Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Питтинговая коррозия никеля

Питтинговая коррозия никеля и никелевых сплавов возникает при нарушении пассивности в отдельных точках поверхности, экспонируемой в агрессивной среде. В таких точках происходит анодное растворение, в то время как большая часть поверхности остается пассивной. Питтинговая коррозия на никеле развивается преимущественно вблизи структурных дефектов, например границ зерен, а также на повреждениях поверхности, таких как царапины. Уменьшить вероятность питтингообразования на повреждениях поверхности можно с помощью электрополирования, но к структурным дефектам это относится в меньшей степени.  [c.180]


На практике питтинговая коррозия никеля и никелевых сплавов возникает в коррозионно-активных средах, содержащих хлориды или другие агрессивные ионы, а кроме того, она более вероятна в кислых, чем в щелочных или нейтральных растворах. Влияние pH среды и наличия хлор-ионов на питтинговую коррозию никеля иллюстрируют кривые потенциал — плотность анод-  [c.180]

Питтинговая коррозия никеля и никелевых сплавов, как и других металлов и сплавов, возникает при нарушении пассивности в отдельных точках поверхности, экспонированной в агрессивной среде. В таких точках происходит анодное растворение, в то время как большая часть поверхности  [c.143]

Так как коррозия никеля имела локальный характер, то не могло наблюдаться определенной связи ее с длительностью экспозиции. Тем не менее, интенсивность питтинговой и щелевой коррозии возрастала с увеличением длительности экспозиции как на глубине, так и у поверхности. Скорости коррозии на глубине 1830 м возрастали с длительностью экспозиции, хотя это увеличение не было постоянным. В некоторых случаях скорости коррозии были существенно выше после коротких периодов экспозиции, чем после более длительных. Скорости коррозии на глубине 760 м с увеличением длительности экспозиции не менялись.  [c.303]

В эту категорию включены цементируемые и специальные нержавеющие стали, которые не могли быть включены в другие классификации. Повышенное содержание никеля н добавление молибдена в эти стали предназначается для увеличения защитных свойств их пассивных пленок и увеличения сопротивляемости питтинговой коррозии. Так как пчс-сивные пленки этих сталей обладают гораздо лучшей стойкостью к коррозии. любая коррозия локализована в форме щелевой и питтинговой.  [c.352]

Склонность к щелевой коррозии снижается с увеличением степени легированности сталей, однако, как и в случае питтинговой коррозии, стали одного марочного состава могут обладать резко различной стойкостью против рассматриваемого вида локальной коррозии. Наиболее стойкими материалами являются суперсплавы, содержащие повышенные количества хрома, никеля и молибдена, а также сплавы на основе никеля.  [c.130]

Заметное влияние на питтинговую коррозию оказывает легирование никеля такими элементами, как хром,  [c.181]

Питтинговая коррозия является одним из основных и наиболее опасных видов локального разрушения металлов и сплавов. Этому виду коррозии в водных растворах, содержащих активирующие анионы, подвергаются железо и его сплавы с хромом и никелем (нержавеющие стали), а также алюминий и его сплавы, никель, цирконий, кобальт, магний. Питтингообразование возникает, как правило, в пассивирующих растворах, в которых присутствуют окислитель и активатор. К активаторам относятся  [c.46]


Вопросам изучения питтинговой коррозии и обобщения накопленных экспериментальных данных посвящено много исследований [7, 15, 27 41 50 61 62 63, с. 28 64—71]. Обычно такой коррозии подвергаются легко пассивирующие металлы и сплавы железо и, особенно, такие важные и широко распространенные конструкционные сплавы, как нержавеющие стали, а также алюминий и его сплавы, никель, цирконий, титан и др.  [c.89]

Никель подвергается питтинговой коррозии. В нейтральных растворах, содержащих галоидные ионы С1-, Вг-, 1 , на нем образуются питтинги при анодной поляризации.  [c.95]

Легирование никеля медью несколько повышает его коррозионную стойкость в растворах неокислительных кислот. Эти сплавы в морской воде менее склонны к питтинговой коррозии, чем никель. Сплав никеля, содержащий 30% Си (монель-металл), обладает высокой коррозионной стойкостью в морской и пресной водах, разбавленных растворах серной кислоты (при концентрации меньше 20%), плавиковой и ортофосфорной кислотах.  [c.141]

Никель и никелевые сплавы обычно стойки к коррозии в водопроводной воде и пресной воде из естественных источников при температурах вплоть до температуры кипения, но в стоячей воде с повышенной кислотностью или солесодержанием иногда существует некоторая вероятность питтинговой коррозии. Концентрация растворенного кис лорода в движущейся воде, как правило, достаточна для поддержания пассивности металла. В то же время конденсаторы содержащие кислород и углекислый газ, могут быть агрессивными по отношению к никелю и его сплавам.  [c.148]

Потенциал 0,2 в. Такое значение фкор нержавеющие стали принимают в слабоокислительных средах или в присутствии небольших концентраций окислителя (например, в некоторых аэрированных средах). При этом потенциале рассматриваемые металлы располагаются по коррозионной стойкости в такой же ряд, как и при предыдущем потенциале. Хотелось бы только отметить, что при 0,2 в несколько возрастает скорость растворения молибдена и очень сильно — никеля (в 1500 раз). Последнее, очевидно, обусловлено тем, что выбранный потенциал находится в области фкр никеля и, следовательно, максимальных скоростей его растворения. Следует-обратить внимание, что наиболее типичная потен-циостатическая кривая никеля в рассматриваемой области в растворах H2SO4 имеет два максимума тока растворения. Активационный участок между первым и вторым максимумом, по мнению некоторых авторов [75, 76], обусловлен активирующим действием сульфат-ионов, которое затрудняет посадку пассивирующего кислорода. В определенных условиях при потенциалах этого активационного участка может развиваться питтинговая коррозия никеля.  [c.28]

Следовательно, железо, имеющее в морской воде коррозионный потенциал около —0,4 В, непригодно для использования в качестве протектора для катодно защищаемого алюминия, в отличие от цинка, который имеет более подходящий коррозионный потенциал, близкий —0,8 В. Для нержавеющей стали 18-8 критический потенциал в 3 % растворе Na l равен 0,21 В, для никеля — около 0,23 В. Следовательно, контакт этих металлов с имеющими соответствующую площадь электродами из железа или цинка может обеспечить им в морской воде эффективную катодную защиту, предупреждающую питтинговую коррозию. Элементы создаваемых конструкций (например, кораблей и шельфовых нефтедобывающих платформ) иногда специально проектируют таким образом, чтобы можно было успешно использовать гальванические пары такого рода.  [c.227]

На нержавеющих сталях, помещенных в морскую воду, глубокий питтинг развивается в течение нескольких месяцев начинается питтинг обычно в щелях или в других местах с застойным электролитом (щелевая коррозия). Склонность к локальным видам коррозии больше у мартенситных и ферритных сталей, чем у аустенитных. У последних склонность тем ниже, чем выше в них содержание никеля. Аустенитные стали 18-8, содержащие молибден (марки 316, 316L, 317), еще более стойки в морской воде, однако через 1—2,5 года и эти сплавы подвергаются щелевой и питтинговой коррозии.  [c.311]

Никелевые покрытия и плакирующие сплавы на основе никеля используют в зарубежной практике для защиты от коррозии элементов оборудования глубоких нефтяных скважин (труб, вентилей). В работе [48] приведены результаты испытания труб, изготовленных из стали марки AISI 4130 с плакировкой никелевым сплавом 625, полученных методом горячего изостатического прессования. Толщина плакирующего слоя биметалла составляла 29 и 4 мкм. Испытания включали анализ изменения механических свойств материалов после вьщержки в хлорсодержащей среде в присутствии сероводорода, оценку стойкости их к коррозионному растрескиванию и питтинговой коррозии. Результаты лабораторных и промышленных испытаний показали высокие эксплуатационные свойства биметалла при использовании в качестве конструкционного материала для оборудования высокоагрессивных сероводородсодержащих глубоких скважин.  [c.96]


При питтинговой коррозии основное коррозионное разрушение локализуется на отдельных небольших участках металла (магний, алюминий, железо, никель, титан и др.) и протекает с большой скоростью, что может приводить к сквозной точечной коррозии металла. Питтинговая коррозия наблюдается, обычно, когда основной металл находится в пассивном состоянии. Ионы-активаторы (СГ, Вг , I") адсорбируются в основном на участках поверхности, где плеяка оксида несовершенна (металлические или неметаллические включения, искажающие или нарушающие кристаллическую структуру оксида) [22]. Анионы частично замещают кислород в оксиде и образуют хорошо растворимые поверхностные комплексные ионы. Пассивная пленка нарушается, и металл начинает непосредственно контактировать с раствором. Потенциал металла на этих участках имеет более отрицательное значение, чем потенциал основного металла, покрытого оксидной пленкой, что приводит к возникновению локальных токов. Если пассивная пленка не обладает большим омическим сопротивлением, то система заполяризовывается и на участках питтингооб-разования в основном протекает интенсивно анодный процесс, а катодный процесс восстановления окислителя идет на пассивной поверхности металла. При этом миграция анионов-активаторов идет в основном к участкам питтингообразования.  [c.38]

В отличие от железа и никеля, хром, судя по имеющимся данным, не подвергается питтинговой коррозии в водных растворах даже при больших концентрациях активирующих анионов. Учитывая большое сродство хрома к кислороду, обусловливающего высокую стабильность пассивного состояния этого металла, неоднократно высказывалось предположение о том [ 130,135,136] что критические потенциалы питтингоофаэования для хрома в растворах галогенидов лежат положительнее потенциала пере пассивации этого металла, что исключает возможность их определения обычными электрохимическими методами.  [c.31]

Склонность к питтинговой коррозии сплавов рассматриваемых металлов зависит от их состава и находится в хорошем соответствии с характеристиками индивидуальных, компонентов. Сопоставление имеющихся данных для сталей различного состава показывает, что легирование железа хромом и никелем приводит к смещению критического потенциала питтингообрааования в сторону положительных значений [130, 135, 137-141 ],что,в частности, следует  [c.31]

Эти процессы играют важную роль при использовании титановых сплавов в установках опреснения воды и в сверхзвуковых самолетах. Некоторые опреснительные установки сконструированы частично из титана или из малолегированных сплавов титана. Было показано, что добавки 0.2% Рб (а также никеля и молибдена) уменьшают тенденцию к щелевой коррозии [232]. Необходимо отметить, что эти малолегированные титановые сплавы не чувствительны к КР в водных средах. Полное разрушение не будет происходить по этому механизму. Для конструкции сверхзвуковых самолетов используют более высокопрочные сплавы, которые проявляют некоторую чувствительность к коррозионному растрескиванию, поэтому щелевая и питтинговая коррозия могли привести к участкам зарождения трещин.  [c.415]

Средняя скорость коррозии сплава Монель 400 в тех же условиях была равна 4.3 мкм/год, а максимальная глубина ниттинга за 16 лет — 0,61 мм. Очевидно, что некоторое повышение стойкости к питтинговой коррозии (по сравнению с никелем) объясняется наличием в составе сплава меди. Весь имеющийся опыт свидетельствует, что при экспозиции в зоне прилива глубина питтинга на сплаве Монель 400 редко превышает 1,3 мм. При этом питтинги развиваются медленно и после  [c.79]

Никель и его сплавы пассивны в проточной морской воде, но в стоячей морской воде подвержены питтинговой коррозии и коррозии, обусловленной концентрационными элементами. Их пассивность вызывается наличием на поверхности сплавов непроницаемой окисной пленки, которая при определенных условиях может разрушаться. Обрастание морскими организмами, различные отложения и щели, которые ограничивают доступ кислорода к определенным участкам поверхности, способствуют подобным повреждениям. В тех местах, где отсутствует достаточное количество кислорода, необходимое для восстановления поврежденной защитной пленки, развиваются пит-тинговая и щелевая (вызванная действием концентрационных элементов) коррозия. Таким образом, в морской воде превалируют пит-, тинговый и щелевой тип коррозионного воздействия.  [c.279]

Скорости и типы коррозии никеля семи составов (содержание никеля в сплаве минимум 94 %) приведены в табл. 103. Практически вся коррозия вызывалась питтинговым, щелевым и кромочным (на срезанных концах) типами локальной коррозии. Кромочная коррозия вызывалась трещинами и микрощелями которые образовались при резке сплава. Это отчетливо показывает, какой коррозионный ущерб может нанести такая производственная процедура. Боковое проникновение коррозии, начавшееся на срезанном краю образца, достигало 2,54 см за период экспозиции в 6 мес. Для предотвращения этого типа коррозии весь деформированный металл, образовавшийся при резке или пробивке, должен быть удален механической обработкой, шлифовкой или зенко-ванием отверстий.  [c.289]

Коррозию сварных швов на никеле Ni-200 наблюдали при ручной электросварке в атмосфере инертных газов с иа-110льзованием сварочного электрода 141 и при сварке методом T1Q о использованием присадочного металла 61. При сварке электродом 141 сварные швы подверглись сильной питтинговой коррозии. Сварные швы и зоны термического, влияния при сварке присадочным металлом 61 были перфорированы. Предпочтительное коррозионное воздействие на материалы сварных швов указывает на то, что они были анодными по отношению к катодному листовому металлу.  [c.304]


На одном из предприятий химической промышленности трубчатые теплообменники, изготовленные из никеля, медно-никелевого сплава 400 и сплава Hastelloy В, подвергались интенсивной питтинговой коррозии под действием охлаждающей жидкости— речной воды. Сквозные отверстия в никелевых трубах были обнаружены уже после восьми недель эксплуатации, а через 18—24 месяца практически все трубы из указанных материалов оказались перфорированными.  [c.73]

Эффект ионного легирования железа никелем сводится н. основном к уменьшению тока анодного растворения и к увеличению потенциала питтингообразования, причем степе1НЪ облагораживания этого потенциала больше, чем в результате имплантации хрома. Введение хрома в мартенситно-старею-щую сталь приводит к уменьшению анодного растворения и увеличению стойкости к питтинговой коррозии. Тройной сплав железо-хром-никель, полученный методом ионной имплантации,, обладает более высокой стойкостью к питтинговой коррозииу чем большинство поверхностно-легированных двухкомпонент-ных сплавов. В общем, хотя стойкость к общей коррозии у поверхностно-легированных хромом и никелем сплавов железа сравнима со стойкостью объемно-легированных, стойкость к питтинговой коррозии у поверхностно-легированных сплавов выше, чем у железа, но ниже, чем у объемно-легированных сплавов близкого состава.  [c.133]

Результаты длительных коррозионных испытаний рассмотренных материалов в средах пилотной установки, имитирующей работу реактора, и колонной аппаратуры (окисления хлористого нитрозила и хлор-ионов, а также осушки смеси газов) полностью соответствуют выводам, полученным из анализа поляризационных кривых. Титан и его сплавы, за исключением сплава 4200, имеющего высокую скорость общего растворения, и сплава 4202, подверженного питтинговой коррозии, стойки во всех жидких и газообразных средах. Стали и никель подвержены значительной общей и локальной коррозии. Никелевые сплавы показали низкую скорость разрушения при заметной локальной коррозии, в то время как кремнистый чугун не подвержен в этих ус-л овиях локальной коррозии, а скорость его общего разрушения в 5—10 раз ниже соответствующей величины для никелевых сплавов.  [c.19]

Для некоторых коррозионных систем, например для нержавеющих сталей, хрома, никеля и других металлов, пассивное состояние может нарушаться переходом в транспассивное состояние, часто также называемое состоянием перепассивации. Это явление наблюдается, если катодный процесс очень эффективен и начинается при потенциалах Е , более положительных, чем потенциал начала перехода в транспассивное состояние Е . Стационарный потенциал коррозии в транспассивном состоянии Ех находится положительнее потенциала начала перехода в транснассивное состояние, т. е. Ех > -Ет- Система будет корродировать со значительным коррозионным током ЕхУ (см. рис. 37, ), несмотря на сильно положительный потенциал коррозии. В отличие от питтинговой коррозии, коррозия в транспассивном состоянии имеет достаточно равномерный характер. Реальная анодная кривая Ex,S (см. рис. 37, б) для этого случая отражает только участок транспассивного состояния, т. е. начинается от очень положительного стационарного потенциала коррозии Ex и имеет относительно малую анодную поляризуемость.  [c.64]

Коррозионностойкие стали. Наиболее подробно влияние различных факторов на склонность к питтинговой коррозии было изучено для сплавов железа, главным образом, нержавеющих сталей различных марок. Исследование влияния основных легирующих компонентов коррозионно-стойких сталей —хрома и никеля — показало, что увеличение содержания хрома способствует повышению стойкости сталей к питтинговой коррозии в большей степени, чем увеличение содержания в них никеля. Сплавы Fe—Сг, содержащие 30—35 % Сг и более [61, 87], устойчивы к питтинговой коррозии в нейтральных растворах, содержащих С1 . Особенно благоприятным оказывается введение 1—5 % Мо [50, 61] в нержавеющие стали (в частности, в наиболее распространенные), содержащие 18% Сг, 10—13% Ni. Легирование нержавеющих сталей азотом (0,15—1 %) повышает стойкость к питтинговой коррозии [61, 88—90]. В работе [89] было исследовано влияние различных легирующих и примесных элементов С, N, Р, S, N1, Si, Мп, Ti, Zr, Nb, AI, У, W, Со, Си, Sn, вводимых в сталь состава 17 Сг 16 Ni без Мо и содержащую 4 % Мо. на устойчивость их к питтинговой коррозии. На рис. 27 видно, что наиболее существенно смещение Ет в положительную сторону в сталях без Мо, происходит при легировании ее Мо, N, Си или Ti. В сталях, содержащих 4 /о Мо, дальнейшее повышение стойкости к питтииговой коррозии было получено при добавках N и Si. Ухудшение стойкости к питтинговой коррозии наблюдали при легировании сталей Мп, А1 или Nb.  [c.95]

Развитие питтинговой коррозии происходит, только если в растворе концентрация галоидного иона, равная или превышающая критическую, зависит от природы металла или сплава, его термческой обработки, температуры раствора, характера других ионов и окислителей. Для сплавов Fe—Сг критическая концентрация хлор-ионов увеличивается при повышении содержания в сплаве хрома, а содержание никеля в сплаве практически не влияет на, ее величину. Как следует из данных, приведенных ниже, минимальная критическая концентрация С1 при  [c.99]

Наличие в металле только азота (сталь III) или только молибдена (сталь /) оказывается недостаточным для устранения склонности к питтинговой коррозии. Одновременное присугстБпе азота и молибдена является необходимым условием высокой устойчивости пассивного состояния к локальной анодной активации. Следует отметить, что в некоторых случаях, соответствующих, как правило, высокой агрессивности хлоридных растворов, на поверхности стали II наблюдали отдельные очень мелкие репассивирующиеся питтинги, т. е. зарождение питтингов на стали с молибденом и никелем йсе же возможно, хотя и затруднено, но дальнейшее развитие их полностью подавляется.  [c.198]

Питтинговая коррозия 58, 87, 93,. 167, 191, 198, 267 электрохимический механизм 89 стадии питтннговой коррозии 90 кинетика роста питтинга 91 репассивация 91, 92 амоминия и его сплавов 93, 265 циркония 94 титана и его сплавов 94 железа 95 хрома 95 никеля 95  [c.357]

Питтинговая точечная) коррозия — коррозия металла в виде отдельных точечных поражений, когда остальная поверхность металла находится в пассивном состоянии. Питтинговой коррозии подвержены углеродистые и нержавеющие стали, сплавы на основе алюминия, никеля, титана и других легкопассивирую-щихся металлов и сплавов в морской воде, рассолах холодильных машин, смесях соляной и азотной кислот и т. д.  [c.39]

Точечная (питтинговая) коррозия происходит на отдельных ограниченных участках металла, когда остальная поверхность находится в пассивном состоянии. Этот вид коррозии обнаруживают легко пассивирующиеся металлы и сплавы железо, стали, особенно нержавеющие, сплавы на основе алюминия, никеля, титана, циркония и др. Точечная коррозия этих металлов происходит в средах, содержащих окислители (кислород воздуха, нитраты, нитриты, хроматы и др.) и активаторы (С1 , Вг-, I- и др.).  [c.110]


При анодной поляризации возрастает адсорбция анионов-активаторов и при достижении некоторого потенциала, который называется потенциалом питтингообразования фп.о, происходит местное нарущение пассивности — пробой пленки и наступает точечная коррозия. Величина потенциала питтингообразования является показателем склонности металлов к точечной коррозии чем меньше (отрицательнее) потенциал питтингообразования, тем выше склонность сплава к точечной коррозии. Так, например, у алюминия потенциал питтингообразования в 0,1 н. растворе Na l составляет —0,43 В, а никеля +0,28 В. Поэтому алюминий в указанном растворе обладает большей склонностью к питтинговой коррозии, чем никель.  [c.111]

Коррозия. В зависимости от материала конструкции приходится иметь дело с коррозией железа, меди или никеля. Появление общей или питтинговой коррозии может быть обусловлено такими обычными причинами, как растворенный кислород, низкое значение pH, наличие различного рода осадков или застойных зон, напряжения в металлах, дефекты в самих металлах и состояние их поверхностей. Во многих случаях причиной питтинговой коррозии может явиться растворенный кислород в сочетании с некоторыми другими обстоятельствами, например присутствием осадков на металлической поверхности или дефектов в самом металле. Кислород может окислять пленку гидроокиси железа (И) в магнетит (Рез04) или в гидратированную окись железа. Такое окисление будет происходить на некотором конечном расстоянии от металла, в результате чего станет возможным дальнейшее растворение железа под рыхлым продуктом коррозии. При низких значениях pH возникнет общая коррозия. Другие условия, как правило, благоприятствуют локальной коррозии. Кавитационная эрозия встречается в насосах или на других участках, на которых наблюдается турбулентное или очень быстрое течение [23].  [c.29]

Коррозия медных конденсаторных труб для Комиссии по атомной энергии была исследована Мурреем и Тестером [33]. Ими была обнаружена небольшая питтинговая коррозия при малых скоростях потока и значительная — при высоких температурах. Пик-карози [34] показал, что при некоторых условиях (например, при наличии солоноватой воды и микробиологических наростов) срок службы адмиралтейской латуни может быть низким, поэтому следует предпочесть использование медно-никелевого сплава, содержащего 70% меди и 30% никеля. Естественно, что в случае меди наличие в атмосфере НгЗ или МНз может приводить и к нежелательным эффектам.  [c.91]

Они указали, что сплавы алюминия подвержены питтинговой коррозии в водах, содержащих такие тяжелые металлы, как медь, никель и свинец. Влияние ионов меди уменьшается по мере повы-щения pH и снижения растворимости солей меди. Сузмэн и Акерс [39] считали, что примеси тяжелых металлов могут появиться в воде вследствие коррозии во время ее рециркуляции в оборудовании для испарительного охлаждения-  [c.92]

При питтинговой коррозии возрастающее положительное влияние оказывает увеличение содержания никеля вплоть до 50%, а поведение сплава Fe—50% N1 и чистого никеля различается уже незначительно. В работах Лаке и Копсона [3] и Эванса [4] содержатся данные о коррозии сплава Fe— 36Ы1 в промышленных атмосферах США и Европы соответственно.  [c.49]

Заметное влияние на питтинговую коррозию оказывает легирование никеля другими элементами. На рис. 2.39 представлена зависимость потенциала пробоя бинарных сплавов Ni—Сг [41] от содержания кремния. Видно, что при содержании кремния свыше 10% вероятность пробоя значительно уменьшается. Легирование сплава Ni—Сг железом позволяет добиться еще более высокого результата. Сплав Ni—15Сг—8Fe (инконель 600) мало склонен к пробою даже в кислом растворе, содержащем 1% Na l (см. рис. 2.26). И на практике сплавы Ni—Сг—Ре показывают высокую стойкость к питтинговой коррозии, а дальнейшее повышение стойкости сплава достигается (как и в случае нержавеющей стали) введением нескольких процентов молибдена.  [c.145]


Смотреть страницы где упоминается термин Питтинговая коррозия никеля : [c.76]    [c.31]    [c.82]    [c.354]    [c.359]    [c.181]    [c.28]    [c.96]    [c.174]    [c.99]    [c.144]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.95 ]



ПОИСК



Коррозия питтинговая

Никель



© 2025 Mash-xxl.info Реклама на сайте