Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Агрессивные среды никель и сплавы

ВИЛЬНО выполненная защита менее благородного металла путем окраски или другим способом. В агрессивных средах никель и некоторые типы никелевых сплавов могут быть несовместимы и друг с другом.  [c.147]

Никель и сплавы на основе никеля, благодаря своим весьма ценным физико-механическим свойствам и высокой коррозионной стойкости в ряде агрессивных сред, имеют большое промышленное значение.  [c.147]


Стойкость металлов к коррозии различна. Коррозионному разрушению легко подвергаются, например, углеродистая сталь, чугун, магниевые сплавы. Лучше сопротивляются воздействию агрессивной среды никель, хром и их сплавы, медь, бронза и латунь, а также алюминиевые сплавы и нержавеющие стали. Различают химическую и электрохимическую коррозию.  [c.4]

В большинстве агрессивных сред никель в паре с другими металлами и сплавами ведет себя так же, как в морской воде (табл. 18 на стр. 445).  [c.239]

Никель и сплавы на его основе, благодаря своим хорошим физико-механическим свойствам, сопротивляемости к окислению при высоких температурах, сравнительно повышенной коррозионной стойкости во многих агрессивных средах, пластичности и способности к обработке различными способами, имеют большое практическое применение в химическом машиностроении. Никель в чистом виде находит большое применение в качестве защитных покрытий, нано-  [c.226]

Одним из методов получения химически стойких сплавов, как известно, является легирование неустойчивого или малоустойчивого металла атомами более устойчивого металла, например легирование меди золотом или железа никелем и т. п. Рассмотрим процесс коррозии двойного сплава, являющегося гомогенным твердым раствором, в котором один из компонентов вполне стоек в данной агрессивной среде, а другой, наоборот, растворяется в ней.  [c.125]

Степень сенсибилизации для данной температуры и времени сильно зависит от содержания в сплаве углерода. Нержавеющая сталь 18-8, содержащая 0,1 % С или более, может быть заметно сенсибилизирована при нагревании в течение 5 мин при 600 °С. В то же время аналогичная термическая обработка сходной стали, содержащей 0,06 % С, оказывает меньшее воздействие, а при содержании углерода 0,03 % сталь не подвергается заметным разрушениям при выдержке в умеренно агрессивных средах. Чем выше содержание никеля в сплаве, тем меньше времени требуется для сенсибилизации при данной температуре. Легирование сталей молибденом увеличивает это время [13].  [c.304]

Во втором издании (первое — в 1980 г.) рассмотрены коррозионно-стойкие стали, а также сплавы на основе железа и никеля, применяемые для службы в агрессивных средах. Описаны их структура, механические и физические свойства в широком диапазоне температур. Приведена соответствующая нормативно-техническая документация. Изложены механизмы различных видов коррозии. Показана роль структурных факторов, легирующих и примесных элементов в формировании свойств коррозионно-стойких сталей и сплавов.  [c.320]


Материал катода должен быть устойчивым при высоких плотностях катодного тока (5—500 А/м ) и не подвергаться коррозии в рабочей среде в периоды выключения тока. В зависимости от агрессивности среды применяют катоды из кремнистого чугуна, молибдена, сплавов титана, из нержавеющих и углеродистых сталей, из никеля. Расположение катодов должно обеспечивать наиболее равномерное распределение тока на защищаемой поверхности. Разработано несколько вариантов конструкций узлов катода применительно к конкретным изделиям.  [c.145]

Монель-металл — медно-никелевый сплав серебристого цвета с содержанием 70% никеля, 25,5% меди, 3% железа и 1,5% марганца. Он не подвержен атмосферной коррозии, воздействию минеральных масел и обладает относительно высокими механическими свойствами при высокой температуре. Как прокладочный материал монель-металл применяется для соединения трубопроводов, транспортирующих агрессивную среду при давлении до 100-10 Н/м  [c.39]

Никель-хромовые сплавы известны как жаростойкие материалы. Одновременно они обладают коррозионной стойкостью и в агрессивных средах. Эти сплавы так же как и нержавеющие стали устойчивы в окислительных средах, например, в азотной кислоте.  [c.210]

Сплавы на основе никеля. Для экстремальных условий эксплуатации, когда на металл одновременно воздействуют среды высокой агрессивности, высокие температуры и давления, комплекса физико-механических и коррозионных свойств железоникелевых сплавов бывает недостаточно. В этом случае применяют довольно дорогостоящие никелевые сплавы, в которых железо может присутствовать в незначительных количествах. Никель обладает достаточно высокой коррозионной стойкостью во многих агрессивных средах, способностью растворять в большом количестве многие элементы, такие как хром, молибден, железо, медь, которые являются основными легирующими элементами коррозионностойких никелевых сплавов.  [c.356]

В сплавах никеля с 30—50 % Сг в зависимости от конкретного химического состава (содержание хрома, дополнительных легирующих элементов и примесей), режима термообработки и агрессивности среды может развиваться либо межкристаллитная, либо структурно-избирательная коррозия. Вид коррозии определяется типом, морфологией и характером выделения вторичных фаз, что зависит от температурно-временных условий их образования [3.4, 3.8].  [c.177]

Питтинговая коррозия никеля и никелевых сплавов возникает при нарушении пассивности в отдельных точках поверхности, экспонируемой в агрессивной среде. В таких точках происходит анодное растворение, в то время как большая часть поверхности остается пассивной. Питтинговая коррозия на никеле развивается преимущественно вблизи структурных дефектов, например границ зерен, а также на повреждениях поверхности, таких как царапины. Уменьшить вероятность питтингообразования на повреждениях поверхности можно с помощью электрополирования, но к структурным дефектам это относится в меньшей степени.  [c.180]

На практике питтинговая коррозия никеля и никелевых сплавов возникает в коррозионно-активных средах, содержащих хлориды или другие агрессивные ионы, а кроме того, она более вероятна в кислых, чем в щелочных или нейтральных растворах. Влияние pH среды и наличия хлор-ионов на питтинговую коррозию никеля иллюстрируют кривые потенциал — плотность анод-  [c.180]

Требования к коррозионной стойкости металлических конструкционных сплавов, предъявляемые современной техникой, становятся все более высокими. Появляются новые, особо агрессивные среды, повышаются температуры, давления и механические нагрузки, при которых работают ответственные металлоконструкции. Именно поэтому в последнее время при широком использовании коррозионностойких сталей и сплавов на основе никеля и титана возрастает практическое применение более редких металлов — циркония, молибдена, ниобия, тантала, вольфрама, кобальта и других металлов и сплавов на их основе.  [c.6]


Результаты исследований анодного поведения никеля, хрома, железа, титана, молибдена, вольфрама, циркония, сплавов железо — хром, железо-— никель, хром — никель, хром — кобальт и различных фазовых составляющих сталей и сплавов обсуждаются в ряде обзорных работ 9, 10, 54— 56]. Подробно обсуждается влияние анионного состава агрессивной среды на анодное поведение металлов и сплавов [57]. Подобные исследования, имеющие большое практическое и теоретическое значение, обычно проводятся с целью предсказания коррозионного поведения существующих металлов и сплавов, а также предварительной оценки коррозионной стойкости вновь создаваемых марок сталей.  [c.90]

МПа). Высокая твердость определяет их великолепную износостойкость. Правда пластичность аморфных металлов низка, но выше, чем у обычного стекла. Их можно, например, прокатывать при комнатной температуре. Другое важнейшее преимущество - их исключительно высокая коррозионная стойкость. Во многих весьма агрессивных средах (морской воде, кислотах) они не корродируют вообще. Аморфные сплавы на основе ферромагнитных металлов (железа, никеля) также ферромагнитны, электросопротивление их гораздо выше, чем кристаллических (обычно в 2-3 раза). Получение аморфной стр5лпуры в принципе возможно для всех металлов. Наиболее легко аморфное состояние достигается в сплавах А1, РЬ, Зп, Сп и др. Для ползп1ения металлических стекол на базе N1, Со, Ре, Мп, Сг к ним добавляют неметаллы или полуметаллические элементы С, Р, 31, В, Аз, 3 и др.  [c.45]

Диморфный металл обладает рядом уникальных свойств из-за отсугсг-вйя границ зерен и дефектов кристаллического строения (например, дислокаций). Прочность их превосходит самые лучшие легированные стали (-3000 МПа), Высокая твердость определяет их великолепную износостойкость. Правда пластичность аморфных металлов низка, но выше, чем у обычного стекла. Их можно, например, прокатывать при комнатной температуре. Другое важнейшее преимущество - их исключительно высокая коррозионная стойкость. Во многих весьма агрессивных средах (морской воде, кислотах) они вообще не корродируют. Аморфные сгшавы на основе ферромагнитных металлов (железа, никеля) также ферромагнитны, электросопротивление их гораздо выше, чем кристаллических (обычно в 2...3 раза). Получение аморфной структуры в принципе возможно для всех металлов. Наиболее легко аморфное состояние достигается в сплавах А1, РЬ, 5п, и др. Для получения метяплических стекол на базе N1, Со, Ре, Мл, Сг к ним добавляют неметаллы или полуметаллические элементы С, Р, 5), В, Аз, 5 и др.  [c.17]

Сплавы никеля с молибденом и другими элементами типа гастелоя отличаются очень высокой коррозионной стойкостью в кислотах. Эти сплавы применяются для изготовления аппаратуры и деталей, работа]ощих в сильно агрессивных средах.  [c.270]

Наиболее распространенным сплавом типа Ni u является мо-нель, содержащий примерно 65% никеля. Он противостоит всем типам агрессивных атмосфер, нейтральным и кислым растворам солей, например хлоридам, сульфатам и др., исключая азотнокислые соли и хлорид железа. В неокисляющих кислотах очень стабилен. Сплав инконель с содержанием примерно 75% никеля, 15% хрома и 4—6% железа более устойчив в окисляющей среде, чем монель. Его применяют при производстве аппаратуры дл органического синтеза при высоких давлениях в присутствии галогенов, окислов азота или сероводорода. Сплавы типа Ni r известны как нимоник. Он легко поддается ковке и сохраняет свои механические свойства при высоких температурах. Как жаростойкий и жаропрочный материал нимоник применяют главным образом при производстве оборудования и узлов, работающих в продуктах сгорания при высоких температурах. Чаще всего из этого сплава изготовляют камеры и лопатки газотурбинных установок, которые подвержены воздействию температур 700—800° С.  [c.37]

Наилучший защитный эффект наблюдался при добавлении в воду 30 мг л метасиликата натрия при pH 3,6. При добавлении бихромата натрия скорость коррозии алюминия увеличивалась. К. М. Карлсен [111,173] считает, что хромат натрия при высоких температурах является деполяризатором. Именно по этой причине с присутствием его в воде скорость коррозии алюминия увеличивается. Защитным действием обладает смесь 0,5% бихромата кали и 0,5% силиката натрия [111,170 111,173 111,196], хотя каждый из них в отдельности в количестве 1 % вызывает значительную язвенную коррозию алюминия [111,173]. По данным других авторов [111,183], введение в воду 500 мг л кремниевой кислоты снижает скорость коррозии алюминия в пять раз, а наличие в ней окиси мыщьяка вызывает появление язв на его поверхности. Пирогалл-значительно ослабляет агрессивное действие среды [111,170]. Следует также отметить, что если при высокой температуре метасиликат натрия оказывает защитное действие только в кислой среде, то при температуре 40° С в воде с pH 11с добавлением небольшого количества метасиликата натрия коррозия алюминия прекращается [111,197]. Из табл. 111-32 видно, как влияет кремниевая кислота на коррозионное поведение сплава алюминия 155 с концентрацией 0,49% никеля, 0,5% железа и 0,22% кремния [111,177]. Растворенная в воде кремниевая кислота действует в нейтральной среде как ингибитор более эффективный, чем ионы фосфата. При снижении температуры вода, содержащая кремниевую кислоту, слегка подкисляется. Оптимальная концентрация ее 0,3—1,0 г/л. Введение при температуре 92° С в воду 100 мг л фосфата несколько замедляет коррозионный процесс [111,192]. В растворе фосфорной кислоты с pH 3,5 скорость коррозии сплава алюминия, легированного 1% никеля и 0,6% железа, была менее 0,1 мг1дм суш. Экспе-  [c.191]


Для материалов, работающих в агрессивных средах, необходимо учитывать характер последних, концентрацию и температуру. При выборе материалов для деталей, работаю щих в условиях повышенной влажности, следует избегать контакта двух металлов со значительно отличающимися электрохимическими потенциалами. Так, чтобы предупредить коррозионное разрушение, следует избегать непосредственного контакта меди, никеля, благородных металлов и их сплавов со сталью. В этих случаях стальные детали целесообразно оцинковывать или кадмировать либо устанавливать между ними оцинкованные прокладки или шайбы. Недопустим также контакт алюминия, меди и их сплавов с нерясавеющими сталями. Следует учитывать, что при одновременном воздействии на материал знакопеременных нагрузок и агрессивной среды предел усталостной прочности металлов понижается.  [c.26]

Никель. Дисперсноупрочненный никель и его сплавы, прежде всего нихром, широко применяются в авиастроении, химическом машиностроении, космической и других новых отраслях техники, где необходимы жаропрочные материалы, стойкие к воздействию различных агрессивных сред.  [c.178]

Наиболее распространенными самофлюсующимися порошками являются сплавы на основе никеля, легированные бором и кремнием. Они отличаются высокими технологическими свойствами и низкой температурой плавления, что позволяет наплавлять стальные детали на воздухе. Покрытия стойки к воздействию агрессивных сред, повышенных температур, износоустойчивы при трении по металлу со смазкой и без нее, а также при абразивном изнашивании. По уровню износостойкости покрытия из самофлюсующихся сплавов в 3...5 раз превосходят закаленные инструментальные стали. По американской спецификации эти сплавы имеют торговое название Колмоной, а сплавы подобного типа в Японии называются Фукудалои.  [c.196]

Граница устойчивости распространяется не только при легировании сплавов более благородным металлом, она также наблюдается в сплавах, у которых один из компонентов обладает способностью к пассивированию или, вернее, к самопассивированию (нержавеющие стали, железохромистые и железохромоникелевые сплавы). Эта граница устойчивости также наблюдается в других системах, когда один из компонентов в результате взаимодействия с агрессивной средой образует защитные экранирующие пленки из нерастворимых соединений. Примером такого рода образования защитных экранирующих пленок являются сплавы железа с кремнием (ферросилициды), никеля с кремнием и др.  [c.493]

Для никеля характерно благоприятное сочетание свойств высокой коррозионной стойкости во многих агрессивных средах, высоких механических свойств, хорошей обрабатываемости в горячем и холодном состоянии. Никель является основой коррозионностойких, жаростойких и жаропрочных сплавов. Никель обладает способностью растворять в большом количестве многие элементы, такие как хром, молибден, железо, медь, кремний. Наиболее важные легирующ,ие элементы в коррозионностойких никелевых сплавах — хром, молибден, медь. Коррозионная стойкость одних никелевых сплавов связана с пассивностью, а других — с тем, что они имеют достаточно высокий равновесный потенциал и не замещают водород в кислых средах. Этим объясняется большое число сред, в которых никелевые сплавы могут с успехом использоваться кислоты, соли и щелочи (как с окислительным, так и с неокислительным характером), морская и пресная вода, а также атмосфера.  [c.167]

Основное преимущество никельхромовых сплавов ( 20 % Сг) состоит в их высокой коррозионной стойкости в растворах азотной кислоты в присутствии фтор-иона по сравнению со сталью 12Х18Н10Т [3.1 ] и высокой жаростойкости при температурах до 1100 °С. Сплавы никеля с 20 % Сг являются основой ряда жаростойких и жаропрочных сплавов. Силав ХН78Т наряду с высокой жаростойкостью характеризуется повышенной стойкостью в таких агрессивных средах, как хлор, хлористый водород, фтористый водород (до 500 °С).  [c.167]

Наряду с высокой коррозионной стойкостью в агрессивных средах никелевые сплавы имеют ряд других особенностей, к которым относятся высокая пластичность от отрицательных температур до 1200 °С, Б 1,5—2 раза более высокие значения прочностных свойств, твердости и электросопротивления, чем у стали 12Х18Н10Т, и в 1,5—2 раза более низкие значения коэффициента линейного расширения (Ni—Мо-сплавы) и теплопроводности, чем у широко распространенных коррозионностойких сплавов на основе железа [3.1 ]. В табл. 3.2 приведены механические свойства никеля и его сплавов при 20 °С. Сплавы немагнитны. Сплавы обладают способностью к деформации в горячем и холодном состоянии, обрабатываются механическими способами и свариваются.  [c.169]

Высоколегированный сплав 40ХБЮ-ВИ применяют для изготовления немагнитных подпшп-ников, а также подшипников, работающих при воздействии агрессивных сред и повышенных температур. Сплав 40ХНЮ-ВИ относится к аусте-нитному классу и имеет следующий химический состав (масс. %) углерод < 0,03, кремний < 0,1, марганец < 0,1, сера < 0,01, фосфор < 0,01, хром — 39-41, алюминий — 3,3-3,8, железо < 0,6, никель — основа. Поставляется в виде горячекатаных прутков и проволоки по ТУ 14-1-2740-79 и ТУ 14-1-2505-78 с применением вакуумно-индукционного переплава.  [c.779]

Алюминий значительно изменяет термоэлектрические свойства никеля, повышает его электросопротивление, жаростойкость и существенно понижает температуру магнитного превращения никеля. Кремний главным образом повышает жаростойкость никеля. Марганец увеличивает его электросопротивление и жаростойкость, особенно в серосодержащей атмосфере. Хром в сильной степени повышает жаростойкость и жаропрочность никеля, увеличивает электросопротивление и снижает ТКС никеля. Медь повышает коррозионную стойкость и прочность никеля. Сплавы никеля с медью превосходят по коррозионной стойкости никель и медь. Сплав никеля с 30% меди монель отличается наИ лее в лсокой устойчивостью на воздухе, в пресной и морской воде и многих агрессивных средах. Железо снижает тем- пературный коэффициент линейного расширения никеля. Им можно частично заменить никель в жаростойких сплавах.  [c.455]

По ряду характеристик сплавы имеют преимущества перед чпс-тьтми металлами для применения в качестве материала чувствительных элементов ТС они более прочны, стойки при высоких температурах и в агрессивных средах, их удельное сопротивление в несколько раз больше. Однако ТКС при средних и высоких температурах у них ниже, чем у чистых металлов,— за исключением сплава никеля с железом, для которого а = 4,8 10" К- .  [c.140]

Для работы в экстремальных условиях трения, т. е. в условиях повышенных и высоких (свыше 100 кг/см ) нагрузок, скоростей скольжения (свыше 5—10 м/с), температур (более 200° С) в условиях трения без смазки, в присутствии агрессивных и инертных жидких и газовых сред, в вакууме, в условиях криогенных температур (до —250° С) и т. п. могут быть применены самосмазывающиеся антифрикционные материалы, обеспечивающие образование в процессе трения антизадирных разделительных пленок. Такие материалы разрабатываются с учетом конкретных условий работы трущихся пар. К их числу относятся группы спеченных материалов на основе высоколегированных сплавов железа, высоколегированного и сульфидиро-ванного железографита, сульфидированных и сульфоборирован-ных нержавеющих сталей, металлографитовых и металлопластмассовых композиций, композиционных материалов из тугоплавких металлов и соединений, цветных металлов, например никеля и его сплавов, кобальта, свинца, олова, алюминия и т. д.  [c.43]


В настоящее время разработано большое количество различных по составу и свойствам сплавов на основе титана. Эти сплавы отличаются высокой прочностью и хорошей коррозионной стойкостью во многих агрессивных средах. Особенно большое применение титановые сплавы получили в морской технике. В США их широко применяют для обшивки подводных лодок и некоторых кораблей. Многие детали, изготовленные из сплавов титана, работают в условиях гидроэрозии. Поэтому изучение эрозионной стойкости титановых сплавов представляет большой практический интерес. Однако исследований, посвященных этому вопросу, проведено очень мало. В работе [2] указано, что некоторые из титановых сплавов в процессе микроударного воздействия подвержены внезапному разрушению. Другие авторы характеризуют титановые сплавы как весьма стойкие в условиях кавитации. Некоторые иностранные фи мы ( Интернейшенл никель компани ) также отмечают хорошую гидроэрозионную стойкость титановых сплавов.  [c.250]

В промышленности широко используют литые изделия, так как некоторые сплавы (например, FeSi), имеющие высокую коррозионную стойкость во многих агрессивных средах, отличаются повышенной твердостью и хрупкостью и могут применяться только в литом состоянии. Увеличение выпуска литья из коррозионностойких сталей требует упрощения технологии изготовления, особенно для усложненных конфигураций, химического оборудования, эксплуатируемого в агрессивных средах. Доля отливок из легированных сталей все время значительно возрастает по сравнению с общим объемом литых изделий, применяемых в химической промышленности. В настоящее время в создании новых марок литых коррозионностойких сталей наблюдается та же тенденция, что и для деформируемых сталей, т. е. стремление к понижению содержания никеля, повышению прочности сплавов и коррозионной стойкости специальным легированием. Литые коррозионностойкие стали могут подвергаться межкристаллитной коррозии, поэтому для ее предупреждения стали легируют также титаном или ниобием. Однако титан ухудшает литейные свойства металла, вследствие его добавок получаются пористые отливки. Литейные свойства аустенитных сталей типа 12Х18Н9ТЛ ниже углеродистых.  [c.216]

Никель - алюминий 5 А1 60-80HR Коррозионно-стойкое покрытие -защита от фретинг-коррозии эрозион-но-стойкое покрьггие - защита от эрозии при кавитации в прокачиваемой агрессивной среде с низкими или повышенными температурами корковое покрьггие - восстановление изношенных деталей из всех марок сталей, никелевых, кобальтовых, алюминиевых и магниевых сплавов подслой газотермического покрьггия  [c.607]

Многие металлы находятся в пассивном состоянии в некоторых агрессивных средах. Хром, никель, титан, цирконий легко переходят в пассивное состояние и устойчиво его сохраняют. Часто легирование металла, менее склонного к пассивации, металлом, пассивирующимся легче, приводит к образованию достаточно хорошо пассивирующихся сплавов. Примером могут служить разновидности сплавов Ре—Сг, представляющие собой различные нержавеющие и кислотоупорные стали, стойкие, например, в пресной воде, атмосфере, азотной кислоте и т. д. Для практического использования пассивности нужно такое сочетание свойств металла и среды, при котором последняя обеспечивает значение стационарного потенциала, лежащего в области Афп. Подобное использование пассивности в технике защиты от коррозии известно давно и имеет огромное практическое значение.  [c.250]


Смотреть страницы где упоминается термин Агрессивные среды никель и сплавы : [c.16]    [c.129]    [c.205]    [c.257]    [c.119]    [c.74]    [c.38]    [c.533]    [c.537]    [c.123]    [c.154]    [c.84]    [c.387]    [c.424]   
Коррозионная стойкость материалов (1975) -- [ c.116 ]



ПОИСК



Агрессивные сплавов

Агрессивные среды

Агрессивные среды сплавы ill

Никель

Никель и сплавы никеля

С агрессивная

Сплавы никеля

Среды агрессивность



© 2025 Mash-xxl.info Реклама на сайте