Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Горение металлов

После анализа важнейших гидродинамических характеристик нереагирующей смеси можно перейти к рассмотрению тех изменений, которые требуются для анализа общего случая реагирующей смеси (включая фазовые превращения (7241). Гидромеханике многокомпонентных (но не многофазных) систем с химическими реакциями посвящены работы [594, 831]. В работе 1678] рассмотрено распределение частиц по размерам в конденсирующемся паре. В применении к реагирующей смеси следует принять во внимание все процессы, рассмотренные в упомянутых работах. В общем случае непрерывная фаза может состоять из реагирующей газообразной смеси или реагирующего раствора, а дискретная фаза — из твердых частиц или жидких капель. Примерами реагирующих систем могут служить жидкие капли в паре в процессе конденсации (разд. 7.6) газы, пары металла, капли металла, твердые частицы окислов при горении металла (разд. 3.3 и 7.7) и жидкие глобулы в растворе в процессе экстракции.  [c.293]


Гистограмма 20 Горение металлов ИЗ  [c.526]

При избытке окисла под поверхностью образуются разломы и оголенные участки металла (рис. 2, б), которые интенсивно окисляются вплоть до образования локальных источников горения металла с газификацией всех продуктов окисления. На рис. 2, в показан желательный механизм работы, когда газообразные продукты освобождают место под твердый окисел, который заполняет все поры и не приводит к нарушению сплошности покрытия. При появлении окисла под поверхностью у основания поры или трещины он может оплавляться потоком и заполнять близлежащие поверхностные дефекты.  [c.92]

Лля начала резки необходимо нагреть металл в начальной точке до температуры горения. Подогревательное пламя приходится сохранять и в процессе резки, так как освобождаемого в процессе горения металла тепла недостаточно для покрытия всех тепловых потерь, сопровождающих резку.  [c.412]

Процесс газовой резки состоит из следующих стадий 1) подогрева металла 2) горения металла 3) выдувания окислов.  [c.412]

Таким образом, при t > температура будет стремительно нарастать, пока не произойдет переход либо к режиму воспламенения и горения металла, либо к его испарению. Этот переход из-за лавинообразного характера роста температуры должен наступить быстро, так что за время прогорания пленки t (рис. 70) можно принять время — длительность индукционного периода реакции. Времени соответствует точка перегиба на кривой Т (t) (рис. 68). Очевидно, что по мере роста q время уменьшается, а соответствующая ему температура активации реакции Тд возрастает (3—5 на рис. 68).  [c.115]

При очень высокой температуре износ зависит только от коррозии (горение металла).  [c.116]

Следующим этапом противопожарной защиты является разработка мер и средств тушения пролившегося металла. Сюда же входят мероприятия по локализации мест горения и затруднению доступа воздуха к поверхности горения, для чего используют металлические противни, закрытые сверху сеткой или дырчатым листом. Горение металла под листом происходит менее интенсивно, так как приток воздуха по мере закупорки отверстий листа аэрозолями все более ослабляется. Противни устанавливают на полу под стендом на всей его площади или в местах наиболее вероятного пролива. Применение противней облегчает операции по ликвидации последствий аварии. После пожара противни отправляют на площадку уничтожения отходов для отмывки. Недостаток подобной системы — повышенный расход металла, кроме того, после пожара противни деформируются, что затрудняет их повторную укладку.  [c.43]


Для начала горения металл подогревают до температуры его воспламенения в кислороде (например, сталь до 1000. .. 1200 °С). На рис. 5.22 показан процесс кислородной резки. Металл 3 нагревается в начальной точке реза подогревающим пламенем 2, затем направляется струя режущего кислорода I, и нагретый металл начинает гореть. Горение металла сопровождается выделением теплоты, которая вместе с подогревающим пламенем разогревает лежащие ниже слои на всю толщину металла. Образующиеся оксиды 5 расплавляются и выдуваются струей режущего кислорода из зоны реза 4. Конфигурация перемещения струи соответствует заданной форме вырезаемого изделия.  [c.251]

Температура горения металла должна быть ниже температуры его плавления, т.е. металл должен гореть в твердом состоянии. В противном случае расплавленный металл трудно удалять из полости реза.  [c.89]

Поверхность разрезаемого металла должна быть очищена от ржавчины и других загрязнений. Металл устанавливается в положение, лучше всего в нижнее, но так, чтобы был свободный выход режущей струи с обратной стороны. Операция резки начинается с предварительного подогрева в месте реза при температуре горения металла (1200. .. 1350 °С), Устанавливаемая мощность подогревающего пламени зависит от рода горючего газа, толщины и состава разрезаемого металла.  [c.90]

Ручная зачистка начинается с прогрева начального участка до температуры воспламенения металла. При включении режущего кислорода образуется очаг горения металла и обеспечивается устойчивый процесс зачистки за счет равномерного перемещения резака вдоль линии реза. При нагреве резак обычно располагается под углом 70—80 к зачищаемой поверхности. В момент подачи режущего кислорода резак наклоняют до угла 15-45 .  [c.208]

Горение протекает бурно с вьщелением большого количества теплоты. Температура достигает 3000 °С. Расплавленный в результате горения металл затекает в свариваемый стык и образуется сварное соединение. В связи с низкой производительностью процесса и дефицитностью алюминия термитную сварку применяют ограниченно, в основном для сварки рельсовых стыков трамвайных путей. Магниевый термит (смесь порошкообразного магния и железной окалины) используют для сварки стальных телеграфных и телефонных проводов связи.  [c.337]

Хотя двигатель Стирлинга и получает энергию извне, его нельзя с достаточной строгостью назвать двигателем внешнего сгорания, поскольку любой источник тепла с подходящей температурой, например сфокусированная солнечная энергия, аккумулированная тепловая энергия, тепловая энергия, выделяющаяся при горении металла, ядерная энергия и т. п., может быть использован для этой цели. В настоящее время в большинстве установок с двигателями Стирлинга применяется жидкое топливо из-за простоты его использования и из-за требований, обусловленных конкретным назначением установки. При использовании системы сгорания для нагрева рабочего тела применяют непрерывный процесс горения, что позволяет сжигать различные виды топлива, которые эффективно сгорают, не создавая опасности попадания твердых частиц из топлива, окислителя или окружающего пространства в рабочие цилиндры. При использовании для сжигания жидких топлив непрерывное горение можно легко регулировать, в результате чего снижается уровень выбросов, особенно несгоревших углеводородов и окиси углерода, однако, чтобы понизить содержание окислов азота, необходимы дополнительные меры.  [c.19]

Источником тепловой энергии для модифицированного двигателя Р-40 должна была стать скорее всего смесь дизельного топлива и жидкого кислорода, которая сгорала бы в камере при избыточном давлении. Работы, проводившиеся фирмой Дженерал моторе , предусматривали использование тепловых аккумуляторов и процесса горения металла. Такие источники тепловой энергии не требуют окислителя и не зависят от окружающей среды. Этот вопрос более подробно будет рассмотрен в гл. 4, здесь же достаточно упомянуть, что сами эти источники энергии и устройство для передачи тепла от источника к двигателю еще не были доведены до стадии промышленных образцов, когда уже началось изучение возможных областей практического применения двигателя Стирлинга в широких масштабах, хотя стендовые испытания различных элементов  [c.199]


Предпочтительные свойства реагентов, используемых в реакции горения металлов, очень близки к свойствам термоаккумулирующих материалов. Отличие состоит лишь в том, что в данном случае материалы должны быть горючими. Кроме того, продукты реакции должны существовать в жидком виде, поскольку как газообразные (о чем уже упоминалось), так и твердые продукты реакции усложняют разработку конструкции. Поэтому, хотя при сжигании металлов можно использовать непосредственный кондуктивный нагрев, предпочтительнее иметь  [c.389]

Газопламенная резка. Осуществляется сжиганием металла в струе кислорода, которая одновременно служит для удаления продуктов сгорания. Подогрев металла до температуры его воспламенения производится с помощью горючего газа (ацетилена, пропана, метана, паров бензина, керосина и др.), который пропускается через подогревающий наружный мундштук резака. Высокое качество разрезки обеспечивается только при горении металла в твердом состоянии.  [c.208]

Рис. 1. Установка для исследования быстрого горения металлов. Нагрев в Рис. 1. Установка для исследования <a href="/info/248706">быстрого горения</a> <a href="/info/1601">металлов</a>. Нагрев в
Примечания I. Звездочка соответствует горению металла со свечением , отсутствие звездочки указывает на воспламенение .  [c.79]

Технологическая погрешность, вызываемая неточностью прохождения кислородной струи и горения металла, не зависит от размеров детали и для листов толщиной до 25 мм при качественной резке даёт отклонение в пределах 0,1— 0,15 мм. Погрешность увеличивается с возрастанием толщины листов примерно от 0,1 до 0,15 мм на каждые 50 мм.  [c.545]

Режущий кислород попадает на нагретый металл и зажигает его. При горении металла выделяется теплота, которая вместе с подогревающим пламенем разогревает нижележащие слои, и горение распространяется на всю толщину металла. Образующиеся при сгорании металла окислы 5, будучи в расплавленном состоянии, увлекаются струей режущего кислорода и выдуваются из зоны реза 4. Если перемещать резак по заданной линии с надлежащей скоростью, то форма реза будет соответствовать заданной конфигурации.  [c.384]

Кислородно-дуговая резка использует одновременно тепло сварочной дуги для разогрева металла и тепло, развиваемое при горении металла в кислороде.  [c.511]

Таким образом, газовая резка слагается из трех процессов подогрева металла, горения металла в среде кислорода, выдувания окислов.  [c.512]

В процессе плавки необходимо исключить взаимодействие расплавленного металла с кислородом и азотом Титан относится к числу тех немногих металлов, которые при высоких температурах горят в азоте. Взаимодействие расплавленного титана с азотом протекает настолько бурно и с таким большим выделением тепла, что по внешним признакам полностью совпадает с горением металлов в кислороде. Титановая губка начинает гореть в кислороде при температурах выше 500° С, при этом развивается такое большое количество тепла, что она плавится. С кислородом воздуха губка начинает бурно взаимодействовать при температурах выше 1200—1300° С.  [c.372]

Схема процесса газовой резки приведена на рис. 183, а. Смесь кислорода и горючего газа направляется в кольцевой канал мундштука 2 режущей горелки. При выходе из мундштука газовая смесь зажигается, образуя пламя, которое направляют на разрезаемый металл 3. После нагрева металла до требуемой температуры подача горючего газа прекращается и усиливается поступление кислорода, который при выходе из мундштука, соприкасаясь с нагретым металлом, активизирует горение. В процессе сгорания металла образуются окислы 4, которые увлекаются струей 1 режущего кислорода и затем выдуваются из полости реза. Таким образом, газовая резка слагается из трех процессов подогрева металла, горения металла в среде кислорода, выдувания окислов.  [c.358]

Процесс разделительной кислородно-флюсовой резки протекает следующим образом. На предварительно нагретую в месте начала резки до необходимой температуры поверхность металла направляют струю кислорода в смеси с флюсом флюс и основной металл загораются, выделяющееся при этом тепло передается через образовавшийся шлак нижележащим слоям металла, которые также воспламеняются в струе кислорода и сгорают. Плавное перемещение участков горения металла создает непрерывную по толщине линию разделения (реза) ранее монолитного металла. Образовавшиеся в процессе резки шлаки сплавляются с продуктами окисления флюса, удаляются из разреза под действием давления кислородной струи, а также под действием их собственной тяжести.  [c.83]

В результате поверхностной кислородно-флюсовой резки получается желобок примерно параболического сечения сравнительна небольшой глубины. Кислородно-флюсовой резкой возможно послойное снятие металла, аналогично строжке, фрезеровке, обрубке или обточке. Отличие здесь лишь в том, что механическое сопротивление металла срезыванию кислородной струей фактически отсутствует, и обработка может производиться как вручную, так и при помощи машины с маломощным приводом. Как показала практика кислородно-флюсовой резки нержавеющих сталей, для начала процесса необходимо так же, как и при разделительной резке к месту реза подавать флюс, который, воспламеняясь, образует очаг горения металла. Для создания необходимой температуры и нужного количества окислов железа и места реза при наименьшем расходе флюса расстояние от выходного сечения  [c.121]

Если р= 1,0...1,1. то пламя считается нормальным. Если Р<1,0, то пламя будет науглероживаюш,им, так как активные частицы (С СН ) будут поглощаться металлом сварочной ванны. Если р>1,2, то пламя будет окислительным и будет вызывать сильное окисление металла, а при значениях р>3...5 оно будет режущим, так как сильный избыток кислорода при соответствующем подогреве вызывает горение металла, а продукты его окисления будут выдуваться кислородом из линии реза.  [c.313]


Кислородная резка — процесс сгорания металла в струе кислорода. Процесс резки начинается с нагрева металла в начальной точке раза до температуры, достаточной для воспламенения в кислороде с помощью подогревающего пламени, затем на нагретое место направляют струю чистого кислорода, который принято называть режущим . Режущий кислород вызывает интенсивное окисление верхних слоев металла, которые, сгорая, выделяют дополнительное количество теплоты и нагревают лежащие ниже слои металла, в результате чего процесс горения металла в кислороде распространяется по всей толщине металла. Образующиеся при сгорании металла оксиды увлекаются струей режущего кислорода и выдуваются ею из зоны реза. Кислородная резка применима лишь для тех металлов, у которых температура воспламенения ниже температуры плавления температура плавления оксидов металла ниже температуры плавления самого металла оксиды жидкотекучи количества теплоты, выделяющейся при сгорании металла в кислороде, достаточно для поддержания непрерывного процесса резки малая теплопроводность. Этим условиям удовлетворяют железо и малоуглеродистые стали. Для резки легированных сталей применяют кислородно-флюсовую резку. Флюс (порошок железа) сгорает в струе кислорода и повышает температуру в зоне реза настолько, что образующиеся тугоплавкие оксиды остаются в жидком состоянии и, будучи разбавлены продуктами сгорания железа, дают жидкотекучие, легкоудаляемые шлаки.  [c.60]

Неточность прохождения кислородной струи и горення металла для листов толщиной до 25 мм при качественной резке дает отклонение в пределах от 0,1 до 0,15 мм. Погрешность увеличивается с возрастанием толщины листов примерно на 0,1—0,15 мм на каждые 50 мм.  [c.207]

Можно выделить три группы процессов термической резки окислением, плавлением и плавлением-окислением. При резке окислением металл в зоне резки нагревают до температуры его воспламенения в кислороде, затем сжигают его в струе кислорода, используя образующуюся теплоту для подогрева следующих участков металла. Продукты сгорания выдувают из реза струей кислорода и газов, образующихся при горении металла. К резке окислением относятся газопламенная (кислородная) и кислородно-флюсовая резка. При резке плавлением металл в месте резки нагревают мощным концентрированным источником тепла выше температуры его плавления и выдувают расплавленный металл из реза с помощью силы давления дуговой плазмы, реакции паров металла, электродинамических и других сил, возникающих при действии источника тепла, либо специальной струей газа. К способам этой группы относятся дуговая, воздушно-дуговая, сжатой дугой (плазменная), лазерная и термогазоструйная резка.  [c.294]

Сущность процесса. Процесс кислородной резки основан на горении металла в струе кислорода и удалении этой струей образующихся оксидов. Резка начинается с нагрева металла в начальной точке до температуры воспламенения (начала интенсивного оксидирования) данного металла в кислороде. Для нагрева металла используется подогревающее пламя, образуемое при сгорании ацетилена или газов-заменителей его в смеси с кислородом. Оксиды удаляются струей режущего кислорода, вытекающего из центрального канала мундштука. Пуск режущего > ислорода осу-шествляется после того, как начальная точка нагрева до температуры воспламенения разрезаемой стали (для низкоуглеродистой стали примерно 1300 °С). Непрерывность процесса поддерживается нагревом поверхности металла подогревающим пламенем впереди струи режущего кислорода и удалением оксидов из полости реза.  [c.182]

Несмотря на то что исследованием горения металлов занимаются многие годы, публикаций по этому вопросу очень мало. В имеющихся публикациях рассматривается, по-видимому, наиболее подходящая для реакции смесь лития, натрия и шестифтористой серы. При химическом взаимодействии этих трех составляющих достигается относительно высокая энтальпия реакции и не образуются газообразные продукты, которые особенно нежелательны в условиях ограниченного пространства. К сожалению, все возникающие в установках на солях лития проблемы, связанные с материалами, имеют место и в системах со сжиганием жидких металлов. При рабочих температурах двигателя Стирлинга, составляющих около 800 °С, литий в жидком виде очень коррозионноактивен, особенно по отношению к никелевым сплавам, и поэтому следует использовать нержавеющую сталь с содериганием хрома 18 7о и никеля 8 % Отметим, что в растворе с другими химическими элементами литий несколько снижает свою коррозионную активность [6]. В то же время экспериментальные исследования показали, что реакцию горения жидкого металла можно регулировать и осуществлять в резервуаре из нержавеющей стали. Использованию таких систем в автомобильных транспортных средствах в ближайшем будущем может помешать возможная утечка топлива.  [c.389]

Если в качестве исходного вещества используются металлы, то применяется активная кислородсодержащая среда (например, О2 + N2). В этом случае на стадии разлета происходит горение металла с образованием ультрадисперсного оксида. При использовании углеродсодержащей атмосферы СО2 удается синтезировать нанотрубки и сферические частицы углерода (рис. 1.9), а также нитевидные кристаллы MgO. Средний диаметр нитевидных кристаллов MgO составляет 60 нм, а отногае-ние длины к диаметру достигает 100.  [c.50]

Наконец, Гросс и Конвей [9] предложили определять максимальную температуру Т, получаемую при адиабатическом горении металла в кислороде, допуская, что стандартная теплота об-  [c.71]

Режим кислородной резки в основном определяется мощностью подогревающего пламени, скоростью резки и давлением режущего кислорода. Мощность подогревающего пламени должна обеспечить быстрый подогрев металла в начале резки до температуры воспламенения и необходимый нагрев его в процессе резки. Металл толщиной до 300 мм режут нормальным пламенем, больших толщин — науглероживающим пламенем с избытком горючего. Скорость резки должна соответствовать скорости горения металла и зависит от толщины и свойств разрезаемого металла. При обработке стали толщиной до 20 мм скорость резки зависит от мощности подогревающего пламени. На скорость резки влияет форма линии реза, вид резки (заг отовительная или чистовая) (рис. 81). При правильно выбранной скоро-  [c.218]

Кислородную резку стали, а также чугуна и цветных дгеталлов начинают с кромки детали, для чего разогревают ее ацетилено-кислороднъш пламенем до температуры горения металла, после чего включают подчачу режущего кислорода без отключения ацетилена при этом происходит горение металла с выделением значительного количества тепла за счет окислительных реакций.  [c.306]

Для более устойчивой работы резака пламя следует отрегулировать с небольшим избытком горючего газа. В случае резки на установках, работающих по схемам высокого давления или двойной инжекции флюса, пробивка отверстия производится с дополнительной добавкой малоуглеродистой проволоки диаметром 8—12 мм. После того как процесс горения металла установится по всей толщине, перемещение резака относительно разрезаемого металла должно быть равномерным. Чем равномернее передвижение резака, тем чище получается рез и тем большая скорость резки может применяться. Скорость перемещения резака должна быть такой, чтобы она согласовывалась с количеством подаваемого в разрез флюса и кислорода. При этом необходимо иметь в виду, что очень малый расход флюса приводит к увеличению отставания , а чаще всего к непрорезанию металла. Слишком большой расход флюса вызывает чрезмерный перегрев металла, значительно увеличивается ширина разреза, а кромка реза сильно зашлаковывается. Увеличение давления режущего кислорода позволяет повысить скорость резки при этом, однако, ширина реза у нижней кромки значительно расширяется. Такая резка применяется только для некоторых заготовительных операций. Для качественной резки величина отставания должна быть не более 10% от толщины разрезаемой стали. Во время резки резчик должен находиться в удобном положении, из которого можно регулировать и следить за скоростью движения резака, а также за расстоянием между мундштуком и разрезаемым листом. По окончании резки резак следует задержать на выходе  [c.93]



Смотреть страницы где упоминается термин Горение металлов : [c.465]    [c.112]    [c.113]    [c.118]    [c.11]    [c.193]    [c.48]    [c.307]    [c.53]   
Гидродинамика многофазных систем (1971) -- [ c.113 ]

Основы техники ракетного полета (1979) -- [ c.219 ]



ПОИСК



Горение

Общие сведения о горении и передаче тепла металлу



© 2025 Mash-xxl.info Реклама на сайте