Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент запаса по нагрузкам — Определение

Как видно из этой формулы, первые два слагаемых увеличились в к раз, а третье — более чем в к раз. Таким образом, существенной особенностью продольно-поперечного изгиба является то, что напряжения в поперечных сечениях стержня нелинейно зависят от внешних нагрузок и при увеличении нагрузок возрастают быстрее последних. Поэтому реальным коэффициентом запаса сжато-изогнутого стержня является коэффициент запаса по нагрузкам Лр, который показывает, во сколько раз надо увеличить все заданные нормативные нагрузки, чтобы наибольшее сжимающее напряжение достигло опасной величины. Для пластичного материала за опасное принимается напряжение, равное пределу текучести а . Положив в формуле (13.56) сг = ст , к = п и допуская, что закон Гука справедлив до предела текучести, получим квадратное уравнение для определения коэффициента запаса по нагрузкам  [c.283]


Коэффициент запаса прочности может быть определен также по предельной нагрузке (предельному состоянию). Для этого  [c.251]

В сопротивлении материалов не выполняется также и этап III, и вопрос о расчете конструкции еще не получает своего решения. Но существование этого этапа, как и этапа I, налагает также свой отпечаток на характер проводимого анализа. Это сказывается хотя бы уже в том, что в задачу сопротивления материалов, кроме определения напряжений, входит определение коэффициента запаса (по пределу прочности, либо по разрушающим нагрузкам) или определение запаса циклической прочности. Решение тем самым подводится вплотную к заключительному этапу расчета конструкции.  [c.9]

Определение П.18. Запасом прочности коэффициентом запаса) по растягивающим сжимающим) напряжениям деформируемого тела называется число Пр (пс), показывающее во сколько раз необходимо увеличить внешние нагрузки (все или часть из них при фиксированных остальных), чтобы максимальные растягивающие (сжимающие) напряжения стали равными  [c.595]

При определении коэффициента запаса необходимо учесть, что радиус круга возникновения трещин (см. рис. 150) увеличивается с увеличением гидростатического сжатия СТо — формулы (406), (402). Поэтому при возрастании нагрузки (длины вектора А В ) увеличивается и радиус Подставив (412)—(414) в (405) и (406), затем в (402) и в (411), получим для коэффициента запаса по возникновению трещин зависимость  [c.299]

Коэффициент запаса устойчивости колесной пары, определенный по максимальному рамному давлению и соответствующим этому моменту времени нагрузкам или по минимальным вертикальным силам и соответствующему этому моменту времени рамному давлению, составил 5,67 и 3,91 для системы подвешивания соответственно в нормальном рабочем состоянии и в аварийном. Минимально допустимое значение этого коэффициента равно 1,0. ТЭД тепловоза с пневматическим подвешиванием в процессе двухлетней эксплуатации ремонту не подвергались, замена щеток не проводилась. На тепловозах с пружинным подвешиванием в условиях эксплуатации приходится разбирать ТЭД и производить замену изношенных (выкрошенных) щеток секции.  [c.108]

Традиционный способ оценки прочности дисков турбин, работающих в условиях частых пусков и остановок, с помощью коэффициента запаса по условию местной прочности учитывает влияние теплосмен на снижение несущей способности лишь косвенно и поэтому его следует признать неудовлетворительным Оценка прочности на основе теории приспособляемости предпочтительнее, поскольку неупругие деформации допускаются лишь в первых циклах действия нагрузки и граница области приспособляемости соответствует возможным предельным состояниям для дисков турбин этой группы. Поскольку целью расчета на приспособляемость является определение параметров предельного цикла и вычисление коэффициента запаса, необходимо определить связь между рабочим и предельным циклом (способ перехода от рабочего цикла к предельному). Формула (7.59) устанавливает связь между рабочими и любыми возможными, в том числе и предельными, циклами. Для оценки прочности с помощью коэффициента запаса для многопараметрической нагрузки следует из множества возможных предельных состояний  [c.505]


В отличие от существующих методов расчета по допускаемым напряжениям в общем машиностроении и по разрушающим нагрузкам в авиации и ракетной технике, где вероятностная природа нагрузок и несущей способности скрыта либо в коэффициенте запаса прочности, либо в коэффициенте безопасности, в данной работе характеристики вероятностного описания нагрузок и несущей способности непосредственно входят в формулы для определения размеров поперечного сечения, обеспечивающих заданную надежность элемента конструкции. Такой подход более адекватно отражает реальную работу элемента конструкции.  [c.3]

Все остальные задачи должны быть связаны с расчетами на прочность с проверкой прочности по допускаемому напряжению и по коэффициенту запаса, с подбором сечений, с определением допускаемой нагрузки. Ориентировочно можно рекомендовать следующие номера, задач 5.23,6 5.25,6 5.33 5.42 [15] 6.29 6.32  [c.132]

Изложенный теоретический материал позволяет перейти к решению задач. В этом месте курса достаточно решить одну задачу на определение коэффициента запаса устойчивости или определение допускаемой нагрузки по формуле Эйлера с предварительным выяснением вопроса об области ее применимости (определением предельной гибкости). Рекомендуем пример 12.1 [12] или задачу 8.4 [15], или 9.8 [38].  [c.196]

Вычисление коэффициента запаса в рассматриваемой задаче имеет по сравнению с предыдущей задачей некоторые особенности. В задаче 10-10 возрастание поперечной нагрузки неизбежно сопровождается ростом осевой нагрузки, так как последняя является по существу реактивной силой, зависящей от поперечной нагрузки. Здесь специально оговорено (см. условия задачи), что отношение сил Р и 5 является постоянным. Кроме того, здесь есть дополнительная поперечная нагрузка (собственный вес), которая, конечно, неизменна, и, следовательно, при составлении выражения для определения коэффициента запаса величины М% и на п умножать не следует- Учитывая сказанное, коэффициент запаса найдем из выражения  [c.270]

Перейдем к определению коэффициента запаса из расчета по предельной нагрузке.  [c.281]

Запасы tiQ по предельным нагрузкам назначают в диапазоне 1,5—2,5, а запасы по долговечности лг — в пределах 10—30. Большие из указанных запасов назначают в тех случаях, когда конструкции изготавливают из сталей повышенной прочности, склонных к циклическому разупрочнению, когда затруднено определение номинальных и местных деформаций. Увеличение случайных отклонений в характеристиках сопротивления металлов малоцикловому деформированию. и разрушению, в значениях коэффициентов концентрации, в значениях эксплуатационных нагрузок и числе циклов за ресурс требует повышения запасов прочности и п .  [c.97]

Поэтому для определения предельного состояния элемента конструкции необходимо не только учитывать наличие начального дефекта на масштабном микроскопическом уровне, но и в последующем процессе увеличения длины трещины возникает возможность проведения контроля с обоснованной периодичностью для ее своевременного выявления. Используемые в расчетах коэффициенты запаса прочности при установлении ресурса по критерию усталостной прочности несут на себе смысловую нагрузку наиболее полного учета всех возможных несоответствий между предполагаемыми условиями эксплуатационного нагружения и условиями, воспроизводимыми в испытаниях. Они включают многообразие факторов, влияющих на рассеивание усталостной долговечности, в том числе и при наличии малых по величине дефектов типа трещин.  [c.47]

При отсутствии ползучести металла замка, т. е. при относительно низких температурах, расчет заключается в определении предельной нагрузки на замок и соответствующего коэффициента запаса прочности /г". Для этого необходимо произвести расчеты, указанные в п. а—в раздела А, и в п. а раздела Б. По последнему пункту расчет ведется для зубцов хвостовика лопатки и выступа диска до тех пор, пока граница между упругой и пластической зонами не пересечет весь зубец (от верхнего контура к нижнему). Соответствующие усилия и будут предельными для зубцов лопатки и диска, после чего меньшая из этих величин подставляется в формулу (4.11), что дает возможность определить соответствующий коэффициент запаса прочности п°. Для облегчения некоторых расчетов, указанных в этом параграфе, можно воспользоваться вспомогательными таблицами, а именно  [c.173]


Нетрудно видеть, что определение нагрузки [Л полностью соответствует описанной выше процедуре подбора сечений стержней по допускаемому напряжению [<т], под которым предполагалось отношение предела текучести к нормативному коэффициенту запаса  [c.77]

При определении допускаемых напряжений [т] принимают коэффициент запаса s по отнощению к пределам прочности при сдвиге (см. табл. 8.5) равным s = 2,5...3 при статической нагрузке S = 4...5 при переменных нагрузках, а при наличии в спектре нагрузок существенных перегрузок (при вибрациях, ударных нагрузках и т. п.) запас принимают еще больше.  [c.179]

В соответствии с изложенным определение запасов по критическим температурам хрупкости, разрушающим нагрузкам, напряжениям и деформациям выполняют на основе следующих основных характеристик разрушения в хрупких состояниях ( < 4а) — по критическим значениям коэффициентов интенсивности напряжений Кщ (линейная механика разрушения), в квази-хрупких ( С2 i) и вязких (t / l) состояниях — по критическим значениям коэффициентов интенсивности деформаций К ес (нелинейная механика разрушения).  [c.77]

Изложена современная методика расчета и конструирования валов и опор с подшипниками качения. Даны расчеты валов на статическую прочность, жесткость, колебания, на прочность при переменных нагрузках с определением коэффициентов запаса прочности по корректированной теории суммирования повреждений. Рассмотрено контактное взаимодействие деталей подшипника. Приведены технические требования к посадочным поверхностям, технические характеристики подшипников качения, рекомендации по конструированию, монтажу и обслуживанию подшипниковых узлов. Изложена новая методика расчета ресурса подшипников качения. Приведены примеры расчета и нормативные данные для их выполнения. Даны точностные расчеты валов на опорах с подшипниками качения, методические указания по выполнению рабочих чертежей валов, других деталей подшипниковых узлов.  [c.4]

В книге изложена современная методика расчета и конструирования валов и опор с подшипниками качения. Приведены расчеты валов на статическую прочность, жесткость, колебания. Достаточно сложным в освоении и применении является расчет валов на прочность при переменных нагрузках. Необходимость его рассмотрения обусловлена тем, что вследствие недостаточного сопротивления усталости происходит разрушение более 50 % валов. В книге рассмотрен расчет с определением коэффициентов запаса прочности по корректированной теории суммирования повреждений.  [c.11]

Отличным от указанного выше расчета по допускаемым напряжениям является расчет конструкций по коэффициенту запаса прочности по отношению к разрушению. Сначала, надо определить величину нагрузки (или нагрузок), которая вызовет разрушение конструкции, а затем найти допускаемую нагрузку (или рабочую нагрузку) путем деления предельной нагрузки на соответственно выбранный коэффициент нагрузки. Подобный метод расчета называется расчетом по предельной нагрузке, и, как можно видеть, в этом случае при определении рабочих нагрузок величины фактических напряжений, возникающих в конструкции, непосредственно не используются. В общем случае при проектировании металлических конструкций применяется как метод расчета по рабочим напр ян се-ниям, так и метод расчета по предельным нагрузкам. Определение предельных нагрузок для некоторых простых конструкций будет обсуждаться ниже в разд. 1.8 и 9.5.  [c.18]

В большинстве случаев натурное обследование завершают испытанием объекта под нагрузкой на прочность, устойчивость и герметичность. Испытаниям предшествуют соответствующие проверочные расчеты с учетом выявленных дефектов. Проверочные расчеты в соответствии с нормативной документацией (ГОСТ 14249-89, 25859-83, 26202-84, 24755-89, РД 03-421-01, ПБ 03-605-03 и др.) выполняют по допускаемым напряжениям с учетом коэффициентов запаса. Величина запаса определяется физико-механическими характеристиками материала конструкции и условиями ее нагружения. Расчет фактических напряжений при проверке их соответствия допускаемым значениям и определении коэффициентов запаса можно заменить определением этих напряжений с помощью номограмм по величине коэрцитивной силы (см. 7.7 и 12.5).  [c.21]

Элементы пароводяного тракта котла с большими входными энтальпиями в номинальных условиях, имеющие, как правило, однозначные гидравлические характеристики, при низких входных энтальпиях и малых тепловых нагрузках могут иметь многозначные гидравлические характеристики. Для обеспечения устойчивости при работе в области многозначности необходимо поддерживать массовую скорость на внешней ветви характеристики, соответствующую перепаду давления в точке минимума гидравлической характеристики разверенной трубы с определенным коэффициентом запаса. Таким образом, нижний предел массовой скорости (см. рис. 13.4) определяют по формуле  [c.238]

Точный расчет сварных цепей представляет большие трудности вследствие неопределенности распределения напряжений но поперечному сечению звеньев поэтому определение прочных (безопасных) размеров цепей производят так же, как и расчет стальных проволочных канатов — по заданным нагрузке на цепь и коэффициенту запаса прочности.  [c.28]


Результаты расчетов пластинчатых цепей на прочность по выражениям (1.15). .. (1.21), хорошо согласующиеся с практическими данными, свидетельствуют о том, что их разрушающая нагрузка по пределам выносливости материала деталей при н = = 1, т. е. при Л э 5 10 , в 6. .. 6,5 раза меньше ее стандартных значений, определяемых при испытаниях на разрыв. А если учесть, что по критерию усталостной долговечности цепь также должна иметь определенный запас (коэффициент запаса не менее 1,3), то приведенные значения реально принимаемых коэффициентов запаса прочности для длительно работающих цепей нельзя признать чрезмерно завышенными и ими следует руководствоваться при ориентировочных расчетах и в учебной практике. Лишь для кратковременно и редко работающих тихоходных конвейеров, у которых значение мало, а следовательно, коэффициент /Ср. достаточно высок (/Ср. н > 2), коэффициенты запаса прочности по отношению к стандартной разрушающей нагрузке могут быть приняты меньшими пяти.  [c.42]

Момент, создаваемый тормозом механизма передвижения, определяют исходя из обеспечения определенного коэффициента запаса сцепления Псц приводных ходовых колес с рельсами, устраняющего возможность скольжения (юза) ходовых колес по рельсам в период торможения. При нормальной работе крана без ветровой нагрузки принимают / сц=1,2 и при ветровой нагрузке — /1сц= 1,1.  [c.10]

Правильный выбор коэффициента запаса имеет такое же влияние на окончательный результат расчета, как и правильное определение величины и характера действующей нагрузки и определение напряжений в элементах конструкции. В связи с этим выбор норм допускаемых напряжений должен быть увязан в целом с методами применяемых расчетов. Поэтому для наиболее характерных типов конструкций, отличающихся по своим условиям работы и по принятым для них расчетным схемам, вырабатываются свои нормы допускаемых напряжений. Так, для строительных конструкций общего типа допускаемое напряжение в случае применения стали марки Ст. 3 составляет [а] = 1600 кг см .  [c.25]

Важной расчетной характеристикой деформационных свойств является модуль упругости. Он необходим для расчета на устойчивость и определения перемещений конструкции. Анализируя структуру коэффициента запаса устойчивости, можно сделать вывод, что он зависит от коэффициента вариации нагрузки, имеющего такое же значение, как и при расчете на прочность, и коэффициента вариации критического напряжения в функции модуля упругости. Нет оснований полагать, что вариация последнего по физической природе может существенно отличаться от вариаций всех механических свойств, в том числе и СТр. В связи с этим при расчете на устойчивость рекомендуют принимать минимальное значение коэффициента запаса, равное 6. При этом критические напряжения не должны превосходить допускаемое напряжение на сжатие. При наличии агрессивных или поверхностно-активных сред значение коэффициента запаса рекомендуют увеличивать до 9.  [c.19]

Кроме того, одной из основных причин нарушения нормальной эксплуатации испарительных контуров с выносными циклонами является значительное отклонение расхождения уровня воды в циклоне и барабане от намеченных расчетом. В связи с этим вопрос о контроле за соответствием действительного расхождения уровня воды проектному имеет огромное практическое значение, а поэтому пуск и наладка любого котла, снабженного экранным контуром с выносными циклонами, должны обязательно сопровождаться необходимой проверкой и контролем за понижением или повышением уровня воды в циклоне при различных нагрузках котла, в том числе и максимальной. Посадка уровня воды в циклоне относительно оси барабана при работе котла с различными нагрузками зависит, как известно, от выбора схемы, размера соединительных трубопроводов по пару и воде между циклоном, сборным коллектором, уравнительными емкостями или барабаном. Для каждого испарительного контура, включенного на выносной циклон, все коэффициенты запаса по застою и опрокидыванию обеспечиваются при определенном, принятом в проекте, положении уровня воды в циклоне. Значительное опускание уровня воды ниже расчетного может приводить к нарушению надежности работы и вызывать неустойчивость циркуляции в отдельных слабообогреваемых трубах этого контура, особенно при небольшой его высоте. Значительные отклонения в опускании уровня воды в циклоне от проектного могут приводить, как уже отмечалось выше,  [c.85]

Запасы по разрушающим нагрузкам (при изготовлении, монтаже и эксплуатации конструкций) назначаются в пределах 1,5—2, а запасы по коэффициентам интенсивности напряжений и деформаций — в пределах 1,7—2,2. Большие из указанных запасов выбирают для циклически нагружаемых элементов конструкции, изготовляемых из хладноломких малоуглеродистых сталей или сталей повышенной прочности и низкой пластичности, чувствительных к концентрации наг яжений, скорости деформирования и обладающих повышенным разбросом характерисгик сопротивления разрушению. Повышенные запасы прочности принимают для элементов конструкций, определение эксплуатационной нагруженности которых затруднено в силу сложности конструктивных форм, наличия высоких остаточных напряжений (например, от сварки и монтажа), возникновения нерасчетных статических и динамических перегрузок. Для таких элементов конструкций обычно затруднено проведение надлежащего дефектоскопи ческого контроля при их изготовлении и эксплуатации. В этом случае запасы по нагрузкам должны быть более высокими — до 2,5.  [c.77]

Номер профиля ходового пути, обусловливающий толщину ездовой полки, определяют по максимальной расчетной нагрузке на каретку в зависимости от несущей способности ездовой полки пути. Следовательно, для каждого заданного профиля пути можно установить предельные нагрузки на каретку по прочности ездовой полки (см. ниже). При выбранном профиле расчет ходового пути сводится к определению максимального допускаемого расстояния между креплениями различных участков пути конвейера, т. е. свободного пролета балки пути. Пролет балки пути определяют из расчета на прочность от поперечного и местного изгиба, деформацию прогиба и устойчивость. При расчете на прочность следует учитывать, что при работе конвейера возможен значительный износ ездовых поверхностей путевой балки. Для надежной работы конвейера требуется повышенная жесткость ходового пути, особенно на участках, примыкающих к поворотным устройствам. Поэтому для балок из стали СтЗ рекомендуется принимать допускаемое напряжение на изгиб (поперечный и местный) Оп.д 1200 кгс/см , допускаемый прогиб fmax = 1/500 длины пролета коэффициент запаса по устойчивости % = 1,7 -h 2,0. Для стали 14Г2 можно принять Оп.д = 1400 к,гс/см .  [c.101]

Расчет на усталость заключается в определении расчетных коэффициентов запаса по пределу выносливости в опасных сечениях. Такой расчет обычно проводят для валов приводов и передаточных механизмов, работающих при относительно больших силовых нагрузках. На валы и оси действуют силы от установленных на них звеньев передач. Обычно они неподвижны относительно стойки механизма и вызывают в валах и осях напряжения изгиба, изменяющиеся по симметричному циклу (рис. 15.5, б). Большей частью валы передают переменные по значению, но постоянные по направлению вращающие моменты. Эти моменты создают напряжения кручения, изменяющиег ся по отнулевому циклу (рис. 15.5, в).  [c.185]


Силовые Полушро Водникоьые прибары кремниевые вентили, тиристоры, стабилитроны — имеют весьма малый объем рабочего элемента, большие тепловые нагрузки при интенсивном отводе тепла.. Параметры полупроводниковых приборов зависят от тока, напряжения, температуры и скорости их изменения во времени. Поэтому средние номинальные данные полупроводниковых приборов, приводимые в их паспортах и предусмотренные существующим стандартом, включают 1 себя определенный коэффициент запаса по току и напряжению, с тем чтобы возможные в эксплуатации отклонения от номинального режима не приводили к выходу вентиля из строя. Система номинальных параметров имеет то преимущество, что потребитель всегда имеет возможность сравнительно просто проверить соответствие вентиля требованиям технических условий и, не производя сложных расчетов, устанавливать вентили в преобразовательные и другие схемы. Но так как коэффициенты запаса устанавливаются заводом-изготовителем и пе учитывают всего разнообразия условий эксплуатации, то система номинальных параметров может привести к тому, что в одних установках вентили будут недостаточно использованы, в других будут постоянно подвергаться опасности выхода нз строя при аварийных процессах.  [c.198]

При длительном режиме работы с постоянной или мало-меняющейся нагрузкой определение допускаемых изгибных напряжений при симметричном цикле производится по формуле [а/г]=а ]/ц при отнулевом цикле [з/ ] = 1,5а 1//г, где п = = 1,3. .. 2—коэффициент запаса прочности. Предел выносливости можно определять по формулам а ] = 0,430 — для углеродистых сталей а 1 = 0,350 + (70... 120) МПа — для легированных сталей а 1 = 85. . . 105 МПа — для бронз и латуней а [ = (0,2. . . 0,4) — для деформируемых алюминиевых сплавов для пласт-  [c.217]

Элементы теории надежности можно найти в расчетах по коэффициентам запаса отношение п расчетной прочности г к расчетной нагрузке s в определенной степени характеризует уровень надежности. Понимание статистической природы коэффициентов запаса пришло позднее - в первой трети нашего века. В работах М.Майера (1926 г.), Н.Ф.Хоциалова (1929 г.) и Е.С.Стрелецкого (1935 г.) введена характеристика надежности, измеряемая как вероятность непревышения параметром нагрузки параметра прочности. В послевоенный период этот подход получил дальнейшее развитие. Он повлиял на структуру норм расчета конструкций, в которых бьиа сделана попытка расчленить коэффициент запаса на составляющие, придав каждой из них некоторый статистический смысл. Таким образом инженеры пришли к методике расчета по предельным состояниям, которая до сих пор служит основой для нормирования расчетов в строительстве.  [c.40]

Чтобы определить способность болта сопротивляться воздействию эксплуатационных нагрузок, необходимо провести испытания его на усталостную прочность при различных значениях статической составляющей цикла изменения нагрузки. По результатам испытаний строят диаграмму предельных напряжений болта, характеризующую влияние осевой растягивающей силы на изменение его усталостной прочности. На рис. 104 приведена такая диаграмма для шатунных болтов двигателя ЗИЛ-130. По оси абсцисс отложены средние напряжения цикла соответствующие различным моментам затяжки М. Моменты М соответствуют пониженному коэффициенту трения, моменты М" — повьшенному коэффициенту трения. На диаграмме показана область напряжений, возникающих в болтах при работе двигателя, т. е. для каждого момента затяжки Может быть определена амплитуда рабочих напряжений в болтах и амплитуда допустимых напряжений при данной затяжке [сГд]. В данном случае эти напряжения приведены для максимального момента, возникающего после шплинтовки болта (линия ЬЬ). Линия аа ограничивает напряжение в болте по предельно допустимому минимальному моменту затяжки, а линия сс — по предельно допустимому максимальному моменту затяжки, определенному по рекомендуемому НАМИ коэффициенту запаса для шатунных болтов.  [c.163]

Расчет на устойчивость длинных винтов сводится к определению коэффициента запаса устойчивости, который не должен быть меньще допускаемого, или к расчету на сжатие по пониженным допускаемым напряжениям. Коэффициент уменьшения допускаемых напряжений в этом случае является функцией гибкости части стержня винта, воспринимающей сжимающую нагрузку. Коэффициент запаса устойчивости  [c.163]


Смотреть страницы где упоминается термин Коэффициент запаса по нагрузкам — Определение : [c.167]    [c.50]    [c.72]    [c.53]    [c.43]    [c.268]    [c.513]    [c.18]    [c.449]    [c.42]    [c.266]    [c.96]    [c.128]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.118 ]



ПОИСК



Запас

Запас Определение

Запас нагрузке

Коэффициент запаса

Коэффициент нагрузки

Коэффициент — Определение

Определение коэффициента запаса



© 2025 Mash-xxl.info Реклама на сайте