающей водой. Концентрация аммиака в растворе в процессе абсорбции увеличивается и, следовательно, из абсорбера выходит обогащенный раствор при температуре Т2 < Tj < Tt и давлении pj. С помощью насоса 4 при давлении pi этот раствор поступает в парогенератор 5, где за счет подводимой теплоты qi из него испаряется в основном аммиак, как наиболее летучий компонент. Пары аммиака поступают в конденсатор 6 здесь они конденсируются, чем и заверщается цикл.  [c.106]

Среди других способов использования тепла геотермальных источников различают как давно известные, так и современные. К числу известных ранее способов относятся отопление помещений и использование горячей воды для ванн, часто дающих целебный эффект благодаря присутствию в воде растворенных солей. К числу случаев современного использования геотермальных вод относятся производство питьевой воды в установке для обессоливания, действующей в Эль Татио (Чили) использование при производстве бумаги на целлюлозно-бумажной фабрике в Каверау (Новая Зеландия) использование в процессе абсорбции бромида лития в холодильных установках, например в СССР и Новой Зеландии, г. Роторуа при сушке диатомита в Исландии для отопления и централизованного теплоснабжения, а также для обогрева теплиц и парников в садоводстве, например в Японии, СРР (в опытных тепличных установках воду подают при 85 °С в количестве 400 м /ч), ВНР (по данным 1970 г. общая площадь, занятая теплицами, составляла 400 000 м и к концу 1970 г. ожидалось увеличение этой площади вдвое), СССР (в г. Махачкала с площади 25 км , занятой теплицами и парниками, каждый год собирают по два урожая овощей и цветов) при промышленном рыборазведении, например в Японии, на островах Хоккайдо и Кюсю. В СССР изучаются возможности использования геотермальных горячих вод при разработке месторождений полезных ископаемых в районах вечной мерзлоты. Эти воды с большим процентным содержанием растворенных солей могут быть использованы для организации химического производ-  [c.227]

Одним из наиболее трудоемких в технологии связанного азота является расчет процесса абсорбции окислов азота при получении азотной кислоты. В связи с этим на кафедре разрабатываются алгоритмы и уточняются исходные данные для расчета процесса абсорбции окислов азота (доц. Б. А. Жидков и инж. Г. А. Боченко). Работы проводятся в содружестве с Днепродзержинским и Северодонецким филиалом ГИАП. Результаты этих работ опубликованы и переданы проектным организациям. По заказу ГИАП выполнены расчеты абсорбционной колонны для вновь проектируемого агрегата.  [c.129]

Помимо поступления ионов диффузного слоя в раствор (и обратно), возможно также поступление их в твердую фазу с переходом из нее в диффузный слой статистически эквивалентного количества ионов. До тех пор, пока ионы диффузного слоя являлись тождественными ионам, поступающим в него из твердой фазы (рис. 5-2, а), наличие данного процесса можно было установить только с применением меченых атомов однако коль скоро в диффузном слое появились ионы В (отличные от ионов А, поступающих из твердой фазы), течение процесса может быть констатировано обычными физикохимическими методами. На рис. 5-2, в дана схема внедрения иона В из диффузного слоя внутрь твердой фазы с одновременным поступлением из нее в диффузный слой иона А (процесс абсорбции). В результате этого диффузный слой стал содержать только ионы А и состояние адсорбционного равновесия нарушилось. Восстановление его может произойти в результате поступления в диффузный слой новых ионов В, и аналогичные процессы будут протекать до тех пор, пока не установятся два равновесия 1) между активностью обоих противойонов в диффузном слое и активностью их в растворе 2) между активностью тех же противоионов в диффузном слое и активностью их в твердой фазе, т. е.  [c.172]

Процесс абсорбции. При изучении растворов особенно большое значение имеет абсорбция жидким раствором пара этого же раствора другого состава. В отли-  [c.253]

На фиг. 6-18 изображена схема процесса абсорбции с теплоотводом. Количество тепла, необходимое для абсорбции 1 кг пара Qnfl  [c.254]

Цикл абсорбционной холодильной установки Рабочие вещества—растворы, например водо-аммиачные растворы. Цикл состоит из технического процесса непрерывного парообразования в выпарном кубе, изобарного процесса конденсации полученного пара в конденсаторе, процесса дросселирования конденсата в дроссельном вентиле, изобарного парообразования в испарителе (чем создается охлаждающий эффект), процесса абсорбции выходящего из испарителя пара бедным раствором, поступающим (предварительно сдросселированным) в абсорбер из выпарного куба. Богатый жидкий раствор, полученный в абсорбере, подается насосом (адиабатное сжатие) снова в выпарной куб. В рассматриваемых циклах работа насоса, как правило, является пренебрежимо малой.  [c.258]

В конденсаторе и абсорбере расходы тепла, забираемого обычно из окружающей среды, также определяются просто при помощи гс-диаграммы. Расход тепла в конденсаторе определяется как разность соответствующих энтальпий при p = onst и = onst, а расход тепла в абсорбере — так, как это показано для процесса абсорбции на стр. 253—254.  [c.258]


Смотреть страницы где упоминается термин Процессы абсорбции : [c.501]    [c.372]    [c.5]    [c.21]    [c.317]    [c.20]    [c.207]    [c.299]    [c.131]    [c.132]    [c.446]    [c.254]    [c.470]   
Теплотехнический справочник (0) -- [ c.253 ]

Теплотехнический справочник Том 1 (1957) -- [ c.253 ]



ПОИСК



Абсорбция

Динамическая модель процесса абсорбции в насадочном аппарате

Жаворонков, A. JYI. Николаев. Исследование процессов физической абсорбции и хемосорбции в аппарате ротационного типа

Некоторые модели процессов абсорбции и ректификаМодель процесса пленочной абсорбции из смеси газов

ОБОРУДОВАНИЕ ДЛЯ ПРОЦЕССОВ АБСОРБЦИИ, РЕКТИФИКАЦИИ И АДСОРБЦИИ



© 2025 Mash-xxl.info Реклама на сайте