Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поверхность металла кристалла

Для защиты от атмосферной коррозии черных металло В с успехом применяются также контактные ингибиторы, в частности растворы нитрита натрия, которые заранее наносят на поверхность изделий. Применяют 25%-ные водные растворы нитрита натрия для защиты стальных изделий и 40%-ные — для защиты чугунных. Этими растворами (65—85 °С) омывают изделия, после чего их упаковывают в бумагу, пропитанную 10—15%-ным раствором нитрита натрия, и в парафинированную бумагу. Остающиеся на поверхности металла кристаллы нитрита натрия при конденсации влаги в процессе хранения создают на поверхности металла концентрированный раствор нитрита натрия, который и пассивирует сталь. Для нейтрализации кислых компонентов атмосферы, которые могут вместе с конденсирующей влагой попасть на поверхность, рекомендуется в растворы нитрита натрия вводить 0,3— 0,6% соды.  [c.323]


На основе нитрит-ионов было создано много композиций ингибиторов атмосферной коррозии, в частности, 5-15 ные водные растворы нитрита натрия. Для более длительной защиты проводили пассивирование изделий в более концентрированных растворах (20-30%). После обработки нитритом натрия изделия заворачивают в бумагу, смоченную этим же раствором, и другой барьерный материал. Остающиеся на поверхности металла кристаллы нитрита натрия при конденсации влаги в процессе хранения создают на поверхности металла концентрированный раствор нитрита натрия, который пассивирует сталь.  [c.12]

Для получения на листовом алюминии текстуры, напоминающей гранит, листовой алюминий в виде полос (толщиной 0,3—0,5 мм) предварительно растягивается — удлиняется на незначительную величину, исчисляемую миллиметрами на метр металла, а затем нагревается и по остывании протравливается в смеси кислот. Такая обработка выявляет на поверхности металла кристаллы, образующиеся вследствие рекристаллизации алюминия. При этом размеры кристаллов, получаемых в процессе рекристаллизации алюминия, могут быть получены от 5... 20 мм в зависимости от величины растяжения алюминия. Для растяжения концы полосы алюминия зажимают в двух тисках и затем нажимают деревянной скалкой на среднюю часть полосы, проводя скалку взад и вперед. В зависимости от силы нажима алюминий постепенно будет растягиваться. После растягивания алюминиевую полосу помещают в муфельную печь и нагревают до температуры 550 °С в течение 20—30 мин. Указанная термическая обработка вызывает рекристаллизацию растянутого алюминия.  [c.91]

До сих пор центры окраски описывались как следствие добавки металла в кристалл сверх стехиометрического состава. Однако они могут быть созданы в кристаллах также вследствие либо облучения рентгеновскими лучами, либо бомбардировкой нейтронами и электронами. Рентгеновские лучи обычно поглощаются вблизи поверхности, поэтому кристаллы, окрашенные подобным образом, имеют обычно слой с очень глубокой окраской вблизи поверхности.  [c.166]

Возникающие затруднения решаются следующим образом. В исследуемой точке поверхность металла зачищается и травится кислотой. Далее, на очищенную поверхность (обычно электролитически) наносятся кристаллы какого-либо другого металла. При исследовании стальных конструкций для этой цели используется чаще всего золото. При съемке на пленке получаются линии рентгеновских лучей, отраженных от кристаллов железа и от кристаллов золота. Поскольку кристаллы золота нанесены электролитически, они не напряжены, и расстояние между атомами в кристаллической решетке золота можно считать известным. Поэтому из уравнения Брегга (14.7) определяется угол О для золота. Если же на проявленной пленке замерить расстояние 2Л между линиями золота, то из выражения (14.8) можно с высокой степенью точности найти и искомую величину а. Таким образом, эта величина определяется косвенно путем обмера линий на пленке. Однако последняя операция также представляет известные трудности.  [c.489]


Результат скольжения проявляется в изменении размеров кристалла и в появлении полос скольжения на его поверхности. Полосой скольжения называется линия микроскопических размеров, являющаяся следом пересечения плоскостей скольжения со свободной поверхностью металла.  [c.77]

КИ-1 получил применение при травлении черных металлов в растворах серной кислоты в ваннах периодического действия и на НТА. Ингибитор эффективен при сернокислотном травлении низколегированных, высоколегированных и электротехнических сталей при температурах до 100° С. Однако КИ-1 имеет и недостатки он нарушает работу регенерационных установок, загрязняет кристаллы железного купороса, наблюдаются случаи загрязнения поверхности металла.  [c.65]

На начальной стадии взаимодействие металла с окислителем контролируется скоростью химической реакции. Затем идет образование зародышей пленки, которая сопровождается диффузией атомов поверхности, ростом кристаллов пленки.  [c.17]

В основном коррозия протекает равномерно, когда система металл — среда гомогенна, т. е. металл однороден по составу и среда при таких определенных параметрах, как состав, концентрация кислорода, pH, температура, скорость потока и др., равномерно действует на всю металлическую поверхность. Гетерогенность системы (неоднородность металла или среды либо металла и среды одновременно) приводит к локализованному разрушению с интенсивностью, зависящей от самой системы. Шероховатость поверхности металла или сплава, наличие разных фаз и различие в механической или термической обработке — вот причины, способствующие локализованному разрушению. Металлографическое травление для исследования структуры металла основано на том, что по границам кристаллитов разрушение происходит быстрее, чем внутри протравленная поверхность имеет темную решетку. Подобные рассуждения справедливы применительно к зернам, ориентация которых такова, что кристаллы, корродирующие с максимальной скоростью, находятся на поверхности. Неоднородность металла или среды может привести к разрушению на одной поверхности  [c.12]

Способность твердого соединения защищать металл зависит, конечно, от его растворимости в окружающей среде, адгезии с поверхностью металла, сцепления кристаллов и др. Различные системы металл — среда образуют слои твердых соединений, различающиеся по степени защиты, которую они сообщают металлу. Такие металлы, как Ni, Сг, А1, Ti, и нержавеющие стали во многих средах обладают способностью образовывать тонкие невидимые пленки окислов (толщиной I—3 нм). Несмотря на электрохимическую активность этих металлов пленки оказывают значительное влияние на скорость реакции. Способность металла образовывать защитную пленку, так называемое пассивирование, является одним из самых важных средств противокоррозионной защиты. Одни металлы пассивны в разных условиях окружающей среды, другие — только в определенных условиях. Так, тантал пассивен в большинстве кислот, включая соляную кислоту, а железо — лишь в дымящейся азотной кислоте.  [c.30]

Хлорид переносится на поверхность металла в виде капель или кристаллов соли, источником которых являются брызги морской воды. Поэтому осаждение хлоридов может наблюдаться на поверхностях металлов, открытых ветру с моря. Капли и кристаллы соли в конце концов падают на землю. Деревья и кустарники, а также другие препятствия на пути морского ветра действуют как своеобразные хлоридные фильтры . Поэтому перенос хлорида внутрь страны значительно изменяется в зависимости от местных условий. Большие коррозионные эффекты, связанные с влиянием хлоридов, обычно ограничиваются узкой областью вдоль побережья, редко превышающей несколько километров в ширину.  [c.58]

Существуют еще два других типа локальной коррозии, часто встречающихся в алюминиевых сплавах — межкристаллитная коррозия и расслаивание. Межкристаллитная коррозия является избирательной коррозией границ зерен (кристаллитов) или тесно примыкающих к ним областей без заметного воздействия на сами зерна или кристаллы. Расслаивание— это слоистая форма коррозии, происходящая вследствие быстрого бокового воздействия вдоль границ зерен или слоистых структур внутри самих зерен, расположенных параллельно поверхности металла. Такое направленное воздействие приводит к расслоению, которое  [c.356]


Графит представляет собой темно-серые кристаллы со слабым металлическим блеском. Он имеет слоистую решетку. Слои этой решетки (их еще называют плоской сеткой) составлены нз правильных шестиугольников, в вершинах которых находятся ядра атомов углерода. Расстояние между соседними ядрами атомов 0,1415 нм. Соседние слои атомов углерода в кристалле графита находятся на довольно большом расстоянии один от другого (0,335 нм), что указывает на малую прочность связей между атомами углерода, расположенными в разных слоях. Соседние слои связаны между собой в основном силами Ван-дер-Ваальса, хотя частично связь имеет и металлический характер. Слои атомов в кристалле графита, связанные между собой сравнительно слабо, легко отделяются один от другого. Этим объясняется малая механическая прочность графита. Графитовая пленка на поверхности металла детали сохраняет металлическую структуру и создает условия трения графита по графиту. Толщина графитовой пленки около 10 нм. Коэффициент трения в этом случае очень мал от 0,03 до 0,04.  [c.341]

X за счёт фактора локального поля. Здесь следует упомянуть легирование кристаллов и стёкол, использование кластерных систем, включая кластеры на границах раздела. На шероховатых поверхностях металлов и полупроводников действующее поле может возрастать, по крайней мере, на два порядка.  [c.298]

Углеграфитовые материалы. Материалы на основе графита обладают рядом ценных свойств хорошей теплопроводностью, низким коэффициентом линейного расширения, способностью легко переносить термические удары, стойкостью в агрессивных средах и высокими антифрикционными свойствами. Последнее объясняется структурой графита и свойством его кристаллов легко расщепляться по плоскостям спайности. При трении графита по оксидированному титану происходит отслаивание чешуек графита, которые слоем в десятки А переносятся на поверхность металла, что приводит в дальнейшем к трению графита по графиту.  [c.218]

Зона столбчатых кристаллов обладает высокой плотностью, так как она имеет мало газовых пузырей и раковин. Однако в участках стыка столбчатых кристаллитов, особенно растущих от разных поверхностей, металл имеет пониженную плотность, и при последующей обработке давлением (ковке, прокатке и т. д.) в этих  [c.34]

Характерные особенности имеет применение ингибиторов для сернокислотного травления на НТА. Это связано прежде всего с неравномерным распределением окалины по поверхности листового металла, что приводит к неравномерности ее удаления в процессе травления, растравливанию поверхности, наводоро-живанию. Для устранения этих недостатков необходимо применение ингибиторов. Однако установлено [167], что применение ингибиторов на НТА сопровождается загрязнением поверхности металла, вызывает ухудшение сцепления наносимых покрытий (цинковых, лакокрасочных), замедляет удаление окалины, ингибиторы ухудшают работу купоросных установок (забивают отверстия центрифуг, вызывают вспенивание растворов, загрязняют кристаллы железного купороса). Поэтому к ингибиторам, используемым в НТА, предъявляются особые требования высокая эффективность при 95—100 °С, хорошая растворимость в кислоте, устойчивость к солям железа, ингибитор не должен тормозить растворение окалины, затруднять процесс регенерации травильного раствора, загрязнять поверхность металла [167].  [c.104]

Испытания, проведенные Ф. И. Катушевым и Д. Б. Ратне-ром, показали, что предохранить детали от коррозии можно при помощи остающихся на поверхности металла кристаллов нитрита натрия, поглощающих из окружающей среды воду и образующих нечто вроде пленки раствора, непрерывно создающей окнсную пленку на поверхности металла. Качество консервации раствором нитрита натрия зависит от тщательности обезжиривания и промывки поверхности деталей.  [c.416]

Примеси, растворенные в жидком металле, могут также измельчать зерно и изменять его форму. Примеси при затвердевании в виде тонкого слоя осаждаются на поверхности растущего кристалла и ограничивают его рост. Чем больню скорости охлаждения и заро-, ждения центров кристаллизации,тем больше скорость кристаллизации и тем мелкозерпистее структ ра сплава. При мелкозернистой структуре механические свойства сплава повышаются.  [c.8]

Методы обработки основаны на использовании пластических свойств металлов, т. е. способности металлических заготовок принимать остаточные деформации без нарушения целостности металла. Отделочная обработка методами пластического деформирования сопровождается упрочнением поверхностного слоя, что очень важно для повышения надежности работы деталей. Детали станонится менее чувствительными к усталостному разрушению, новьипаются их коррозионная стойкость и износостойкость сопряжений, удаляются риски и микротрещины, оставшиеся от предшествующей обработки, В ходе обработки шаровидная форма кристаллов поверхности металла может измениться, кристаллы сплющиваются в направлении деформации, образуется упорядоченная структура волокнистого характера. Поверхность заготовки принимает требуемые форму и размеры в результате перераспределения элементарных объемов под воздействием инструмента. Исходный объем заготовки остается постоянным.  [c.385]

Характер адсорбции на отдельных кристаллйграфических плоскостях. При образовании защитных пленок может иметь значение не только плотность упаковки плоскости кристалла, но и соответствие кристаллографической структуры поверхности металла и возникающей пленки. При большом несоответствии в пленке возникают механические напряжения, приводящие к ее разрушению. Иногда кристаллографическая ориентация оказывает влияние на механизмы протекания анодного и катодного процессов электрохимической коррозии металлов.  [c.327]


Проходя через металл отливки, рентгеновские лучи частично поглощаются им, частично пронизывают металл, частично отражаются многочисленными поверхностями металлических кристаллов, давая рассеянное вторичное рентгеновское излучение. Интенсивность поглощения рентгеновских лучей металлом зависит от плотности элемента и от его места в Периодической системе элементов Д. И. Менделеева, от атомного номера. Чем больше атомный номер просЕючиваемого элемента, тем больше он поглощает рентгеновских лучей. Поглощенная энергия рентгеновских лучей вызывает появление "скрытогхз изображения" за счет изменений бромистого серебра, находящегхкя в эмульсии, и превращения его в металлическое состояние на экране установки или фиксирования изображения на фотопленке.  [c.376]

Диффузия в твердых телах происходит при наличии в них ие--совершенств или дефектов. Точечные дефекты или дефекты решетки определяют объемную диффузию. Линейные и поверхностные дефекты, включающие границы зерен, дислокации, междуфаз-ные границы, внешние поверхности кристалла и т. д., вызывают - короткозамкнутую и поверхностную диффузию. При возникновении на поверхности металла пористой оксидной пленки диффузия протекает главным образом через поры в газовой фазе.  [c.50]

Механизм биоповреждения незащищенного металла (алюминиевого сплава) следующий. Продукты метаболизма повышают агрессивность влаги на поверхности металла. Последняя растворяет защитную окисную пленку и стимулирует процесс солеобра-зования. Кристаллы солей хорошо видны после высыхания поверхности вокруг колоний грибов (рис. 23, а). Длительное сохранение влаги вызывает язвенную коррозию. Особую опасность представляют капиллярные зазоры возможно развитие щелевой коррозии. Рост актиномицетов на опытных образцах показан на рис. 23, д.  [c.58]

Деформационное локальное расширение решетки вблизи поверхности металла ведет к отсасыванию электронов из соседних областей, в том числе из френкелевского двойного слоя, вследствие выравнивания уровня Ферми. Возникновение локального потенциала деформации растянутой области сопровождается изменением в противоположном направлении потенциала областей, которые выполнили функцию донора электронов. Нелокализо-ванные электроны френкелевского двойного слоя наименее прочно связаны с ион-атомами остова кристаллической решетки (относительно электронов внутренних областей) и в первую очередь втягиваются в растянутые области кристалла, оголяя поверхностный монослой ион-атомов остова решетки, несущих положительный заряд. В результате такого перетекания электронов образуется двойной электрический слой, состоящий из отрицательно заряженной обкладки — растянутых подповерхностных областей кристалла и положительной обкладки — монослоя выдвинутых наружу положительных поверхностных ион-атомов. Для краткости будем называть такой двойной слой, обусловленный деформацией, внутренним двойным слоем металла. Одновременно изменяется структура френкелевского двойного слоя вследствие частичного ухода в металл внешних электронов и в связи с этим уменьшается тормозящий выход электронов из металла скачок потенциала, а следовательно, уменьшается работа выхода электронов (уровень химического потенциала электронов внутри металла сохраняется).  [c.98]

Деформационное локальное расширение решетки вблизи поверхности металла ведет к отсасыванию электронов из соседних областей, в том числе из френкелевского двойного слоя, вследствие выравнивания уровня Ферми. Возникновение локального потенциала деформации растянутой области сопровождается изменением в противоположном направлении потенциала областей, которые выполнили функцию донора электронов. Нелокализованнце электроны френкелевского двойного слоя наименее прочно связаны с ион-атомами остова кристаллической решетки (относительно электронов внутренних областей) и в первую очередь втягиваются в растянутые области кристалла, оголяя поверхностный монослой ион-атомов остова решетки, несущих положительный заряд. В результате такого перетекания электронов образуется двойной электрический слой, состояш,ий из отрицательно заряженной обкладки — растянутых подповерхностных областей кристалла и положительной обкладки — монослоя выдвинутых наружу положительных поверхностных ион-атомов. Для краткости будем называть такой двойной слой, обусловленный деформацией, внутренним двойным слоем металла.  [c.101]

Первые сведения о стадиях хемосорбции кислорода на чистых поверхностях металлов были получены посредством измерения работы выхода электрона. На большинстве металлов начальная стадия адсорбции кислорода (0<О,5) сопровождается увеличением работы выхода, причем изменение ее (AlF) линейно растет с увеличением степени заполнения поверхности. Величина прироста работы выхода зависит от кристаллографического инде1<са грани кристалла.  [c.37]

В процессе коррозци металлов и сплавов, являющемся процессом гете генш>1М, скорость коррозии существенно зависит также от состояния пове )хности. В большинстве случаев явление коррозии, как и явление адсорбции, локализуется на отдельных, наиболее ак1 внь1х центрах твердой поверхности металла. Наиболее активные центры коррозии - поверхностные грани кристаллов, вышедшие на поверхность деформационные дефекта (линии и полосы скольжения), а также окрестности неметаллических включений в металл.  [c.15]

Углеграфитовые и металлографитовые антифрикционные материалы (табл. 7) применяют в качестве вкладышей радиальных и упорных подшипников, направляющих втулок, пластин, поршневых колец, поршневых и радиальных уплотнений. Они способны работать без смазки, при высоких или низких температурах, больших скоростях, в агрессивных средах и т. д. При работе пары металл—углеграфит изнашивается графитовая деталь. На поверхности металла образуется графитовая пленка, а на графитовой детали — блестящий слой из ориентированных кристаллов графита. Именно образование этих поверхностных слоев обеспечивает устойчивый режим скольжения и малый коэффициент трения.  [c.385]

Было установлено [1, 2, 3], что при относительно невысоких удельных давлениях графит прирабатывается к поверхности металла. Под термином прира(ботка в случае графитовых материалов подразумевается иной процесс, чем в случае подшипниковых металлов. В процессе приработки на поверхности металла и графита образуется блестящая пленка, состоящая из кристаллов (чешуек) графита, плотно покрывающих выступы поверхностей и ориентированных плоскостью спайности параллельно поверхности трения. При постоянном направлении скольжения чешуйки, как показали электронные микрофотографии [4], краями накладываются друг на друга по направлению скольжения. На некоторых образцах ориентация пленки цроисходит только при строгом соблюдении постоянства направления перемещения. По мере приработки скорость изнашивания графита снижается, достигая по окончании приработки 3—30 мк за 100 часов работы. Коэффициент трения за этот период изменяется с 0,15—  [c.100]

Ионы кислорода, диффундирующие из окружающей жидкости через слой Рез04, на поверхности раздела металл— окисел образуют прочно сцепленный слой, который имеет ориентационное кристаллографическое соответствие с зернами подокисного слоя металла. Структура кристаллов и параметры решетки железа и магнетита благоприятны для направленного роста слоя окислов. С утолщением слоя магнетита при дальнейшем окислении ориентационное соответствие ослабляется. К поверхности металла прилегает приблизительно половина образующегося магнетита. Внутренний слой, хотя и относительно плотный, имеет поры, составляющие около 10% объема. Поэтому его плотность составляет 4,4—4,7 г/ем но сравнению с теоретической плотностью FesOi, равной  [c.69]


Использование меченых атомов позволяет установить картину распределения химического элемента или соединения на поверхности металла (сплава), выявить условия роста и образования кристаллов. При помощи авторадиогра-  [c.429]

Самосмазываемость графита объясняется тем, что для смешения кристаллов графита требуются весьма малые тангенциальные силы. Графит способен образовывать на поверхности металла ориентированную пленку, которая заменяет смазку. Шейки валов не повреждаются  [c.318]

Ком плексон и комплексонаты при температуре 260°С и выше подвергаются активному термическому разложению с образованием продуктов распада в виде твердой, жидкой и газ10о6раз ной фаз. Обширными исследова1Ниями, проведенными МЭИ, установлено, что при распаде на поверхности металла образуется магнетит, обладающий особыми по сравнению с магнетитом, формируемым на поверхностях нагрева при традиционном водном режиме, свойствами [29]. Последнее обусловлено изменением структуры магнетита кристаллы (Становятся округлой формы с более (Плотной упаковкой, размеры их уменьшаются до 0,1—1 мкм. За счет уменьшения площади прохода между кристаллами резко сокращается процесс проникновения кислорода (К металлу, чем достигается повышение кор(ро-зионной стойкости перлитной стали.  [c.138]

При медленном окислении образовавшаяся пленка моделирует первоначальный топографический рельеф металлической подложки. В результате интенсивного нагрева наблюдается появление локальных окисных образований IB форме пирамид, лежащих выще общего уровня неровностей. На поверхностях металлов с преимущественной ориентацией кристаллов окисная пленка обычно имеет равномерную толщину, в то время как поверхности, не обладающие преимущественной ориентацией, покрываются пленкой с неравномерной толщиной. Окисные пленки на металлах главных подгрупп I и II групп периодической системы, за исключением бериллия, обладают меньшим атомным объемом по сравнению с чистыми металлами [Л. 118]. Поскольку продукты окисления таких металлов не в состоянии заполнить объем, ранее занимаемый металлом, образующийся окисный слой имеет пористую структуру. Прочность сцепления окисных пленок с подложкой зависит от их толщины и соотношения твердостей металла и его окисла. Экспериментально установлено, что увеличение толщины окисной пленки, как правило, ведет к снижению прочности сцепления системы окисел — металлическая подложка. Пленка, обладающая высокой твердостью при относительно мягкой подложке (алюминий), разрушается при незначительном мехническом воздействии. В то же время пленки с твердостью, близкой к твердости металлической подложки (медь, сталь), имеют значительно более высокую прочность сцепления.  [c.189]

Дискретная гауссова модель. Симметрия взаимодействия Z, Г 8 (п — rij) — К (П1 — —/гу) /2. Модель используют для описапия систем адсорбиров. атомов на поверхности металлов с большим отношением дву.х периодов подложки. М о-д е л К а б р о р ьг. Си.мметрия взаимодействия Z. Это простейшая модель, описывающая флуктуа]11И1 поверхности кристалла. Целые числа п/ указывают высоту столбика над площадкой с номером / (рис. 1), Т е ni — nj) K n,- nj[. Обе модели обладают оди-  [c.566]

Помимо указанных существуют и другие мнения о механизме кавитационной эрозии. Например, высказывается предположение, что кавитационное разрушение определяется прежде всего коррозионными и электрохимическими процессами. При этом роль механических нагрузок, возникающих при замыкании кавитационных пу зырьков, сводится только к удалению продуктов коррозии (окисных пленок) с поверхности металла. Имеются также мнения, что эрозия при Кавитации есть результат молекулярно-физических явлений, вибраций зерен и кристаллов с выкрашиванием межзеренного вещества и др.  [c.11]


Смотреть страницы где упоминается термин Поверхность металла кристалла : [c.178]    [c.83]    [c.529]    [c.116]    [c.489]    [c.210]    [c.12]    [c.371]    [c.30]    [c.498]    [c.502]    [c.127]    [c.104]   
Теоретические основы коррозии металлов (1973) -- [ c.82 , c.83 ]



ПОИСК



Кристаллы металлов

Кристаллы поверхность

Поверхность металла

Поверхность металла изучение роста кристалла методом

Поверхность металла равновесной формы кристалла образование

Поверхность металла скорость роста (растворения) отдельных граней кристалла



© 2025 Mash-xxl.info Реклама на сайте