Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Резонанс линейных колебаний

Регулярная прецессия 162, 370 Резонанс линейных колебаний 302  [c.571]

Перейдем к теоретическому анализу дробления пузырька. В разд. 2.6 были даны постановка и решение задачи в свободных колебаниях поверхности газового пузырька, находяш егося в жидкости. Очевидно, что такие колебания могут быть вызваны турбулентными пульсациями жидкости, частота которых совпадает с частотой собственных колебаний поверхности пузырька. Условие совпадения частот колебаний приводит к резонансу колебаний поверхности и к последующему дроблению пузырька газа. Рассмотрим линейные колебания поверхности пузырька. В соответствии с (2. 6. И) частота моды колебаний и-го порядка при малой их амплитуде определяется при помощи соотношения  [c.130]


Во-вторых, при силовом резонансе амплитуда колебаний при отсутствии диссипации возрастает по линейному закону (см. п. 7), в то время как при параметрическом — по экспоненциальному.  [c.246]

Следовательно, в этом случае существует область линейных колебаний вблизи жесткого резонанса системы е.  [c.165]

Интересно отметить, что решения (6), (7) и критерии устойчивости (8) распространяются также на случай параметрической системы с линейной упругой силой (у = 0). Как известно, решение задачи о параметрических колебаниях в линейной системе без учета свойств источника энергии позволяет установить лишь условия возникновения колебаний и определить границы области параметрического резонанса. Амплитуда колебаний остается неопределенной, обычно указывается, что она может неограниченно возрастать.  [c.91]

Различают упругие муфты постоянной и переменной жесткости Первые имеют линейную характеристику, т. е. прямую пропорциональность угла закручивания муфты (угла поворота одной полумуфты относительно другой) от передаваемого момента, а вторые — нелинейную характеристику. Достоинством муфт с нелинейными характеристиками является предотвращение резонанса крутильных колебаний при периодически изменяющихся нагрузках, воспринимаемых муфтами.  [c.430]

Параметрический резонанс может возникнуть и при наличии рассеивания энергии, т. е. в системе с сопротивлением, если рассеивание энергии не превышает ее положительной части, поглощаемой системой. Вызванное избытком энергии, поглощаемой системой, увеличение амплитуды колебаний происходит большей частью по экспоненциальному закону ). При этом могут существовать целые области частот возмущающей силы, которым отвечают явления параметрического резонанса. Вследствие этого с параметрическим резонансом труднее бороться, чем с резонансом линейных систем. Здесь необходимо применение специальных антивибраторов, автоматически настраивающихся на сплошные зоны спектра частот параметрического резонанса.  [c.561]

Имеем колебание с частотой ш и линейно возрастающей по времени амплитудой. Это явление называется частотным резонансом. Оно проявляется в неограниченной раскачке вынужденных колебаний при сколь угодно малой амплитуде Ь внешней силы и может привести к разрушению механической конструкции.  [c.235]


Другая важная особенность влияния линейного сопротивления на вынужденные колебания связана с явлением резонанса. В случае резонанса при линейном сопротивлении амплитуда вынужденных  [c.421]

Вынужденные колебания при линейном сопротивлении являются незатухающими, т. е. амплитуда их постоянна как при отсутствии резонанса, так и при резонансе.  [c.425]

Другая важная особенность влияния линейного сопротивления на вынужденные колебания связана с явлением резонанса. В случае резонанса при линейном сопротивлении амплитуда вынужденных колебаний не возрастает пропорционально времени, как при отсутствии сопротивления, а остается постоянной величиной. Достаточно как угодно малого сопротивления, чтобы амплитуда вынужденных колебаний при резонансе была постоянной, хотя, возможно, и достаточно большой, но не переменной, возрастающей с течением времени. Это свойство вынужденных колебаний хорошо подтверждается опытными данными.  [c.445]

Не выполняя решения системы уравнений (101), можно сделать выводы о влиянии линейного сопротивления на вынужденные колебания системы с двумя степенями свободы. Как и для случая системы с одной степенью свободы, вынужденные колебания являются незатухающими гармоническими колебаниями и происходят с частотой возмущающей силы. Они не зависят от начальных условий. При резонансе амплитуды вынужденных колебаний остаются постоянными в отличие от случая отсутствия сопротивления.  [c.469]

Если рассеяния механической энергии нет и вынужденные колебания вызываются синусоидальной возмущающей силой, то амплитуда вынужденных колебаний при резонансе в системе, движение которой определяется линейным дифференциальным уравнением с постоянными коэффициентами, возрастает прямо пропорционально времени.  [c.309]

Отметим, что в линейной колебательной системе при выполнении условия параметрического возбуждения колебаний (условия параметрического резонанса) происходит неограниченное нарастание амплитуды возбужденных колебаний. Это связано с тем, что и потери, и вложение энергии в данном случае пропорциональны квадрату амплитуды колебаний (пропорциональны колебательной энергии системы). Для вынужденных колебаний в линейных системах при силовом воздействии вложение энергии пропорционально первой степени амплитуды колебаний, а потери по-прежнему пропорциональны квадрату амплитуды, что приводит к образованию конечной амплитуды вынужденных колебаний.  [c.132]

Лишь в случае линейности системы при щ = р не существует конечной амплитуды стационарного вынужденного движения, а будет иметь место непрерывное возрастание амплитуды вынужденного колебания и соответствующий рост запаса колебательной энергии системы за счет работы, производимой силой внешнего воздействия. Это и есть то явление, которое мы называем линейным резонансом в консервативной системе. Очевидно, что характер его протекания принципиально изменится при введении в рассмотрение любого сколь угодно малого затухания. При невыполнении условий резонанса учет малого затухания должен вносить лишь небольшие количественные поправки.  [c.142]

Для линейной неконсервативной системы при силовом резонансе всегда характерна ограниченная амплитуда колебаний, так как потерн растут быстрее вложения энергии.  [c.143]

В линейной неконсервативной системе при параметрическом резонансе происходит неограниченный рост амплитуды, так как и вложение, и потери энергии пропорциональны квадрату амплитуды и только в нелинейной системе происходит ограничение колебаний.  [c.143]

Рассмотрим линейный последовательный колебательный контур (рис, 4.9), в котором, кроме обычного омического сопротивления R, имеется отрицательное сопротивление / , обусловленное параметрической регенерацией кроме того, в контур вводится внешняя сила и = 0а os pt. Будем считать, что собственные колебания, вызванные начальными воздействиями внешней силы и механизма изменения реактивного параметра, через определенное время затухнут, и в системе останутся только регенерированные вынужденные колебания с частотой внешней силы. При резонансе амплитуда тока, как известно, равна  [c.146]


Теория колебаний. Как мы видели, эта теория позволяет найти спектр собственных частот свободных колебаний упругой системы. Если частота возмущающей силы совпадает с одной пз собственных частот свободных колебаний, наступает резонанс. Для линейно-упругого тела в постановке линейной теории упругости амплитуды вынужденных колебаний становятся бесконечно большими. На самом деле так не бывает. Во всех материалах существует внутреннее трение. Теория упругих колебаний с затуханием, пропорциональным скорости, рассматривается в курсах теоретической механики, основной качественный результат состоит в том, что резонансная амплитуда конечна. В реальных материалах внутреннее трение подчинено более сложным законам, даже если его можно считать линейным (см. гл. 17), но качественный результат остается тем же. Поэтому резонансы на высоких гармониках, как правило, не страшны. Для турбинных лопаток, например, гармоники выше пятой-шестой во внимание не принимаются. Но резонанс на основном тоне или на первых гармониках может считаться причиной неминуемого разрушения. Отмеченные два аспекта мы зафиксировали, но далее развивать не будем.  [c.652]

Следовательно, если искать решение уравнения (14.13) в виде y — As n(iit, то возможно получение трех различных амплитуд при одной и той же частоте (о. Возможность возникновения нескольких периодических режимов при одной и той же вынуждающей силе составляет характерную особенность нелинейных систем. На рис. 50, а показана зависимость амплитуды А от частоты со, или амплитудно-частотная характеристика, для случая, когда коэффициент жесткости увеличивается при увеличении силы. Пунктиром показана скелетная кривая — график зависимости между частотой и амплитудой свободных колебаний. Сравнение полученной амплитудно-частотной характеристики с резонансной кривой при линейном упругом звене (см. рис. 48,а) показывает, что нелинейность упругого звена приводит к возникновению колебаний с большой амплитудой при частотах вынуждающей силы, превышающих собственную частоту (затягивание резонанса в область высоких частот).  [c.118]

Покажем, что даже при малых (линейных) колебаниях цапфы неуравновешенная сила при наличии зазора будет передавать на корпус не чисто гармоническое возбуждение тп р е ousin at, а полигармоническую силу, являющуюся причиной многих резонансов, при которых частота колебаний будет кратна угловой скорости вращения ротора. Представим в виде полигармонической силы вертикальную (обычно большую) составляющую Р силы Р (Vni. 2). Отметим, что в этом случае следует учитывать переменную составляющую силы, действующую на опору. Она будет равняться  [c.215]

В области механики деформируемого твердого тела. Здесь излагаются основы современной теории пластичности (обгцей, малых унругонластических деформаций и теории течения), линейной и нелинейной вязкоупругости. Отдельно рассмотрена теория ква-зистатического переменного нагружения упругопластических тел в тепловых и радиационных полях. Предлагаются постановки динамических задач теории упругости (линейные колебания, волны и колебания физически нелинейных тел вблизи резонанса).  [c.8]

Самым сложным в задаче об устойчивости треугольных точек либрации является случай пространственной эллиптической задачи. Он исследуется в главе 10. Помимо увеличения числа степеней свободы изучаемой динамической системы, здесь возникает еще одна характерная только для этой задачи особенность имеет место тождественный (при всех е и х) резонанс из-за равенства периода кенлеровского движения основных притягивающих тел и периода линейных колебаний тела бесконечно малой массы по направлению, перпендикулярному плоскости их орбиты.  [c.14]

В этой главе, следуя [64, 661, рассмотрим устойчивость треугольных точек либрации пространственной эллиптической задачи трех тел. Задача об устойчивости в этом случае по сравнению с уже рассмотренными в главах 7—9 случаями является самой сложной и громоздкой. Кроме увеличения числа степеней свободы изучаемой динамической системы, здесь возникает еще одна, характерная только для этой задачи, особенность имеет место тождественный (т. е. существующий при всех е и [д.) резонанс, возникающий из-за равенства периода кенлеровского движения основных притягивающих тел 8 ж I ч периода линейных колебаний тела Р бесконечно малой массы по направ.т1ению, перпендикулярному плоскости их орбиты.  [c.173]

В 1 мы приняли линейную модель колебаний кавитационных пузырьков в виде небольших пульсаций, совершающихся вокруг некоего среднего радиуса. Но даже и в такой интерпретации пузырек, наполненный пара-газовой смесью, не всегда можно рассматривать как дополнительную сжимаемость. В частности, основной резонанс радиальных колебаний пузырька определяется, как известно, сжимаемостью парагазовой смеси и присоединенной массы жидкости.  [c.244]

Проведенное исследование позволяет сделать дополнительные выводы о влиянии линейного сопротивления на вынужденные колебания. Так максимум коэффициента динамичности, а следовательно, и амплитуды вынужденных колебаний, наступает не при резонансе, когда 2 = 1 (р = /г), а при значении 2 = 22 = V 1 — 2Ь , меньшем единицы. Чтобы получить величину максимальной амплитуды Атах следует в ее выражение (47) вместо г подставить =1/1 — 2Ь , что соответствует критическому значению круговой частоты возмущающей силы  [c.424]

Рассмотренный случай колебаний при резонансе без сопротивления практически не встречается, так как при движении системы всегда есть силы сопротивления движению. Установленный теоретически рост амплитуды с течением времени по линейному закону в дерТстви-тельности тоже не наблюдается, хотя амплитуды при резонансе достигают довольно больших значений по сравнению со случаем отсутствия резонанса. Эта особенность вынужденных колебаний при резонансе  [c.438]


Колебания, возникающие при резонансе п-го рода, иногда также называют автопараметрическими. Этот термин возник в связи с математическим аппаратом, при.меняемым при исследовании условий устойчивости двпншния при резонансе -го рода. При исследовании вопроса об устойчивости движения приходится рассматривать линейные дифференциальные уравнения с периодическими коэффициентами. Эти уравнения будут рассмотрены ниже, при изучении квазигармонических колебаний и параметрического резонанса.  [c.306]

Для вынужденных колебаний в линейной колебательной системе в области резонанса это сразу видно из полученных выше зависимостей амплитуды и фазы вынужденных колебаний от частоты виеншей силы (графики этих зависимостей приведены на рис. 388 и 389). Вследствие сильной зависимости амплитуды и фазы вынужденных колебаний от Частоты, соотношение между амплитудами и фазами разных гармоник в спектре внешней силы н в спектре вынужденных колебаний нарушается и форма вынужденных колебаний может очень существенно отличаться от формы внешней силы. Пример этого был приведен выше для маятника, раскачиваемого толчками, при малом затухании форма вынужденных колебаний будет близка к гармонической.  [c.621]

При воздействии гармонической силы на линейную систему в ней, как хорошо известно, возникает гармонический вынужденный процесс с частотой вынуждающей силы и с амплитудой, определяемой параметрами системы, частотой и величиной внешней силы. В частности, при совпадении частоты воздействующей силы с частотой свободных колебаний системы в ней при отсутствии потерь (т. е. в случае консервативной системы) возбуждается бесконечно нарастающий вынужденный колебательный процесс, соответствующий наступлению резонанса. Однако если по-прежнему рассматривать консервативную, но нелинейную систему, то вследствие возможной неизохронности при возникновении в ней колебаний условие резонанса с изменением амплитуды колебаний может измениться, и в этом случае мыслимо установление конечной амплитуды вынужденного колебания при любой частоте воздействия.  [c.98]


Смотреть страницы где упоминается термин Резонанс линейных колебаний : [c.164]    [c.454]    [c.49]    [c.153]    [c.247]    [c.452]    [c.458]    [c.460]    [c.463]    [c.486]    [c.283]    [c.280]    [c.270]    [c.133]    [c.141]    [c.216]    [c.253]   
Курс теоретической механики для физиков Изд3 (1978) -- [ c.302 ]



ПОИСК



Колебания линейные

Колебания при линейных и нелинейных резонансах

Общее выражение для энергии в случае дважды вырожденных колебаний. Применение к линейным молекулам. Применение к некоторым нелинейным молекулам Случайное вырождение, резонанс Ферми

Резонанс

Резонанс колебаний механических линейных

Резонанс колебаниях

Резонанс линейных колебаний главный



© 2025 Mash-xxl.info Реклама на сайте