Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Реакции коррозионные особенности

Чаще всего ингибитор оказывает одинаковое действие на всю металлическую поверхность, не проявляя повышенной эффективности на анодных или катодных участках, т. е. замедляет одновременно обе реакции. Коррозионный потенциал металла изменяется не очень сильно (чаще всего менее чем на 0,1 В), однако скорость коррозии резко снижается. Одна из существенных особенностей органических ингибиторов травления состоит в том, что их вводят в небольших количествах. Обычно концентрации ингибиторов травления составляют величину порядка 0,01—0,1%.  [c.60]


Наряду с рассмотрением результатов экспериментальных работ по теплообмену в книге приведены некоторые данные по основным особенностям теплофизических свойств четырехокиси, коррозионной стойкости материалов, расчету параметров потока с учетом кинетики химических реакций, влиянию особенностей физикохимических свойств четырехокиси на процессы тепло-массопереноса и гидродинамические характеристики и другие сведения, которые полезны при проведении расчетов и организации экспериментов с данным теплоносителем.  [c.6]

Одной из особенностей электрохимической коррозии является зависимость скорости ее от электродных потенциалов анодной (1.1) и катодной (1.2) реакций. Как видно на рис. 5, в процессе коррозии значения электродных потенциалов изменяются потенциал анодной реакции (кривая /м) смещается в сторону более положительных значений, а потенциал катодной реакции (кривая /н) — в сторону более отрицательных. Кривые г м и н характеризуют зависимость скоростей анодной (растворение металла) и катодной (выделение водорода) реакций коррозионного процесса от потенциала — анодная и катодная поляризационные кривые. Точка пересечения анодной и катодной кривых указывает на оси абсцисс максимальную плотность тока коррозии, а на оси ординат — потенциал коррозии.  [c.19]

Особенностью анодных реакций коррозионного процесса в области активного растворения является то, что они состоят из нескольких стадий, в которых принимают участие компоненты раствора.  [c.21]

В чем заключаются особенности анодных реакций коррозионного процесса  [c.26]

Ввиду того, что коррозия включает химические превращения, для лучшего понимания коррозионных реакций необходимо знать основы химии, и особенно электрохимии, так как коррозионные процессы по большей части являются электрохимическими. Поскольку структура и состав металла зачастую определяют коррозионное поведение, надо быть знакомым с основами металлургии. Следовательно, химия и металлургия составляют фундамент при изучении коррозии, так же как биология и химия — при изучении медицины.  [c.16]

Описанные выше особенности поведения титановых сплавов в метанольных растворах можно объяснить, используя ряд известных общих закономерностей протекания коррозионного растрескивания в металлах. Рассмотрим прежде всего особенности протекания электродных реакций при изменении степени агрессивности раствора. Введение в состав раствора анионов галогенов, например СГ, уменьшает интервал  [c.81]


Наряду с разработкой и освоением рациональной технологии производства ядерного топлива большое значение для развития атомной техники имеют конструкционные материалы, применяемые в производстве специального промышленного и исследовательского оборудования. Помимо обычных требований механической прочности, теплопроводности, жаростойкости, коррозионной, эрозионной стойкости и т. д. к ним предъявляются специфические, определяемые особенностями атомной техники требования радиационной стойкости, необходимой степени поглощения нейтронов в зависимости от производственного назначения материала и пр. С учетом этих требований выбирались и изучались различные марки стали для элементов конструкции атомных реакторов, искусственного графита для элементов систем замедления и отражения нейтронов.в активной зоне реакторов, алюминия для защитных оболочек твэлов, предотвращающих возникновение химической реакции между химически несовместимыми урановыми сердечниками твэлов и теплоносителем (например, водой), бетона для нужд противорадиационной защиты и т. д. Применительно к этим же требованиям отечественной промышленностью освоены в производстве новые конструкционные материалы, ранее получавшиеся лишь в крайне ограниченных количествах на лабораторных установках — тяжелая вода, бериллий, цирконий и его сплавы и др.  [c.163]

Местная коррозия обычно является следствием образования гетерогенных смешанных электродов, причем изменение кривых местная плотность тока — потенциал мол<ет иметь причины, связанные с особенностями п материала и окружающей среды. При наличии различных металлов (см. рис. 2.7) получается контактный элемент. Местные различия в составе среды ведут к образованию концентрационных элементов. Сюда относится и аэрационный элемент, свойства которого в конечном счете характеризуются различиями величиной pH стабилизирующимися в результате последовательных химических реакций, здесь могут иметь значение ионы хлора и ионы щелочных металлов [21. Такие коррозионные элементы могут иметь весьма различную протяженность. Так, при селективной коррозии многофазных сплавов аноды и катоды могут иметь размер в доли миллиметра. У объектов большой площади, например трубопроводов, размеры таких коррозионных макроэлементов (макропар) могут достигать нескольких километров. Опасность коррозии при образовании элемента решающим образом зависит от отношения площадей катода и анода. Из зависимостей на рис. 2.6, если ввести интегральные сопротивления поляризации  [c.58]

Во многих практических случаях возникает вопрос о том, можно ли подвести к металлической поверхности достаточный защитный ток при наличии геометрических препятствий, например в области экранирования тока камнями, в щелях и в особенности при неплотном прилегании ленты для защиты от коррозии или при отслоении покрытий (см. раздел 6.1). Однако обусловленное геометрией повышенное сопротивление для защитного тока в равной мере сказывается и для тока коррозионного элемента, для блуждающего тока и в ограничении доступа окислителей при катодной окислительно-восстановительной реакции по выражению (2.9). Плотности тока при электрической проводимости и ири диффузии описываются аналогичными уравнениями (2.11) и  [c.61]

Во многих случаях материалы защищают от коррозии нанесением покрытий (см. раздел 5). Многие органические покрытия, особенно тонкослойные, становятся с течением времени в некоторой мере электрически проводящими с удельными сопротивлениями <10= Ом-м . В таком случае беспористая поверхность с покрытием площадью 10 м , что например, соответствует поверхности 10 км трубопровода с условным проходом 300 мм, должна иметь сопротивление покрытия Ом. Более высокие сопротивления и свойства, практически соответствующие свойствам электрической изоляции, имеют, например, полиэтиленовые покрытия толщиной 1 мм и более (см. раздел 5.2). Напротив, вышеназванные слабо проводящие покрытия ведут себя в отношении химической коррозии аналогично оксидным покрытиям. Анодная промежуточная реакция затормаживается почти полностью, а катодная — лишь в незначительной степени. Таким образом, эти поверхности с покрытием становятся катодами, и в местах пор или повреждений в покрытии может произойти интенсивная сквозная коррозия. В особенности этого следует ожидать при большом содержании солей в коррозионной среде [10, 111. Для предотвращения местной коррозии около дефектов покрытия, которых практически нельзя избежать, необходимо либо обеспечить возможно более высокое сопротивление покрытия, либо применить катодную защиту от коррозии.  [c.135]


Снижение относительной влажности воздуха уменьшает агрессивное действие сернистого газа, при этом плотность коррозионных токов мало зависит от его концентрации. Таким образом, влажность воздуха является как бы аккумулятором примесей, в том числе сернистого газа, являющегося наряду с кислородом деполяризатором катодных реакций. Некоторые исследователи устанавливают прямую связь между скоростью коррозии и содержанием сернистых соединений в атмосфере. Повышенная относительная влажность воздуха особо опасна для изделий сложной конфигурации, имеющих много щелей, зазоров, трещин и т. п., в которых долго сохраняются пленка влаги и нерастворимые твердые частицы, адсорбирующие газы из атмосферы. С увеличением относительной влажности толщина адсорбционного слоя электролита на поверхности металла возрастает. Так, при влажности 55% она составляет 15 молекулярных слоев, при относительной влажности около 100% количество их возрастает до 90—100. Замечено, что коррозия на металлических образцах, обращенных к земле на высоте до 0,5 м, протекает интенсивнее, чем на поверхности, непосредственно доступной атмосферным осадкам. Это особенно ярко выражено в условиях повышенной относительной влажности и объясняется тем, что в стороне, обращенной к земле, дольше сохраняется влага.  [c.17]

Механизм коррозионного растрескивания под напряжением нержавеющих сталей был объектом многих исследований, но до сих пор не до конца ясен. Скорость - определяющая стадия реакции может сильно меняться в зависимости от условий. Однако во многих случаях важную роль играет, по-видимому, местное ослабление пассивирующего слоя. Таким образом опасность коррозионного растрескивания под напряжением особенно велика в том интервале потенциалов, который соответствует неустойчивости пассивного состояния на поляризационной анодной кривой (рис. 110).  [c.121]

Хотя коррозионные реакции, особенно в случае конструкционных сплавов с повышенной коррозионной стойкостью, обычно протекают только на внешней поверхности материала, диффузия газообразных элементов может проникать далеко в глубь материала и  [c.31]

Механическое нагружение и локальное повышение температуры ускоряют коррозионное воздействие среды (особенно в случае гетерогенных материалов), что приводит к образованию окисных пленок и отложений продуктов электрохимических реакций. Механическое воздействие способствует разрушению этих пленок и ускоряет протекание коррозионных процессов.  [c.21]

Закалка существенно влияет на физические свойства. Так, в сплавах она изменяет структурно-чувствительные физические и химические свойства увеличиваются прочность, хрупкость, удельное электросопротивление, коэрцитивная сила, возрастает коррозионная стойкость. Особенно сильно упрочняются сплавы, претерпевающие в равновесных условиях эвтектоидное превращение. Прочность возрастает либо вследствие мартенситного механизма фазового превращения, либо вследствие понижения температуры эвтектоидной реакции, приводящего к измельчению кристаллов фаз, образующих эвтектоидную смесь.  [c.134]

Если коррозионный процесс на основной поверхности изделия протекает с кислородной деполяризацией, то вследствие диффузионных затруднений доставки кислорода в места щелей и зазоров раствор в них будет обеднен кислородом. Это особенно важно для случая коррозии оборудования, находящегося в пассивном состоянии, например, для коррозии оборудования химической промышленности, изготовленного из нержавеющих сталей. Снижение скорости катодной реакции вследствие уменьшения концентрации кислорода в растворе может привести к переводу металла в активное состояние, то есть к резкому (на несколько порядков величины) возрастанию скорости его растворения.  [c.130]

Перенапряжение восстановления кислорода на меди хотя и велико (более вольта), но скорость реакции при потенциале коррозии меди значительна. Катодная реакция восстановления кислорода при коррозии меди часто контролируется доставкой (диффузией в приэлектродном слое) кислорода и особенно в спокойных растворах электролитов. При высоких скоростях потока коррозионной среды восстановление кислорода контролируется электрохимической стадией. Но во всех случаях коррозия меди определяется скоростью катодного процесса, поэтому движение жидкости или самого медного изделия в коррозионной среде увеличивает скорость коррозии. Максимальные коррозионные разрушения наблюдаются в зоне турбулентного движения жидкостей.  [c.209]

Главная особенность гетерогенных сплавов определяется, содержанием в их структуре фаз, различающихся по химическому составу и кристаллографическим параметрам. Эти фазовые составляющие, как правило, отличаются и по многим физическим и физико-химическим характеристикам адсорбционным, строению двойного электрического слоя на границе фаза — раствор, кинетическим параметрам окислительно-восстановительных реакций, потенциалам пассивации и т. д. Из-за этого коррозионное поведение гетерогенных сплавов во многом зависит от неоднородности их структуры. В данном случае неоднородность носит принципиально макроскопический характер в отличие от однофазных систем, для которых принимается микронеоднородность. (на уровне активных центров), связанная с различным энергетическим положением отдельных атомов на поверхности [12].  [c.152]

Особое место среди возможных мер предотвращения селективной коррозии латуней занимает электрохимическая (катодная) защита. Ее применение характеризуется рядом специфических особенностей, обусловленных своеобразием механизма обесцинкования. В частности, сдвиг потенциала латуни- в отрицательную сторону приводит к двум важным последствиям уменьшению скорости анодного растворения компонентов и облегчению реакции восстановления ионов меди. В зависимости от того, какой эффект превалирует, обесцинкование будет подавляться либо стимулироваться. Это зависит от ряда факторов — химического и фазового состава латуни, природы и состава коррозионной среды, наличия легирующих и ингибирующих добавок, глубины катодной защиты и т. д.  [c.190]


С повышением температуры уменьшается перенапряжение восстановления окислителя. Особенно это важно для коррозионного процесса, протекающего с катодным контролем. С увеличением температуры увеличивается скорость диффузии веществ, участвующих в процессе или образующихся в результате электродной реакции.  [c.179]

Теория электродных процессов подробно изложена в ряде работ [1, 24, 35], поэтому мы остановимся лишь на тех реакциях, которые обусловливают коррозионный процесс, причем лишь в той мере, в какой это необходимо для понимания механизма коррозии металлов и уяснения специфических особенностей протекания электродных реакций в тонких слоях электролитов. К числу таких реакций относятся следующие  [c.15]

Все эти присадки и ингибиторы коррозии имеют общую особенность — это поверхностно-активные вещества, имеющие дифильную структуру и способные образовывать на защищаемой поверхности или на границе раздела жидких фаз особые ориентированные и структурированные пленки барьерного типа, подобные по структуре пленке жидких кристаллов или биологических мембран. Эти пленки тормозят не только электродные реакции коррозионного или химического процесса взаимодействия среды с металлом, но главным образом блокируют или затрудняют проникновение самой агрессивной среды (водной фазы) к металлической поверхности, что позволяет этим реагентам даже при малых концентрациях (ниже 0,01 %) резко снижать скорость взаимодействия металла с агрессивной средой. Однако их применение возможно лищь в условиях длительного хранения нефти и топлив в резервуарах. При оперативном хранении этих жидкостей (частом заполнении и опорожнении резервуаров) применение добавок неэкономично.  [c.356]

Распределение тока и металлов на поверхности катода 124—129 Рассеивающая способность электролитов 125 Растрескивание внутрикристал-литное 33 Реакции коррозионные анодная 13 катодная 13—15 особенности 20 Регуляторы роста кристаллов 120  [c.207]

Отличительной особенностью коррозионных процессов является их сложность и многостадийность. Обычно коррозионный процесс состоит по меньшей мере из трех основных стадий 1) переноса реагирующих веществ к поверхности раздела фаз — к реакционной зоне 2) собственно гетерогенной реакции 3) отвода продуктов реакции из реакционной зоны. Каждая из этих основных стадий может в свою очередь состоять из элементарных стадий, протекающих последовательно и параллельно.  [c.11]

Перспективной является также защита внутренней поверхности промысловых труоопроводов цементными композициями. Одним из достоинств этого способа защиты, особенно для сред, содержащих двуокисв углерода, наряду с технологичностью является повишен-ная коррозионная стойкость цементного камня за счёт образования в процессе эксплуатации нерастворимой плёнки углекислого ка>Ц ЦИЯ по реакции  [c.34]

Как видно из уравнения, значения /д, а следовательно, и V зависят от природы растворяющихся фаз, а также от сопряженных катодных реакций, протекающих на.других участках, величины тока на которых уравновешивают ток в вершине трещины. Поэтому исключительно большое значение приобретает химическая природа участков, на которых протекают анодная и катодная реакции, а также химический состав электролита (среды). Наблюдаемые скорости развития коррозионной трещины требуют высоких плотностей анодного тока, что в значительной мере может быть реализовано при активации вершины трещины за счет наличия в сплаве структурных составляющих (фаз или сегрегатов), способствующих образованию гальванического элемента. Отдельные фазы или сегрегации элементов сплава внутри твердого раствора могут действовать или в качестве многочисленных микроанодов, способствующих локальному растворению в вершине трещины, или в качестве катодов, которые способствуют локальному растворению прилегающих к ним слоев матрицы. Сегрегация элементов по границам зерен или сегрегация внутри зерен, особенно при образовании дальнего или ближнего порядка, представляет потенциальные участки, в которых возможно образование микроанодов.  [c.57]

Электрохимические реакции контролируют скорость процесса коррозионно-механического воздействия среды, особенно в начальный период роста трещины, когда происходит коррозионное растворение металла с образованием, например, поражений в виде питтингов [155]. Так, в холоднодеформированных сталях типа 18—8, испытываемых в растворе Mg la при 154 °С, образуются специфические туннели субмикроскопических размеров, которые располагаются вдоль плоскостей скольжения в направлении, соответствующем сидячим дислокациям Коттрелла—Ломера. Как 190  [c.190]

Атмосферная коррозия развивается в условиях не прерывного изменения во времени и пространстве физико-химических параметров коррозионной среды. Многообразие факторов, влияющих на скорость коррозионно-электрохимических реакций в реальной атмосфере, является особенностью этого вида коррозии металлов. Установлению количественных связей между основными параметрами атмосферы и коррозионной стойкостью металлов посвящена значительная часть исследований последних лет [67—69].  [c.69]

Одними из наиболее важных и точных методов лабораторных коррозионных исследований являются электрохимические. Чаще всего исследуется изменение потенциала металла в определенной коррозионной среде в зависимости от времени. Из-за относительно большой продолжительности исследований эта зависимость регистрируется обычно с помощью автоматического самописца. Более полную картину коррозионного процесса дают так называемые поляризационные кривые, по которым судят о поляризуемости данного металла, о роли катодных и анодных реакций и влиянии внутренних и внешних факторов на коррозионный процесс. Особенно важное место занимают поляризационные измерения при исследовании пассивирующихся систем (см. ингибиторы коррозии).  [c.36]

В начале 50-х годов было обнаружено, что титан и его сплавы подверженм пирофорной реакции в красной дымящей кислоте. Работы по изучению коррозионного растрескивания в этой среде вплоть до 1957 г. были приведены в сообщении ТМЬК 80 [2]. За этот период было выполнено сравнительно мало работ ниже приводится краткий обзор наиболее важных особенностей этого явления.  [c.351]

Еще один фактор, влияющий на коррозию, — солнечное облучение. Солнечный свет может ускорять фоточувствнтельные коррозионные реакции на таких металлах, как железо и медь, а также стимулировать биологическую деятельность, например грибов, наличие которых способствует удержанию влаги и пыли, создавая коррозионные условия. В тропиках возникает особенно агрессивная среда в результате одновременного оседания коралловой пыли и морской соли.  [c.13]

Весьма перспективно применение вакуумных ионно-плазменных методов — с ионным распылением и азотированием, методов КИБ, ПУСК, РЭП, распыление моноэнергетическими пучками ионов, с помощью магнетрон-ных распылительных систем. Износостойкие покрытия из нитридов, карбидов, окислов, сложных соединений, алмаза и др., а также антифрикционные покрытия из халькогенидов металлов, полимеров и других материалов наносятся при помощи реактивных методов с участием плазмо-химических реакций. Особенно перспективно применение указанных методов к прецизионным парам, насосам, топливной аппаратуре, газовым подшипникам, гидроприводу, точным направляющим и устройствам. Для обработки поверхностного слоя материала в целях повышения износостойкости используется ускоренный поток ионизированных атомов с энергией 100— 200 кЭВ в вакууме, с глубиной проникновения ускоренных ионов 0,1 мкм. Ионная имплантация применяется также для изменения триботехнических свойств, повышения коррозионной стойкости и прочности сцепления покрытия с основой.  [c.200]


Коррозионная стойкость кадмия изучена чрезвычайно подробно [741. В атмосфере сельской местности сопротивление коррозии хорошее, но в атмосфере промышленных районов (особенно если присутствует SO2 или SO3) происходит быстрая коррозия. Кадмиевое покрытие разъедается влажным газообразным аммиаком в том слу чае, когда с его поверхности не удаляются остатки 113 цианидных электролитических ванн. Ненасыщенные масла реагируют с кадмием, особенно при наличии в них кислотных компонентов. Сероводород (при высоких концентрациях) и влага быстро разъедают кадмиевое покрытие обычные атмосферные концентрации на такое покрытие не действуют. Двуокись серы, как упоминалось выше, в присутствии влаги оказывает сильное коррозионное действие. Большинство кислот разъедает кадмий. Тщательное изучение pH среды па растворах H I и NaOH показывает, что коррозия начинается сразу же, как только раствор показывает кислую реакцию, и быстро возрастает с увеличением концентрации кислоты. Кислород увеличивает скорость коррозии в водных растворах при частичном погружении кадмия в раствор на линии поверхности водь1 это действие выражено чрезвычайно отчетливо.  [c.272]

Для коррозии металлов в кислых средах характерны свои особенности. Это прежде всего значительная зависимость скорости растворения металла от кислотности раствора. С уменьшением pH скорость коррозии в неокислительных кислотах возрастает. В подавляющем большинстве случаев скорость коррозии в кислых средах определяется реакцией (1.2), а благодаря большой подвижности ионов гидроксония практически не осложнена диффузионными затруднениями и протекает в чисто кинетической области. Это обуславливает, в сво(о очередь, несколько меньшую, чем для других видов коррозии, зависимость кислотной коррозии от перемешивания. Для многих металлов и сплавов продукты коррозии в кислых средах растворимы, что приводит к протеканию процесса с ускорением. Скорость коррозионного процесса на сталях и сплавах в кислых средах существенно зависит от их структуры, наличия примесей, дефектов, остаточных деформаций и т. п. И, наконец, коррозия в кислых средах, как правило, сопровождается поглощением металлом значительного количества водорода, что приводит к появлению водородной хрупкости.  [c.12]

Несмотря на то что исследованием горения металлов занимаются многие годы, публикаций по этому вопросу очень мало. В имеющихся публикациях рассматривается, по-видимому, наиболее подходящая для реакции смесь лития, натрия и шестифтористой серы. При химическом взаимодействии этих трех составляющих достигается относительно высокая энтальпия реакции и не образуются газообразные продукты, которые особенно нежелательны в условиях ограниченного пространства. К сожалению, все возникающие в установках на солях лития проблемы, связанные с материалами, имеют место и в системах со сжиганием жидких металлов. При рабочих температурах двигателя Стирлинга, составляющих около 800 °С, литий в жидком виде очень коррозионноактивен, особенно по отношению к никелевым сплавам, и поэтому следует использовать нержавеющую сталь с содериганием хрома 18 7о и никеля 8 % Отметим, что в растворе с другими химическими элементами литий несколько снижает свою коррозионную активность [6]. В то же время экспериментальные исследования показали, что реакцию горения жидкого металла можно регулировать и осуществлять в резервуаре из нержавеющей стали. Использованию таких систем в автомобильных транспортных средствах в ближайшем будущем может помешать возможная утечка топлива.  [c.389]

При изучении отдельных- электрохимических, реакций особенно не связанных с растворением или осаждением металлов, необратимые изменения на электроде более ограничены, чем при коррозионных процессах. Следовateльнo, использование электрохимических и коррозионных свойств вполне приемлемо для характеристики металлических систем, конечно, с учетом искажений, вносимых необратимостью процессов. Кроме того, надо иметь в виду, что плотность вещества,-электропроводность и ряд других свойств, обычна используемых для характеристики систем в физико-химическом анализе, связаны с фазовым составом довольно про стыми соотношениями, чего нельзя сказать об электрохимических и коррозионных свойствах. Например, коррозионная, стойкость даже двухфазного бинарного сплава имеет сложную функциональную зависимость от фазового состава, причем представить ее в явном виде далеко не всегда удается.  [c.143]


Смотреть страницы где упоминается термин Реакции коррозионные особенности : [c.402]    [c.15]    [c.103]    [c.6]    [c.10]    [c.33]    [c.194]    [c.152]    [c.299]    [c.264]    [c.56]    [c.228]    [c.210]    [c.186]   
Коррозия и основы гальваностегии Издание 2 (1987) -- [ c.20 ]



ПОИСК



Реакции коррозионные



© 2025 Mash-xxl.info Реклама на сайте