Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рентгеновские лучи, энергия

Рентгеновские лучи. Энергию кванта рентгеновского излучения можно определить по его длине волны пользуясь формулой е — ку — кс/К, где /г = 6,62-10 эрг-сек — 6.62- Ю-з- Дж-сек— постоянная Планка.  [c.61]

Рассмотрим теперь эффект Комптона в нерелятивистском случае. В опыте обычно используются рентгеновские лучи, энергия кванта которых порядка 10 кэв, и измеряется число фотонов, рассеянных на угол 0, При  [c.265]


Рентгеновские лучи, энергия 1104  [c.437]

А). Рентгеновские лучи получаются в специальных приборах в результате торможения электронов при их столкновении с мишенью, при этом кинетическая энергия электронов превращается в разновидность электромагнитных колебаний — рентгеновские лучи. Получение, свойства, использование рентгеновских лучей рассматриваются в курсе физики.  [c.36]

Как показывают опытные данные, рентгеновские лучи сплошного спектра возникают при энергиях электронов, не превышающих некоторой критической величины (обычно при напряжениях на трубке до 20—30 кВ), характерной для данного материала антикатода. Рентгеновские лучи сплошного спектра имеют резкую границу со стороны коротких длин волн, называемую коротковолновой границей сплошного спектра.  [c.158]

Рентгеновские лучи дискретного спектра. В случае, когда энергия электрона достигает некоторого критического значения, характерного для материала антикатода, или превышает его, на фоне сплошного спектра возникают интенсивные максимумы с дискретными значениями энергии. Поскольку рентгеновские лучи такого рода зависят от материала антикатода, то они обычно называются характеристическими рентгеновскими лучами. Характеристические рентгеновские лучи обладают отличительными свойствами.  [c.159]

Рентгеновские лучи характеризуются весьма малой длиной волны (X < 100 А), а их свойства сильно отличаются от свойств других видов электромагнитного излучения. Рентгеновские лучи возникают в результате бомбардировки антикатода разрядной трубки быстрыми электронами. Кинетическая энергия электронов == qll и проникающая способность рентгеновских лучей возрастают с увеличением положенной разности потенциалов и.  [c.13]

Так как большая часть энергии ударяющихся об анод электронов превращается в тепло и лишь малая ее доля (около 0,1%) излучается в виде рентгеновских лучей или сохраняется в виде энергии отразившихся электронных пучков, те анод в мощных трубках сильно нагревается и может расплавиться. Косой срез анода обеспечивает излучение рентгеновских лучей в сторону через стенку (стеклянного баллона трубки.  [c.404]

Фотоэлектрические опыты с рентгеновскими лучами дают возможность исследовать, распространяется ли световая энергия равномерно во все стороны, как следует из обычных волновых представлений, или она летит то по одному, то по другому направлению в виде дискретных квантов. Действительно, кванты видимого света обладают малым запасом энергии (так, для желтого излучения V = 5-10 с , hv = 3,31-10 Дж) поэтому для регистрации их в большинстве опытов приходится иметь дело с большим числом квантов в единицу времени. В соответствии с этим действие, произ-  [c.640]


Регулируя число электронов, бомбардирующих анод, мы можем менять число излучаемых рентгеновских квантов. Если заставить такие рентгеновские лучи действовать на металлическую пластинку, вызывая фотоэффект, то, как показывает опыт, кинетическая энергия испускаемых электронов равняется энергии кванта. Таким образом, полная схема превращения имеет вид  [c.641]

Осуществлены также опыты, показывающие, что энергия рентгеновских лучей распространяется в разные стороны не одновременно, но что порции ее (кванты) летят то в ту, то в другую сторону.  [c.642]

Однако если энергия Е, освобождаемая при ядерном переходе, меньше энергии связи /(-электрона, то конверсия на /С-электронах становится энергетически невозможной и наблюдается конверсия на L-электронах и т. д. Из самого характера явления следует, что конверсионное излучение должно всегда сопровождаться испусканием характеристических рентгеновских лучей и электронов Оже .  [c.169]

В электромагнитном взаимодействии участвуют все заряженные частицы. Переносчиками этого взаимодействия являются кванты электромагнитного излучения, которые в зависимости от их происхождения и энергии называются фотонами, рентгеновскими лучами или у-лучами (у-квантами), а также радиоволнами. К ванты электромагнитного излучения возникают в результате взаимодействия электрического заряда с окружающим его электромагнитным полем.  [c.202]

Но при рассеянии под данным углом 0 величина Д . не зависит от %. Поэтому эффект Комптона не существен для длинноволнового излучения, когда (например, для света и даже мягких рентгеновских лучей), и, наоборот, играет большую роль для коротковолнового у-излучения, когда ДА, Я. Разрешая выражение (23.16) относительно v, получим формулу для энергии кванта, рассеянного на угол 0  [c.248]

Результаты измерений приведены на рис. 91. Из рисунка видно, что вплоть До энергии падающих протонов порядка 200 Мэе энергетический спектр у-квантов представляется монотонно убывающей кривой, типичной для спектров тормозного излучения (например, для спектра рентгеновских лучей, возникающих при торможении быстрых электронов в твердом веществе). Теоретический рас-  [c.147]

Исследование рентгеновскими лучами. Рентгеновские лучи представляют собой лучистую энергию, имеют электромагнитную и волновую природу и отличаются от видимого света значительно  [c.374]

Рентгеновские лучи возникают в поле высокого напряжения при резком торможении быстродвижущихся электронов. Освобождающаяся при торможении энергия переходит в основном в тепловую энергию и около 1 % ее идет на образование рентгеновских лучей. Схема получения лучей Рентгена в электронной трубке приведена на рис. 185.  [c.375]

Энергия фотона равна е = /гт, т. е. фотоны в зависимости от частоты света имеют различную энергию. Наименьшей энергией обладают фотоны, соответствующие далеким инфракрасным лучам, а наибольшей — фотоны, соответствующие рентгеновским и у-лучам. Исходя из этого соотношения, легко подсчитать, что, например, инфракрасным лучам с длиной волны л = 10 мкм соответствует энергия фотонов е 2- 10 ° Дж, видимым лучам с Я = 5000 А — е 4- 10- Дж, а рентгеновским лучам с Я = 0,1 А — Дж. Чем больше энергия  [c.162]

В опыте Боте между двумя такими счетчиками С] и С2 помещалась тонкая металлическая пластинка А, которая освещалась слабым потоком рентгеновских лучей. Под их действием пластинка сама становилась источником рентгеновского излучения (так называемая рентгеновская флуоресценция). Вследствие малой интенсивности первичного пучка количество рентгеновских фотонов, испускаемых пластинкой, было невелико. При их попадании в счетчик он срабатывал и приводил в действие особый механизм М, производящий отметку на движущейся лепте Л. Если бы излучаемая энергия распространялась равномерно во все стороны, как это следует из волновых представлений, то оба счетчика должны были бы срабатывать одновременно и отметки на ленте находились бы одна против другой. В действительности же наблюдается совершенно беспорядочное расположение отметок, что можно объяснить лишь тем, что в от-  [c.163]

Схема установки в опыте Боте показана на рис. 2.4. Металлическая фольга Ф помещалась между двумя газоразрядными счетчиками i и С . Фольга освещалась пучком рентгеновских лучей в результате чего она сама становилась источником рентгеновских лучей (явление рентгеновской флуоресценции). Исходный рентгеновский пучок имел очень малую интенсивность, поэтому и количество квантов, испускаемых фольгой в единицу времени, было невелико. Попадание рентгеновского излучения в каждый из счетчиков вызывало немедленное (меньше чем через 10 с) вздрагивание нити электрометра, автоматически регистрировавшееся на движущейся ленте. Если бы излучаемая фольгой энергия распространялась равномерно во все стороны, как это следует из волновых представлений, то оба счетчика должны были бы срабатывать одновременно. Однако опыт совершенно отчетливо продемонстрировал беспорядочность показаний электрометров. -Отсюда можно было заключить, что излучение испускается фольгой не в виде волн, а в виде световых квантов, которые вылетают то в одну, то в другую сторону и регистрируются то тем, то другим счетчиком.  [c.51]


В основу второго вида классификации положен метод возбуждения. Так, при возбуждении свечения оптическими частотами возникает фотолюминесценция] свечение, вызываемое катодными лучами, называется катодолюминесценцией при возбуждении свечения рентгеновскими лучами и лучами радиоактивных препаратов возникает соответственно рентгенолюминесценция и радиолюминесценция свечение, возбуждаемое за счет энергии химических реакций, называется хемилюминесценцией свечение, возникающее под действием электрического поля, — электролюминесценцией и т. д. Каждое из этих свечений имеет свои характерные особенности.  [c.169]

Выше уже говорилось, что у-излучение ядер возникает при переходе ядра из возбужденного состояния в основное. Как известно, -лучи представляют собой электромагнитное излучение с длиной 1ВОЛНЫ, меньшей, чем у рентгеновских лучей. Энергия квантов  [c.118]

Прежде чем объяснить возникновение хара1стеристических рентгеновских лучей, определим, исходя из постулата Бора, полную энергию водородоподобного атома (иона, имеющего единственный  [c.159]

По этому закону хлощность излучения должна непрерывно возрастать с уменьшением длины волны излучения. Это значит, что в тепловом излучении должно быть много ультрафиолетовых и рентгеновских лучей, чего на самом деле не наблюдается. Если бы этот закон выполнялся во всем диапазоне частот, то полная энергия излучения светящегося тела была бы бесконечно большой.  [c.298]

Очевидно, что чем больше га, тем удобнее наблюдение явления. Для рентгеновских лучей, у которых п < 1, эффект исключается. Особенностью эффекта Вавилова - Черснкова является то, что характерное свечение возникает при равномерном движении возбуждающих его частиц со скоростью и > с/п. Это бесспорный факт и простые оценки показывают, что потерей энергии этих частиц на возбуждение свечения можно пренебречь. Таким образом, свечение среды связано с возбуждением частицами постоянной скорости, что как бы противоречит фундаментальному положению (см. 1.5) о том, что для излучения электромагнитной энергии необходимо ускоренное движение частиц. Но при этих рассуждениях нужно учитывать, что в изложенной выше простейшей модели явления излучают не налетающие частицы, а атомные электроны, движение которых носило характер вынужденных колебаний, т. е. имело отличное от нуля ускорение.  [c.173]

Физическая природа у-лучей та же, что и любого электромагнитного излучения (рентгеновских лучей, ультрафиолетовых и видимых лучей и т. д.). Мягкие у-лучи, т. е. у- хучи с энергией примерно до 10 эе, ничем не отличаются от рентгеновского характеристического излучения, кроме своего происхождения. Это излучение было названо у-лучами еще в ранний период изучения естественной радиоактивности в отличие от а- и р-лучей, отклоняющихся в электрическом и магнитном полях. В настоящее время иногда термин у-лучи используется для обозначения электромагнитного излучения любого происхождения, если энергия его квантов больше 100 кэв.  [c.250]

Кроме фотоэффекта, при которо м у-квант перестает суще-ствавать и вся его энергия передается атомному электрону, взаимодействие у Лучей со средой может приводить к их рассеянию, т. е. отклонению от первоначального направления распространения. Рассеяние бывает двух видов с изменением и без изменения длины волны. Рассеяние длинноволнового излучения, как показало исследование мягких рентгеновских лучей (>. 10 см), происходит без изменения длины волны. Такое рассеяние обычно называется классическим, или томсоновским. Оно возникает, когда энергия у-кванта недостаточна для вырывания электрона из атома  [c.244]

Комптон обратил внимание на то, что первая и вторая закономерности весьма сходны с картиной упругого рассеяния частиц, где энергия рассеянной частицы отлична от первоначальной энергии и зависит от угла рассеяния (см. 19, п. 1). В связи с этим он предложил квантовую интерпретацию явления рассеяния, согласно которой рентгеновские лучи надо рассматривать как поток частиц-фотонов, упруго рассеивающихся на других частицах —электронах. Так как электроны содержатся во всех атомах и для них выполняется условие Ef > Ее (связь с атомом несущественна), то рассматриваемый процесс можяо описать в любой среде как рассеяние фотона на свободном электроне. В связи  [c.247]

Результаты измерений приведены на рис. 245. Из рисунка видно, что вплоть до энергии падающих протонов тторядка 200 Мэе энергетический спектр v-лучей представляется монотонно убывающей кривой, типичной для спектров тормозного излучения (например, для спектра рентгеновских лучей, возникающих при торможении быстрых электронов в твердом веществе). Теоретический расчет тормозного излучения быстрых протонов подтвердил это предположение. Однако при больших энергиях интенсивность образующихся у-квантов начинает превосходить теоретическую. Особенно заметное расхождение наблюдается при энергии протонов Гр >290 Мэе, а для энергии Т-р = 340 Мэе экспериментальная интенсивность Y-квантов превосходит теоретическую уже в 100 раз. При этом исследование характера энергетического спектра образующихся улучей показало, что для Тр > 290 Мэе форма спектра существенно отличается от монотонно убывающей кривой тор-мозного излучения наличием мак- Рис. 246.  [c.577]

Проходя через металл отливки, рентгеновские лучи частично поглощаются им, частично пронизывают металл, частично отражаются многочисленными поверхностями металлических кристаллов, давая рассеянное вторичное рентгеновское излучение. Интенсивность поглощения рентгеновских лучей металлом зависит от плотности элемента и от его места в Периодической системе элементов Д. И. Менделеева, от атомного номера. Чем больше атомный номер просЕючиваемого элемента, тем больше он поглощает рентгеновских лучей. Поглощенная энергия рентгеновских лучей вызывает появление "скрытогхз изображения" за счет изменений бромистого серебра, находящегхкя в эмульсии, и превращения его в металлическое состояние на экране установки или фиксирования изображения на фотопленке.  [c.376]


При рассмотрении механизма рассеяния предполагалось, что фотон сталкивается со свободным электроном. Для легких атомов и периферических, слабо связанных электронов такое допущение вполне оправдано, так как энергия связи электрона ничтожно мала по сравнению с энергией фотона рентгеновских лучей. Но внутренние электроны, особенно в тяжелых атомах, связаны настолько прочно, что их уже нельзя рассматривать как свободные. Поэтому при столкновении фотон обменивается энергией и количеством движения с атомом в целом. Учет этого обстоятельства объясняет ряд особенностей эффекта Комптона и в первую очередь наличие несмещенной линии, а также соотношение интенсивностей смещенной и несмепщнной линий.  [c.182]

Рентгеновские лучи возникают тогда, когда поток быстролетящих электронов встречает на своем пути материю. При резком торможении часть энергии летящих электронов переходит в энергию рентгеновских лучей. Все эти процессы осуществляются в специальных вакуумных приборах, называемых рентгеновскими трубками. Внутри рентгеновской трубки (рис. 6.6) помещен катод, представляющий вольфрамовую проволоку, и массивный анод — пластина, выполненная из вольфрама или молибдена, г ис. 6.6. Рентгеновская трубка Катод при прохождении по I — анод, 2 — электроны, 3 — катод, нему электрического тока контакты нити I.ai ana катода.  [c.147]

Промежуточная по энергии между сильными (ионной, металлической и ковалентной) и слабой (ван-дер-ваальсовой) связь, называемая водородной, возникает между атомами Н, входящиМ И в ковалентные группировки типа NH или ОН, и электроотрицательными атомами N, О, F, С1, S, причем расстояния между атомом Н и соседними атомами чаще всего бывают неодинаковыми. Поэтому ее типичное изображение АН...В. При взаимодействии атома Н с атомами с большей электроотрицательностью часть электронного заряда Н передается соседям. По данным о дифракции рентгеновских лучей и нейтронов и некоторым другим оценкам, в группе АН атом Н частично ионизован, сохраняя лишь 0,5—  [c.113]

Рентгеновское излучение. Рентгеновское излучение возникает при бомбардировке анода быстрыми электронами (рис. 25), ускоренными большой разностью потенциалов. Раскаленная металлическая нить Н испускает электроны (электроны термоэмиссии), которые, пройдя через сетку-катод С, попадают в ускоряющее электрическое поле между катодом С и анодом А. Из анода в результате удара в него электронов испускается рентгеновское излучение. Все это происходит в объеме с высоким вакуумом, показанном штриховой линией. В обычных условиях используются разности потенциалов порядка 100 кэВ. Однако имеются установки с использованием электронов с энергией в миллион электрон-вольт. Оно генерируется также в виде тормозного излучения в бетатронах и синхротронах (синхро-тронное излучение). Рентгеновское излучение является электромагнитным, длина волн которого заключена примерно между 10 и 0,001 нм. Однако такой взгляд на природу рентгеновского излучения возник не сразу. Рентген предполагал (1895), что открытые им лучи являются продольными световыми волнами, хотя и не настаивал на этом представлении. В принципе правильные представления на природу рентгеновских лучей высказал Стокс (1897). Он считал, что это электромагнитное излучение, которое возникает в результате торможения электрона при ударе о катод. Тормозящийся электрон эквивалентен переменному току, который, как это было уже известно из опытов Герца, генерирует электромагнитные волны.  [c.48]

В энергию рентгеновских лучей. При ланряжении 100 кВ КПД трубки увеличивается до I %. При 2 МэВ он достигает 10%, а при 15 МэВ — более 50 %.  [c.268]

Для получения цветного изображения делают два или три снимка контролируемого объекта рентгеновскими лучами различной энергии и интенсивности. При этом экспонируют поочередно каждую пленку (многократная экспозиция) или одновременно все пленки (однократная экспозиция) с использованием фильтров для селекции рентгеновских лучей. При однократном экспонировании пакета черно-белых пленок между первой и второй пленками устанавливают свинцовый фильтр, поглощающий иизкоэнерге-тическое излучение поэтому между второй и третьей пленками проникают только высокоэнергетические составляющие спектра рентгеновского излучения.  [c.333]

Вторым крупным исследовательским центром стал Московский физический институт имени П. Н. Лебедева, преобразованный в 1934г. из Физической лаборатории Академии наук СССР. В его отделах и лабораториях велись исследования рентгеновских лучей и космической радиации, выполнялись работы по физике нейтронов, разрабатывалась теория ускорения атомных частиц и т. д. В нем же в 1934 г. П. А. Черенковым в ходе изучения явлений люминесценции растворов солей урана под действием гамма-лучей был открыт эффект свечения веществ при прохождении быстрых заряженных частиц, использованный затем в приборах для точного измерения скорости и направления полета электронов, протонов, мезонов и гамма-квантов высоких энергий  [c.151]


Смотреть страницы где упоминается термин Рентгеновские лучи, энергия : [c.201]    [c.408]    [c.125]    [c.161]    [c.316]    [c.378]    [c.435]    [c.641]    [c.55]    [c.375]    [c.160]    [c.174]    [c.234]    [c.217]   
Физика твердого тела Т.2 (0) -- [ c.104 ]

Физика твердого тела Т.1 (0) -- [ c.104 ]



ПОИСК



Рассеяние рентгеновских лучей различных энергий электронными оболочками и ядрами атомов

Рентгеновские лучи

Рентгеновские лучи, энергия сравнение с энергией фононов

Х-лучи



© 2025 Mash-xxl.info Реклама на сайте