Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозионные испытания количественные

Количественные методы и показатели коррозионных испытаний 337  [c.337]

КОЛИЧЕСТВЕННЫЕ МЕТОДЫ И ПОКАЗАТЕЛИ КОРРОЗИОННЫХ ИСПЫТАНИИ  [c.337]

Целью коррозионных испытаний является установление вида и масштаба коррозионных процессов и изменения свойств металлов в результате коррозии. Для определения стойкости испытуемого металла в коррозионной среде в требуемых условиях оценивают качественные и количественные изменения металлов, вызванные коррозионной средой. Испытания проводят для выбора металлов и варианта защиты, а также для прогнозирования срока службы конструкции или оборудования.  [c.90]


С лабораторными и эксплуатационными коррозионными испытаниями связаны и методы оценки. Результаты иопытаний оценивают визуально по изменению состояния поверхности, массы и размеров, общей площади и распределению участков неравномерного коррозионного разрушения, изменению структуры и виду разрушения, выявленным металлографическим путем, изменению механических и эксплуатационных свойств. Наиболее распространенным методом оценки коррозии металлов является определение убыли массы, которую можно оценить количественно, считая, что коррозия протекает равномерно. По этой убыли  [c.91]

В отдельных случаях машина эксплуатируется в условиях, не предусмотренных проектным заданием. Тогда могут произойти неполадки и даже аварии, хотя изменение условий и кажется совершенно незначительным, но в коррозионном отношении это не всегда очевидно, поскольку даже небольшие количественные изменения ведут к разным качественным скачкам и наоборот. Большое значение имеет качество материала, причем не только в металловедческом аспекте, но и в коррозионном. Это касается как точного соблюдения химического состава, так и четких положительных результатов коррозионных испытаний проб материала в лабораторных условиях, не оставляющих никаких сомнений в качестве материала. Необходимо учитывать при выборе материала и конструктивные особенности машины, которые оказывают немаловажное, а иногда и решающее влияние на коррозионную стойкость детали.  [c.9]

Для количественной оценки коррозионной стойкости паяных соединеннй можно использовать электрохимический метод ускоренных коррозионных испытаний, схема установки которого приведена на рис. 10.  [c.322]

К разрушающим методам контроля относят механические испытания, металлографию, коррозионные испытания, технологические пробы на свариваемость и др. РК обычно дает возможность получить количественные характеристики качества соединения (например, прочность соединения на растяжение) и точно определить вид (природу) дефекта. Недостатком РК является то, что испытания проводятся на образцах-свидетелях, моделях, реже на готовых изделиях, но не на тех объектах, которые в дальнейшем применяются в эксплуатации. Для обеспечения достоверности испытаний количество образцов должно быть достаточно большим. При этом расходуется большое количество материалов, изготовление образцов требует трудоемкой механической обработки.  [c.336]


Для количественной оценки коррозионной стойкости паяных соединений можно использовать электрохимический метод ускоренных коррозионных испытаний [33]. Схема установки приведена на рис. 134.  [c.255]

Методы, которые приняты в настоящее время в практике коррозионных испытаний, могут быть подразделены на качественные и количественные. Первые большей частью имеют только вспомогательное значение и позволяют в некоторых случаях заранее установить характер коррозионного процесса и его интенсивность.  [c.90]

Коррозионная усталость 58 Коррозионные испытания качественные 90 количественные весовые 91 объемные 92  [c.286]

Качественная оценка коррозии металлических материалов производится разными методами, которые позволяют судить о характере и распределении продуктов коррозии, изменении внешнего вида металлической поверхности, строении отдельных прокорродировавших мест, выяснять грубую структуру защитных пленок на металле, изучать глубокие внутренние изменения металла при коррозии и т. д., поэтому качественная характеристика коррозионного разрушения в дополнении к количественной оценке имеет большое значение при коррозионных испытаниях.  [c.70]

Вследствие такого положения количественные данные коррозионных испытаний при высоких температурах, получаемые разными исследователями, трудно сопоставимы между собой и в большинстве случаев имеют значительные расхождения для одного и того же материала.  [c.127]

Взвешивание для определения уменьшения веса образцов после коррозионных испытаний Для лабораторных и натурных испытаний в тех случаях, когда образцы не подвергаются специфическим разрушениям под влиянием коррозионной среды (например, межкристаллитной коррозии) и когда продукты коррозии легко удаляются с образцов 1. Простота 2. Количественное определение скорости коррозии 1. Ошибки вследствие неполного удаления продуктов коррозии или потери неповрежденного металла при очистке 2 Специфические разрушения материала не учитываются 3. Большое число образцов, необходимое для определения зависимости между скоростью коррозии и длительностью пребывания в агрессивной среде  [c.998]

Принятые методы коррозионных испытаний разделяют на качественные к количественные. Первые методы испытания не могут охарактеризовать полностью коррозионный процесс они позволяют лишь установить некоторые предпосылки  [c.35]

Разброс результатов при коррозионных испытаниях иногда бывает не вследствие того, что число частиц ограничено, а потому что число точек на поверхности образца, на которых может протекать анодная (или катодная) реакция, может быть весьма мало. В результате этого два образца, которые кажутся идентичными, ведут себя по-разному. Если коррозия широко распространилась (анодный и катодный процессы протекают в большом количестве точек), можно ожидать хорошей воспроизводимости и при многократном тщательном повторении опытов результаты количественно повторяются. Однако если разрушение наблюдается в ограниченном числе точек, воспроизводимости нет, как бы аккуратно не проводилась работа. Если экспериментатор получает в разных случаях различные результаты, то это не потому, что он недостаточно искусен, но существуют действительные обстоятельства, при которых невозможна полная воспроизводимость.  [c.822]

Тепловые трубы, изготовленные из тантала или тантала с прибавками иттрия (505—Та) во время коррозионных испытаний при 1600° С имели такие же хорошие характеристики, как и тепловые трубы, изготовленные из сплава N5—1% 2г. Количественно массоперенос Та в В и РЬ был на два порядка ниже, чем ниобия. В трубе с Т1 в качестве теплоносителя почти никакой коррозии обнаружено не было. Эти опыты были преждевременно закончены (после 248 ч) из-за нарушения вакуума. Другая тепловая труба, изготовленная из тантала с добавками иттрия, где в качестве теплоносителя был использован Т1, работая в горизонтальном положении со средним тепловым потоком в зоне нагрева 60 Вт/см , выдержала испытания более чем 2000 ч.  [c.96]

При проведении коррозионных испытаний пользуются различными качественными и количественными показателями коррозии.  [c.8]


Лабораторные исследования проводят, как правило, на образцах небольшого размера простой формы в модельных средах. Они являются первой стадией оценки коррозионной стойкости металлов и сплавов, проводятся быстро и достаточно точно оцениваются количественно. При этом для раскрытия механизма и природы разрушения могут быть использованы несколько независимых друг от друга методов испытаний.  [c.5]

Длительность испытаний должна быть достаточной для установления постоянной скорости коррозии, но не менее 10 сут. Одновременно испытывают не менее пяти образцов. Количество промежуточных объемов образцов должно быть достаточным для получения графической зависимости коррозионные потери-время , но не менее 4. Для количественной оценки эффективности консервации по возможности проводят контрольные испытания индикаторов в отсутствие просто коррозионной защиты (например, при испытании консервирующих растворов ингибиторов стояночной коррозии контрольные образцы-индикаторы помещают в дистиллированную или водопроводную воду без индикаторов).  [c.129]

Испытания в кипящей серной кислоте показали, что качественное влияние легирующих элементов на коррозионную стойкость ниобия в этой среде такое же (рис. 68), как и при испытаниях в соляной кислоте, однако количественное влияние элементов неодинаково (рис. 69). Ti, V и Zr, уменьшают стойкость ниобия в кипящей серной кислоте, хотя начальные присадки V и Zr (до 5 ат.%) и Ti (до 10 ат.%) еще не оказывают влияния на стойкость ниобия. Это имеет значение как средство удешевления сплава без понижения его коррозионной стойкости (например, введение Ti в количестве 10 ат.% 18% по массе). Та, как и Мо, уменьшает скорость коррозии ниобия, причем Та более интенсивно, чем Мо.  [c.69]

Прочность соединения основного и коррозионно-стойкого слоев определяют по отсутствию расслоения при холодном загибе полосы с плакирующим слоем на оправке диаметром, равным удвоенной толщине образца при угле загиба 180°. Прочность соединения можно контролировать испытанием на срез по плоскости соприкосновения основного и коррозионно-стойкого слоев (рис. 2). Испытание образцов на срез имеет целью количественно установить прочность связи плакирующего и основного слоев.  [c.287]

Для многих деталей машин и инженерных конструкций, которые имеют различные поверхностные трещиноподобные дефекты металлургического, технологического или эксплуатационного происхождения, стадия зарождения усталостной трещины может не лимитировать общую длительность процесса разрушения и в этом случае долговечность изделия будет определяться временем роста микротрещины до критических размеров. Изучение закономерности роста усталостных трещин с учетом влияния различных физико-химических факторов позволяет более глубоко понять механизм усталостного разрушения и вскрыть процессы, не выделяемые при испытании гладких образцов. Применение образцов с заранее выведенной трещиной ужесточает условия испытания и позволяет обнаружить влияние даже очень слабо-активных сред. Количественные данные о влиянии коррозионных сред на скорость роста усталостных трещин могут быть использованы для расчетов изделий с трещинами.  [c.86]

Количественные критерии оценки коррозионной стойкости материалов определяются особенностями применяемого метода испытаний — ими, как правило, являются различные физические и физико-химические величины, например, значение токов и потенциалов, потери массы (или привес) металла, глубина проникновения коррозии, количество и место расположения очагов локального поражения металла, наличие и глубина коррозионных трещин и т.д. Наиболее часто используемым количественным критерием коррозионной стойкости металлов является скорость его равномерного утончения (мм/год). Для сталей разработана десятибалльная шкала  [c.141]

В США стандартным испытанием, дающим не только качественное, но и количественное представление о наличии или отсутствии межкристаллитной коррозии, а также общей коррозионной стойкости сталей, служит испытание в кипящей 65%-ной  [c.542]

Критерии оценки коррозионной стойкости материалов могут быть качественные и количественные. Качественным критерием является оценка изменений, произошедших в ходе коррозионных испытаний с внешним видом испытуемых образцов и коррозионной средой. Оценка изменений внешнего вида образца может быть визуальной или проводиться с применением микроскопов — определяется изменение морфологии поверхности металла и ее окраски. Об изменениях в коррозионной среде судят по нарушению ее цветности и появлению в ней нерастворимых продуктов коррозии. Разновидностью качественных методов являются индикаторные методы, основанные на изменении цвета специально добавляемых в коррозионную среду реактивов под действием продуктов растворения испытуемого материала. В практике испытаний сталей таким реактивом часто является смесь ферро- и феррицианида калия, в результате взаимодействия которой с ионами двухвалентного железа образуется турбулевая синь — ярко окрашенные области синего цвета. Качественным индикатором при исследовании коррозии алюминия и его сплавов является ализарин, окрашивающий зоны преимущественного растворения в красный цвет.  [c.141]

Методы и строго регламентированное проведение ускоренных коррозионных испытаний при научно обоснованном их планировании являются составной частью действенных и высокоинформативных средств быстрого поиска й отбора наиболее коррозионностойких материалов. Результаты этих испытаний позволяют в сжатые сроки дать сравнительную количественную оценку опасности усиления коррозии под воздействием (с учетом граничных и экстремальных условий) отдельных внешних и внутренних факторов, определяющих Kopposii-онное поведение уже функционирующих, модифицируемых или вновь создаваемых защитных систем.  [c.4]


Ускоренные испытания металлов и средств защиты являются одним из частных вопросов прогнозирования надежности приборов и промышленного оборудования, эксплуатируемых в различных климатических зонах. Поэтому неудивительно, что на разработку методов ускоренных коррозионных испытаний, особенно применительно к атмосферным условиям, в последнее десятилетие направлены усилия коррозионис-тов многих стран [151—154]. Однако несмотря на многообразие рекомендуемых методов, режимов и установок, лабораторные испытания, как правило, количественно не отражают коррозионного поведения металлов в натурных условиях. По этой причине ряд авторов, пытаясь связать результаты натурных и ускоренных испытаний, вводят так называемый коэффициент пересчета [124, 155—158]. Совершенно очевидно, что количество подобных коэффициентов , по крайней мере для каждой металлической системы, равно множеству существенно различающихся условий эксплуатации.  [c.197]

В некоторых средах металл быстро разрушается. Однако если разрушение металла происходит медленно, то его трудно обнаружить и еще более трудно количественно измерить. Иногда продукты коррозии остаются на поверхности металла, а иногда удаляются с него. Определить условия коррозии также трудно. Недостаточно знать, что образец был помещен в воду при некоторой температуре. Необходимо точно установить состав воды, измерив концентрации примесей, имеющихся даже в количестве одной части на миллион. Например, при проектировании хэп-фордского котла были ироделаны тщательные исследования для определения, насколько сильно будут подвергаться коррозии алюминиевые оболочки в воде реки Колумбия. В Металлургической лаборатории производились определения концентраций ионов хлора, углекислоты, сульфата и др. в воде с точностью до 10 , а также 1 ыполнялись коррозионные испытания. Процесс коррозии на производственных установках сильно отличается от наблюдаемого в лабораторной обстановке. Сопротивляемость металла коррозии может быть определена только при точном учете всех условий, при которых металл будет применяться.  [c.271]

Для количественной оценки истинной скорости процесса на дне пор были сняты потенциодинамнческие кривые (рис. 45) массивного хрома и хромированной в вакууме стали 08кп с покрытием различной толщины. Поляризационные кривые снимали на электронном потенциостате П-5827 с автоматической записью. Скорость развертки задаваемого потенциала составляла 0,2 В/мин при снятии анодной и 1 В/мин — катодной кривой. Точность поддерживания заданного потенциала составляла 2 мВ. С увеличением толщины хромового покрытия до 15 мкм анодная поляризуемость растет, указывая на снижение скорости коррозии и уменьшение пористости. Несмотря на то, что покрытие толщиной 15 мкм более пористо, оно поляризуется меньше, чем покрытие толщиной 25 мкм. Ускоренные коррозионные испытания (см. п. 5) показали, что покрытие толщиной более 20 мкм растрескивается в процессе коррозии (при наличии в коррозионной среде ионов хлора либо сернистого газа), что может быть обусловлено внутренними напряжениями, имеющими при таких значениях толщины большую величину.  [c.102]

Лабораторные испытания, как бы тщательно они ни были проведены, ие Могут воспроизвести естественные эксплоатацнонные условия работы машин и аппаратов, и поэтому результаты таких испытаний имеют относительный характер. Однако лабораторные испытания позволяют сравнительно быстро получать качественную и количественную оценку относительной химической стойкости материала и поэтому являются наиболее распространенным методом испытания. Очевидно, что чем полнее и совершенней лабораторные коррозионные испытания воспроизводят эксплоатацнонные условия работы, тем они ценнее, поэтому при выборе метода коррозионных испытаний в лабораторных условиях необходимо хорошо знать эксплоатацнонные условия работы материала и предъявляемые к нему требования.  [c.69]

По результатам несистематических коррозионных испытаний нельзя судить о влиянии отдельных элементов сплава в состояниях, вызванных упомянутыми выше внешними условиями. Такие испытания в большинстве случаев дают представление о коррозионном поведении только в данной среде и обобщение затруднительно. На основании поляризационной кривой, полученной в достаточно агрессивном электролите (например, в 1 н. H2SO4 или НС1, а также с добавкой 0,01% KS N), можно определить влияние отдельных элементов в составе нержавеющих сталей в типичных коррозионных ситуациях. Это влияние можно выразить количественно в величинах силы тока и потенциала (табл. 4).  [c.19]

Оценка коррозионных свойств горячеалюминированной стали в зависимости от толщины покрытия сделана в работе [16]. Исследовали стальные образцы, на которые покрытие наносили из расплава, содержащего 87,5% алюминия, 9% кремния и 3,5% железа. Толщину покрытия определяли тремя способами по изменению массы образца в виде диска диаметром 64,5 мм после стравливания покрытия в ингибированной соляной кислоте с помощью толщиномера, работающего на вихревых токах на металлографическом микроскопе с увеличением в 1000. Проводили ускоренные коррозионные испытания образцов размером 150x100 мм в камере с солевым туманом. Количественной характеристикой коррозионной стойкости было время до появления первых следов ржавчины.  [c.58]

С помощью коррозионных исследований можно установить эффективность различных методов защиты металлов от коррозии. Коррозионные исследования бывают лабораторные, натурные и эксплуатационные. Лабораторные исследования проводят на образцах небольщих размеров. Обычно это металлические пластины размером 50X25 мм или цилиндры диаметром 10— 20 мм и высотой 40 мм. Условия проведения испытаний выбирают предварительно и результаты оценивают количественно, например гравиметрическим методом. В большинстве случаев исследования проводят ускоренно, т. е. при усиленном воздействии отдельных факторов температуры, концентрации и движения или перемешивания среды и т, д.  [c.36]

Следует отметить, что скорость роста трещины в результате КР при /С>16 МПа-м /2 не зависит от pH в пределах изменения его от 11 (буферированный раствор) до 0. Однако для образцов с трещиной, нагруженных до значения К 6,1 МПа-м /% отмечается большое различие скоростей роста трещин при испытаниях в растворах с pH 11 и 0. Эти данные еще раз показывают, что измерение полной кривой V — К является необходимым условием для количественных экспериментов на КР. Поэтому утверждение, подобное тому, что понижение pH ускоряет распространение коррозионных трещин [87], может быть принято с оговоркой и относиться только к области на кривой V —которая зависит от pH.  [c.210]

КР высокопрочных алюминиевых сплавов в нефти известно до некоторой степени, однако только недавно скорость роста коррозионной трещины была изучена количественно как функция К в вершине трещины при испытаниях в органических жидкостях [44, 83, 93]. Одним из первых были опубликованы результаты, показанные на рис. 71, где скорость роста трещины сплава 7075-Т651 в этаноле нанесена как функция коэффициента интенсивности напряжений в вершине трещины при плоской деформации. Линейная связь между скоростью трещины и К была показана для сплава 7075-Т651 в этаноле и четыреххлористом углероде. По пересечению кривой с осью абсцисс был установлен уровень Кыр, равный 7,7—9,9 МПа-м " для этанола и 11 —13,2 МПа-м / для четыреххлористого углерода [83]. Предполагается, что в этом случае распространение трещины происходит не в результате действия следов воды в органических растворителях [83, 93]. Следует отметить, что эти данные были получены на трещинах ориентации ДП и что пути распространения трещины имели смешанный характер — транс- и межкристаллитный [83].  [c.217]


На рис. 114 приведены количественные данные, иллюстрирующие скорость роста трещины сплавов 7075 и 7178 в зависимости от времени перестаривания после предварительной обработки по режиму Т651. Следует отметить, что перестаривание по режиму выдержка при 160°С в течение 25 ч понижает значение скорости роста трещины приблизительно на три порядка. Эта степень перестаривания вызывает уменьшение прочности только на 14% (рис. 115) при заметном увеличении вязкости разрушения в высотном направлении (см. рис. 114). Те же режимы старения также значительно улучшают сопротивление расслаивающей коррозии. На рис. 116 показано влияние перестаривания на скорость роста коррозионной трещины в зависимости от коэффициента интенсивности напряжений сплава 7178. Увеличение перестаривания уменьшает скорость роста в области II, как это показано на рис. 114. Очень медленная скорость роста трещины в перестаренных материалах требует предельно длинного времени испытаний для определения полной кривой V—К. Поэтому результаты, полученные за данное время испытаний, не позволяют судить о том, влияет ли перестаривание только на область независимости скорости роста трещины от напряжений (область II) или будет также влиять и на об-  [c.258]

Прочность и сопротивление КР различных состояний сплавов серии 7000 обычно проверяются путем измерения твердости и электропроводности [147]. Гладкие образцы для испытаний на растяжение, кольцевые образцы или образцы другого типа, вырезанные в высотном направлении, проходят 30-сут испытания в условиях переменного погружения в раствор 3,57о Na l при нагруз-се 75% от гарантированного предела текучести. Сопротивление КР по скорости роста коррозионной трещины (см. рис. 114) для со стояния Т73 (так же как и для состояний Т76 и Т736) должно проверяться на образцах ДКБ за то же или меньщее время. Другой метод быстрой проверки состояния 7075 исследуется. Он базируется на измерении потенциалов в растворах метиловый спирт— четыреххлористый углерод [148]. Такие испытания уже разрабо таны для плит и листов сплавов 7178-Т76 и 7075-Т76 и имеют перспективу в качестве количественного контроля при установлении характеристик КР и расслаивающей коррозии [148]. Процедура испытаний и растворы похожи на те, которые использовались для сплава 2219 (состояния Т851, Т87). Время испытаний также менее 1 ч. Результаты испытаний показаны на рис. 119 и 120. Следует отметить, что сплавы, показывающие в растворе СНзОН/ /сев потенциалы меньшие —400 мВ по отношению к н. к. э., всег-  [c.262]

Достигнутые результаты научных исследований прочности в машиностроении нашли практическое приложение в создании новых и усовершенствовании суш ествующих методов расчета и испытания деталей машин и элементов конструкций, широко используемых промышленностью. Эти результаты, а также опыт расчета на прочность и конструирование деталей машин получили обобш ение в ряде монографий, руководств, справочников и учебников, подготовленных отечественными учеными за 50 пет Советской власти, что способствовало использованию на практике новых данных теоретических и экспериментальных работ. В ряде отраслей опубликованы руководства по прочности валов и осей, резьбовых соединений, пружин, зубчатых колес, лопаток и дисков турбомашин, корпусов котлов и реакторов, трубопроводов, сварных соединений и др. Разработанные методы расчета на основе исследований прочности оказали суш,ественное влияние на улучшение конструкций деталей машин. Они количественно показали значение для прочности деталей уменьшения концентрации напряжений, снижения вибрационной напряженности, ослабления коррозионных процессов, улучшения качества поверхности, роль абсолютных размеров и многих других факторов.  [c.44]

Способы определения коррозии разделяются на качественные и количественные. Способы качественного определения процесса разрушения металла часто представляют собой дополнения к количественным методам. В табл. 3 приведены основные методы определения коррозии и их характеристики. Каждый из них прямо или косвенно связан с каким-либо сопряжённым звеном общего процесса и поэтому может служить мерой самого коррозионного процесса, т. е. количества металла, перешедшего в форму коррозионных продуктов [2]. Метод оценки результатов испытаний определяется в зависимости от того, имеет ли коррозионное разрушение равномерный, местный или интеркристаллитный характер. В случае равномерной коррозии применяется весовой метод определения количества прокорродиро-вавшего металла. Он даёт непосредственную меру коррозии Л щ, т. е. потерю веса в г/л час. Показатель коррозии АГд, характеризукрщий уменьшение толщины металла, можно получить из формулы  [c.126]

Следует отметить, что лишь сведение обратного баланса котла позволяет количественно выявить потери тепла и связанные с ними недостатки в его работе и наметить пути их устранения. Поэтому этот метод во многих случаях является предпочтительным, хотя он и дает менее точные результаты при определении к. п. д. котла. Часто испытания проводятся по прямому и обратному балансу. Такое сочетание является наиболее приемлемым, так как позволяет получить полную картину, и качественную, и количественную. По-видимому, нет надобности приводить формулы для определения потерь тепла с уходящими газами, с химическим недожогом и т. д. [110, 111]. В настоящее время нет какой-либо утвержденной единой методики теплотехнических испытаний контактных экономайзеров. Объем и характер измерений зависят от ноставлепных задач. Наиболее распространенными типами испытаний являются теплотехнические, аэродинамические и теплохимические, проводимые при выполнении пусконаладочных работ. Цель этих испытаний — определение возможной температуры нагрева воды и уходящих дымовых газов, максимальной тепло-производительности без замены дымососа, максимальной производительности по воде при поддержании нормального гидравлического режима и отсутствии заметного уноса воды в газоходы. При этом обычно одновременно проводятся исследования качества нагретой воды и изучаются изменения ее состава, в частности коррозионной активности. Подобные испытания обязательно сопутствовали вводу в эксплуатацию первых промышленных контактных экономайзеров.  [c.258]

Коррозионная среда. В настоящее время накоплен большой экспериментальный материал по влиянию различных коррозионных сред на развитие усталостных трещин в металлических материалах. Кислород воздуха при высокотемпературных испытаниях становится активным и интенсивно окисляет материал в вершине трещины. Высокопрочные стали подвержены водородному охрупчиванию. Электролитические растворы вызывают анодное растворение материала. Все эти процессы отрицательно сказываются на характеристиках трещиностойкости при циклическом нагружении. При этом общая тенденция такова, что снижение частоты нагружения увеличивает отрицательное воздействие коррозионной среды [118, 221], хотя иногда происходят аномалии. При очень низких частотах нагружения для высокопрочной стали отмечали отсутствие повышения скорости роста трещины из-за пассивации [118]. В каждом конкретном случаетрудно количественно предугадать, каким будет влияние коррозионной среды. Поэтому при планировании экспериментов стараются максимально отразить специфику эксплуатации — уровень нагрузок, частоту, температуру, аэрацию, концентрацию активных веществ и т. п.  [c.176]


Смотреть страницы где упоминается термин Коррозионные испытания количественные : [c.131]    [c.139]    [c.64]    [c.87]    [c.36]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.0 ]



ПОИСК



А фаз количественный

Количественные методы и показатели коррозионных испытаСпециальные методы коррозионных испытаний



© 2025 Mash-xxl.info Реклама на сайте