Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обработка магнием —

Шаровидная форма графита может быть получена в чугуне, залитом в песчаные формы и закристаллизованном при малом давлении — до 3 МН/м (табл. 14), при этом механизм возникновения и последующего роста включений шаровидного графита является одинаковым как в условиях кристаллизации под давлением, так и в результате предварительной его обработки магнием [89].  [c.133]

Специфичной является термическая обработка (закалка) в магнитном иоле — термомагнитная обработка. Магнит, на-  [c.838]


Особую осторожность проявляют при обработке магния, мелкая стружка которого легко воспламеняется от искр и трения. Температура загорания сухой магниевой стружки — 400—500° С, увлажненной — 360—370° С. Обработку магниевых сплавов ведут в специальных цехах или на отдельных участках, при этом пользование открытым огнем категорически запрещается.  [c.298]

Обработка магнием способствует повышению кратковременной прочности чугуна при высоких температурах, особенно нри наличии ферритной структурной основы как более стабильной. Средством повышения прочности серых и высокопрочных чугунов при высоких температурах является также дополнительное их легирование, в частности хромом и молибденом.  [c.682]

Химический состав, шихтовка и плавка высокопрочного магниевого чугуна отличаются от валков нз обычного чугуна тем, что в шихте применяется лом валков, отлитых из магниевого чугуна. Жидкий чугун подвергается в ковше обработке магнием в количестве 0,4% при температуре 1350—1400° С или магниевой лигатурой, количество которой определяется содержанием в ней магния.  [c.294]

Применяется также метод обработки магнием при 1300—1330° С части жидкого чугуна, перелитого из большого ковша емкостью 20—25 т. Пониженная температура ввода магния позволяет доводить его содержание до 0,25—0,30%. Полученную жидкую чугунно-магниевую лигатуру переливают обратно в большой ковш. После смешивания содержание магния в чугуне составляет 0.03—0,06% После обработки чугуна магнием производится добавка 0.5% ферросилиция либо в ковш при отливке неотбеленных валков, либо на струю металла в процессе заливки форм при отливке отбеленных валков.  [c.294]

Производство высокопрочного вязкого чугуна с шаровидным графитом основано на обработке магнием обычного высокоуглеродистого ваграночного чугуна с последующей обработкой 75%-ным ферросилицием.  [c.349]

Практическим возражением против многих электрохимических процессов обработки магния является требуемые высокие напряжения. Сравнительно новый американский низковольтный процесс для получения хроматных пленок будет рассмотрен с интересом он описан в работе [119].  [c.540]

Плавка сплавов производится в высокочастотных индукционных печах. Литье магнитов производится в землю, по выплавляемым моделям или Б кокиль. Для получения хороших магнитных свойств отливки подвергают термомагнитной обработке (магнит, нагретый до температуры 1250—1300° С, остывает в магнитном поле необходимой конфигурации с напряженностью 160—200 кА/м и выше до 600° С). В ряде случаев используется литье в магнитном поле. Для получения магнитов с направленной вдоль оси кристаллической структурой заливку сплава производят в кварцевую трубу, дно которой является холодильником. Для увеличения Я<. магниты с магнитной текстурой отпускают. После этого производится размагничивание и механическая обработка. Готовая деталь намагничивается в соответствии с анизотропией.  [c.218]


Магний — легкий металл (плотность 1740 кг/м ), температура его плавления 651 С. Промышленный магний марки Мг 96 содержит 99,92 % Mg, марки Mr 95 — 99,82 % Mg. Магниевые сплавы разделяют на деформируемые и литейные, не упрочняемые и упрочняемые термической обработкой.  [c.18]

Высокопрочный чугун с шаровидным графитом образуется в литой структуре в процессе кристаллизации. Для его получения чугун модифицируют путем обработки жидкого металла магнием (для уменьшения пироэффекта применяют сплав магния с никелем). Под действием магния графит в процессе кристаллизации принимает шаровидную форму [18]. Вполне вероятно, что такую форму графита образуют скопления фуллеренов.  [c.70]

Среди алюминиевых сплавов, не упрочняемых термической обработкой, наибольшее распространение получили сплавы алюминия с марганцем в количестве 1—1,6 % Мп (сплавы марки АМц) и сплавы алюминия с магнием в количестве 0,5—7 % Mg (сплавы марки АМг, так называемые магналии). Магналии склонны к образованию крупного зерна, что устраняют модифицированием сплава титаном, ванадием, цирконием (табл. 21).  [c.36]

Примеси мышьяка, сурьмы, кадмия, железа, никеля, кобальта, свинца, висмута, золота, галлия, кремния и цинка при содержании их до 1% мало понижают проводимость алюминия в отожженном состоянии, что объясняется образованием интерметаллидных ([заз. Примеси меди, серебра, магния влияют на проводимость в большей степени, а титан, ванадий, хром и марганец резко снижают ее, последнее объясняется образованием твердых растворов. Поэтому любая термическая обработка, повышающая концентрацию растворенного компонента, будет уменьшать проводимость.  [c.240]

Деформируемые сплавы марок АМц, АМг и др. (термически неупрочняемые), а также термически упрочняемые сплавы алюминия с медью и магнием (дуралюмины Д1, Д16 и др.) имеют Ов = 350 -г 430 МПа и используются для изготовления обработкой давлением и резанием корпусов, трубопроводов, заклепок, сепараторов подшипников и других деталей машин (в особенности транспортных).  [c.276]

Даже при самой тщательной обработке добавочной воды удалить из нее все растворенные минеральные вещества не представляется возможным. Попадая в котел, эти остаточные примеси постепенно накапливаются в котловой воде, так как в процессе испарения воды они почти не переходят в пар. В связи с этим для соединений, характеризуемых низкой растворимостью (сульфат—карбонат кальция, гидроксил магния), наступает состояние насыщения, при котором избыточные количества вещества, содержащиеся в воде, выпадают из раствора обычно в виде кристаллов. Центрами кристаллизации служат шероховатости на поверхности нагрева, а также взвешенные коллоидальные частицы, находящиеся в котловой воде. Вещества, которые кристаллизуются непосредственно на поверхностях нагрева в виде плотных отложений, образуют накипь. Вещества, кристаллизующиеся в объеме котловой воды, образуют взвешенные частицы, называемые шламом.  [c.321]

Применяют также сплавы N —А1 с добавками кремния (I—2%). Такие сплавы обладают очень высокой коэрцитивной силой (до 640 Э) при умеренной индукции (400—500 Гс) и пониженной критической скоростью охлаждения, что очень существенно при изготовлении массивных магнитов. Добавка меди к сплавам Fe—Ni—Л1 позволяет частично заменить дорогой никель и улучшить свойства сплава. Введение в сплав с 22% Ni до 6% Си повышает Не без снижения Вг. Наиболее высокие магнитные свойства достигаются при одновременном введении меди и кобальта. Последний повышает коэрцитивную силу и остаточную индукцию. Особое внимание следует уделить высококобальтовым сплавам (15—24% Со), которые подвергаются так называемой закалке в. иагнитном поле. Сущность этой закалки заключается в том, что нагретый до температуры закалки (около 1300°С) магнит быстро помещают между полюсами электромагнита (напряженность поля должна быть НС менее 120 ООО А/м) и так охлаждают до температуры ниже 500°С. Дальнейшее охлаждение проводят обычно па воздухе. После такой обработки магнит обладает резкой анизотропией магнитных свойств. Магнитные свойства очень высоки только в том направлении, в котором действовало внешнее магнитное поле в процессе закалки.  [c.546]


Магнитные сплавы не только с магнитной, но и с кристаллической текстурой имеют более высокие свойства. Кристаллическая текстура создается направленной кристаллизацией вдоль внешнего магнитного поля при термомагнитной обработке. Магнит в основном состоит из параллельных кристаллов столбчатой формы, расположенных в виде колоннады. Кристаллическая текстура создается вдоль направления легкого намагничивания, внутри столбчатого кристалла магнитная линия пересекает небольшое число границ между зернами. Кристаллическую текстуру получают либо использованием нагреваемых форм для литья, либо применением зонной переплавки в том и другом случае нижняя часть формы или заготовки охлаждается при помощи холодильника, рост столбчатых кристаллов начинается от охлаждаемого основания магнита. По первому способу керамическую форму для отливки магнита ставят на холодильник и помещают в графитовый цилиндр, при помощи которого в индукционной печи форму нагревают до 1550° С. После залнвки металла форму медленно охлаждают. По второму способу определенная зона в отливке, находящейся в керамической форме, нагревается высокочастотным индуктором при его  [c.266]

Механические свойства — Влияние продолжительности выдержки при отжиге 191 — Влияние температуры отжига 191 — Влияние температуры отпуска после закалки 988 -- Механические свойства после закалки и отпуска 192 Обработка магнием — см. Чугун серый со ссрероидальным графитом в литой структуре  [c.1078]

Для гальванической обработки магния можно использовать обычные, сделанные не из магния, подвесные приспособления. Чтобы свести к минимуму оголенные поверхност приспособлений, последние изолируют органическими покрытиями. Если приспособления используют для гальванической обработки на них деталей из металлов, кроме меди, латуни, бронЗы, цинка или кадмия, то эти приспособления после каждой загрузк подлежат меднению. Приспособления из магниевых сплавов могут быть использованы, но они обладают тем недостатком, что при высокой плотности тока, применяемой при хромировании, оии не обеспечивают достаточного электрического контакта. Если детали малы или их имеется лишь ограниченное количество и изготовление для них специальных подвесных приспособлений невыгодно, то для обеспечения надлежащего электрического контакта эти детали могут быть прикреплены к проволоке и з меди, латуни или фосфористой бронзы без защиты проволоки органическим покрытием- Такая проволока используется только один раз. Наличие никеля или хрома на поверхности приспособлений или проволоки является причиной образования пузырей на последующем гальваническом покрытии в местах контакта этой поверхности с магниевой деталью.  [c.321]

Для получения необходимых магнитных свойств все магнитнотвердые сплавы подвергают сложной термической обработке, а рысококобальтовые сплавы (более 18% Со) закаливают в магнитном поле. Для осуществления такой обработки магнит, нагретый до температуры закалки, помещают между полю1са1ми электромагнита и так охлаждают До 500°С дальнейшее охлаждение производят обычным образом на воздухе. После такой обработки магнит получает очень высокие магнитные свойства в том направлении, в кото1ром действовало внешнее магнитное поле при закалке.  [c.155]

Одним из предохранительных мероприятий является изменение технологии изготовления с целью получения на поверхности сжимающих напряжений. Дробеструй-, ный наклеп, обкатка роликами и вальцовка бывают полезны в некоторых случаях. Пример влияния дробеструйной обработки на коррозионное растрескивание латуни показан на рис. 6. При дробеструйной обработке магния следует применять  [c.599]

Анодные покрытия можно получать и на магнии [8], однако здесь они не обладают такими защитными свойствами, как на алюминии. Окись магния более растворима в воде, чем окись алюминия, и растворимость сильно возрастает в присутствии двуокиси углерода. Закупорка пор для анодных покрытий на магнии более трудна. Один из видов анодной обработки магния, который имел значительное распространение, основан на применении электролита, содержащего ЫНзСгаО, и КаНдРО . Покрытие получается тонкое, однако оно существенно увеличивает коррозионную стойкость, если сочетается с соответствующим красочным покрытием. Покрытие значительной толщины и износостойкости может получаться путем анодной обработки магния в растворе едкого натра с добавками других веществ или без них [9, 10]. Дополнительная обработка в растворе соли хромовой кислоты увеличивает защитную способность пленки и создает хорошую основу для нанесения защитных красок [9].  [c.928]

Вторая операция. Анодная обработка магния в течение 10 мин. в ванне, содержащей 30 г л Ыэ2Сг207-2Н20, 30 г л NN4)280 и 10 мл1л раствора аммиака (уд. в. 0,88) при плотности тока 1,1 а,дм и температуре 50—60°. Изделия приводят в контакт с железным сосудом, содержащим указанный раствор, за счет чего создается нужный ток.  [c.931]

Дюралюминий — наиболее рас1прост1раненный представитель группы алюминиевых сплавов, применяемых в деформированном виде н упрочняемый термической обработкой. Он содержит около 4% Си н 0,5% Mg, а также марганец 11 железо. Дюралюминий — сплав, по крайней мере, шести компонентов алюминия, меди, магния, марганца, кремния и железа, хотя основными добавками являются медь и магний. Поэтому указанный сплав мо >кно причислить к сплавам системы А1 — Си — Mg. Кремш1Й п железо являются постоянными примесями, попадающими и сплав вследствие применения недостаточно чистого алюминия.  [c.583]

Такие низкие свойства исключают возмол<ность применения чистого магния, как конструкционного материала. Технический магнии применим для пиротехнических целей, в химическом производстве, ка к раскислитель и модификатор, однако легированием и термичес1(ой обработкой может бмть достигнут предел прочности, равный 30—35 кгс/мм . Применение сплавов магния с такой прочностью целесообразно, если учеть их низкую плотность (около 1,8 г/см ).  [c.597]


Чаще всего применяют дихромизацию — процесс, в результате которого на поверхности металла образуется устойчивая против коррозии пленка хромовых солей магния. Деталь предварительно обрабатывают холодным 20%-ным раствором хромового ангидрида СгОз с целью удаления окисных пленок. Затем следует электролитическая обработка в ванне с подкисленным водным раствором хромового ангидрида, хромпика КзСгзОт и персульфата аммония (КН4)г304. В заключение поверхность обрабатывают горячим 10%-ным раствором хромового ангидрида.  [c.184]

ПОКРЫТИЯ ИЗ MgFa на магнии можно получить анодированием металла при 90—120 В в 10—30 % растворе NH4HF51 при комнатной температуре. Этот процесс рекомендуют для очистки поверхности или в качестве основной операции при финишной обработке [12].  [c.247]

ДОБАВЛЕНИЕ ЩЕЛОЧИ. Оптимальная щелочность котловой воды зависит отчасти от того, в каком количестве накапливаются в котле примеси при медленном просачивании охлаждающей воды в конденсаторе (обычно в местах крепления труб к трубным доскам). Степень просачивания зависит от конструкции и срока службы конденсаторной системы, и состав охлаждающей воды влияет, таким образом, на надежность работы котла. Например, хлорид магния, являющийся естественным компонентом морской воды, которая используется для охлаждения конденсаторов, гидролизуется до НС1 и вызывает кислотную коррозию котла. Периодическое добавление гидроксида натрия в котловую воду нейтрализует кислоту и предотвращает кислотную коррозию [43]. Если нейтрализующие добавки берут в количествах, общепринятых при обработке котловой воды, то применение NH4OH менее эффективно, чем смеси NaOH + NaaP04.  [c.290]

Исследования показали, что обработка порошков 1% растворсн фтористо-водородной кислоты позволяет в ряде случаев уменьшить содержание кислорода до уровня менее 0,3% за счет удаления частя поверхностного оксида и растворения наиболее мелких фракций Порошка. Значительно более эффективным оказалось твердофазное рафинирование порошков с использованием в качестве металлов геттеров магния или кальция. В работе использовали натриетермические по[к>шки с содержанием кислорода 0,4 —1,0%. Количество вводимого в порошок Mg составляло от 1 до iO"Ai, температура термообработкг  [c.73]

Магний вводят в сплав АЛ4 для упрочнения. Он образует с кремнием химическое соединение Mg2Si, которое является упрочняющей фазой. Максимальный эффект упрочнения сплава этой фазой наблюдается после термической обработки. Механические свойства сплава следующие  [c.70]

Сплав АЛ32. Сплав обладает хорошей жидкотекучестью и достаточно высокой прочностью по отношению к сплавам АЛ2 и АЛ4. Присутствие в нем магния и титана позволяет получать высокую прочность без термической обработки. Сплав предназначен для литья тяжелонагруженных деталей автомобильных двигателей Блок цилиндров , картер, крышки, головки блока и других деталей. Механические свойства сплава следующие Ств = 270 МПа д = 2% твердость 74 НВ.  [c.70]

В основе катионитового метода лежит способность некоторых материалов (катионитов) обменивать содержащиеся в них катионы натрия, водорода и другие на катионы кальция и магния, растворенные в воде. В зависимости от того, какой катион является обменным, процесс обработки воды разделяют на натрий-катионирование и водород-катионирование. На рис. 14.9 приведена схема водоумягчительной установки. В напорный металлический резервуар, в котором помещается катионитовая загрузка, по трубе подается умягченная вода. При прохождении ее сквозь катионито-вую загрузку происходит обменная реакция, после чего вода отводится в резервуар умягченной воды.  [c.157]

Известно, что в процессе приработки металлополимерных сопряжений на металлическом контртеле образуется пленка фрикционного переноса, состав, структура и свойства которой имеют определяющее значение в механизме трения и изнашивания сопряжения. Рассмотрим изменение структурно-фазового состава пленки фрикционного переноса в процессе длительного (до 52 часов) трения. Контртело в виде плоского диска изготавливали из алюминиевого сплава В95, содержащего в качестве легируюи их добавок магний, медь, цинк в количествах от 2 до 6%. Обработка рентгенограмм, снятых после 12, 20 и 32 часов трения, показала, что пленка фрикционного переноса, кроме фторопласта-4, содержит медь и что при этом в полимерной матрице нет кристаллических областей. С увеличением продолжительности трения  [c.99]

Легкие сплавы делятся на. ттейные и деформирусмь/с. Vli алюминиевых литейных сплавов наиболее распространены силумины (АЛ2, АЛ4 и др.), т. е. сплавы, в которых кремния содержится до 20%. Эти сплавы обладают высокими литейными свойствами и хорошо обрабатываются резанием. Из алюминиевых деформируемых сплавов основное применение имеют дюралю-мины (Д1, Д16 и др.) — сплавы, содержащие алюминий, медь, магний и марганец. Заготовки деталей машин из этих сплавов получают обработкой давлением.  [c.40]

Поэтому использование природных вод, содержащих большое количество солей, кремневой кислоты, газов, в качестве питательной воды недопустимо. Для приготовления питательной воды требуемого качества на ТЭС природную воду подвергают специальной обработке. Она заключается в удалении минеральных и органических твердых взвешенных в воде примесей, солей жесткости (Са, Mg) с заменой их легкорастворимыми солями щелочных металлов (К, Na) общем обессоливании в системе выпарных установок с получением обессоленного конденсата обескремнивании дегазации. Такая обработка позволяет существенно снизить содержание примесей в питательной воде. Однако при эксплуатации котла количество примесей в воде постоянно возрастает. Это происходит ввиду присосов природной воды в конденсаторе турбины, добавки воды при восполнении потерь рабочей среды, перехода в воду продуктов коррозии конструкционных материалов. Кислород и углекислота, попадающие в воду, вызывают коррозию металла труб поверхностей нагрева. Соединения кальция и магния, относящиеся к труднорастворимым, как и продукты коррозии железа, меди, образуют накипь. Отложения образуют и легкорастворимые соединения такие, как NaaP04 NajSOj, если концентрация их выше растворимости в рабочем теле (воде или паре). Часть примесей кристаллизуется в водяном объеме, образуя шлам.  [c.152]

Барабанные котлы питают водой, содержащей легкорастворимые соединения. В основном это соли натрия. Соли кальция и магния, попадающие в нее, в результате присоса охлаждающей воды в конденсаторе обладают малой растворимостью и в процессе парообразования могут давать накипь. Для предотвращения ее образования применяют коррекционный метод внутрикотловой обработки воды. Он заключается в том, что в котел вводят коррекционные дрбавки, способствующие переводу солей жесткости в неприкипающий шлам. В качестве таких добавок обычно применяют натриевые соли фосфатной кислоты (например, тринатрийфос-фат NasP04). Водный режим, основанный на вводе фосфатов, называют фосфатным.  [c.155]


Смотреть страницы где упоминается термин Обработка магнием — : [c.16]    [c.1461]    [c.942]    [c.374]    [c.397]    [c.261]    [c.417]    [c.514]    [c.279]    [c.307]    [c.308]    [c.335]    [c.339]   
Справочник машиностроителя Том 2 (1952) -- [ c.0 , c.192 ]



ПОИСК



Магний

Магниты Обработка механическая

Магниты Обработка термомагнитная

Оборудование: для приготовления суспензий 236 — 238 для удаления разовых моделей 238, 239 для ультразвуковой обработки расплавов: алюминиевых сплавов 482 488, магния 481 для электрошлакового

Оборудование: для приготовления суспензий 236 — 238 для удаления разовых моделей 238, 239 для ультразвуковой обработки расплавов: алюминиевых сплавов 482 488, магния 481 для электрошлакового литья 613 — 616 для электрошлакового

Оборудование: для приготовления суспензий 236 — 238 для удаления разовых моделей 238, 239 для ультразвуковой обработки расплавов: алюминиевых сплавов 482 488, магния 481 для электрошлакового расплавления металла

Особенности обработки сплавов магния и некоторых пластмасс Особенности обработки сплавов магния

Производственный контроль магнит— ной обработки воды

Сплавы железо-никель-алюминиевые для постоянных магнитов состав, свойства, технология изготовления и термическая обработка

Термическая обработка магнитов

Термическая обработка магнитов мехов металлических

Термическая обработка магнитов пружин спиральных маломоментны

Термическая обработка магнитов пружин трубчатых

Технология обработки сплавов алюминия и магния



© 2025 Mash-xxl.info Реклама на сайте