Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение хрупкое в общем случае

Разрушение материала в общем случае можно условно разделить на два типа. К первому относятся все виды, разрушений, для которых критические параметры, контролирующие разрушение, практически нечувствительны к скорости деформирования I и температуре Т. Разрушение такого типа наблюдается при различных условиях деформирования. Наиболее типичными примерами являются хрупкое и вязкое разрушения при статическом активном деформировании, для которых критическое разрушающее напряжение и критическая деформация инвариантны к скорости нагружения и температуре (см. гл. 2).  [c.150]


Степень развития пластической деформации в верщине растущей трещины зависит от динамических свойств дислокаций, в частности от интенсивности размножения дислокаций при заданных условиях нагружения. Характеристикой последней служит время задержки текучести. Время задержки текучести в о. ц. к. металлах примерно на 2—4 порядка больше, чем г. ц. к. металлах. Это обстоятельство, по-видимому, и обусловливает высокую склонность к хрупкости о. ц. к. металлов. Если в металлах при данной скорости деформации и температуре интенсивность размножения дислокаций достаточно велика, то материал деформируется пластически и разрушается вязко. При малой интенсивности размножения дислокаций напряжения отрыва в вершине трещины достигаются раньше, чем осуществится пластическая релаксация, в результате материал разрушается хрупко. В общем случае чем больше радиус пластической зоны впереди трещины, тем менее склонен материал к хрупкому разрушению.  [c.178]

Таким образом, из приведенных рассуждений следует, что факт зарождения какой-либо несплошности (например, при а, = От) вовсе не гарантирует дальнейшего ее развития по хрупкому механизму. Для возможной реализации хрупкого разрушения необходим такой механизм зарождения микротрещины, который делает ее устойчивой к эмиссии дислокаций из ее вершины. Ясно, что реализация такого механизма в общем случае может происходить при условиях, отличных от условия (2.3).  [c.69]

Учитывая условия зарождения (2.7), страгивания и распространения (2.9) микротрещины скола, критерий хрупкого разрушения в общем случае можно представить в виде  [c.71]

Выше были рассмотрены условия старта макротрещины, обусловленного хрупким или вязким зарождением разрушения в ее вершине. Сам факт такого старта в общем случае не является гарантом глобального разрушения элемента конструкции. Так, для развития трещины по вязкому механизму требуется непрерывное увеличение нагрузки до момента, когда трещина подрастает до такой длины, при которой дальнейший ее рост может быть нестабильным [33, 253, 339, 395]. При хрупком разрушении нестабильное развитие трещины начинается сразу после ее старта, но тем не менее трещина может остановиться, не разрушив конструкции, что может быть связано с малой энергоемкостью конструкции (не хватает энергии на обеспечение динамического роста трещины) или определенной системой остаточных напряжений (попадание трещины в область сжатия).  [c.239]

Предложено несколько различных механизмов поглощения энергии за счет микромеханических процессов, протекающих при разрушении композиций, наполненных дисперсными частицами, для объяснения влияния наполнения на поверхностную энергию разрушения хрупких полимеров. Очевидно, что комбинация этих процессов определяет энергию разрушения любой заданной композиции, причем одни процессы более важны в одном случае, другие— в другом. В общем случае можно выделить следующие эффекты, обусловливающие повышение энергии разрушения хрупких полимеров при введении дисперсных частиц  [c.73]


Хрупкое разрушение в общем случае неоднородного неодноосного напряженного состояния  [c.38]

Из критерия хрупкого разрушения К = находим критическую длину /с, а долговечность получится при подстановке h вместо I в формулу (81). В общем случае F зависит от I (см. табл. 2), и интегрировать (81) сложно.  [c.131]

Детали механизма роста трещины при ударном нагружении весьма сложны, так как этот процесс нестабильный. При этом временной фактор можно не рассматривать, так как процесс разрушения протекает очень быстро. Увеличение энергии, приходящейся на дополнительное раскрытие, связанное с ростом трещины до определенной длины, можно подсчитать приближенно (см. рис. 85) и показать, что причиной роста работы разрушения является просто необходимость увеличения с температурой длины вязкой трещины для развития хрупкого скола. Величина прироста энергии, очевидно, зависит от формы кривой РТ (длины трещины). В общем случае, если основание надреза не было подвергнуто деформационному упрочнению перед испытаниями, то при вязком разрушении, начинающемся при низких значениях РТ, рост трещины не приведет к существенному увеличению РТ.  [c.205]

Из вышеизложенного ясно, что различные типы материалов разрушаются по-разному, поэтому необходим весьма большой объем исследований для установления связи между микромеханизмом разрушения и вязкостью разрушения. В общем случае крупные хрупкие частицы разрушаются при низких напряжениях, а несмачиваемые включения порождают поры при низких деформациях, Наилучшим способом достижения высокой вязкости является измельчение микроструктуры, но необходимо улучшать  [c.217]

Формулировка критерия локального разрушения (4.2) для трещин нормального разрыва не зависит от структуры конца трещины. Например, в случае внутренних трещин структура конца трещины совершенно не похожа на структуру конца сквозной трещины в пластине (см. 5 этой главы), однако концепция механики хрупкого разрушения справедлива в обоих случаях, если реализована тонкая структура. Впервые наиболее четко это было понято Ирвином [ 2 исходившим из общих энергетических соображений, аналогичных изложенным ранее.  [c.208]

Указанный закон подобия нарушается только для весьма мощных взрывов из-за сравнительно большого влияния силы тяжести и для хрупких материалов, к которым, строго говоря, неприменимы теории предельного состояния. Разрушение идеально-хрупких тел под действием взрыва в общем случае описывается тремя константами Kj , Ku и Кшс, размерность которых отлична от размерности напряжения. Сам процесс разрушения можно представить себе как процесс развития и размножения динамических трещин вследствие ветвления. Начальные трещины, выходящие на границу зарядной камеры и служащие очагом разрушения, не влияют на размер R разрушенной области, так как их длина значительно меньше R. Поэтому для идеально-хрупких тел вместо допущения б) можно принять следующее предположение, ограничившись лишь трещинами нормального разрыва  [c.450]

Первое выражение в уравнении (6) представляет собой скорость освобождения упругой энергии и обычно обозначается через G, Эта скорость, очевидно, зависит от напряжения, свойств материала образца и его конфигурации. Второе выражение, представленное в виде сопротивления хрупкому разрушению G вместо поверхностного натяжения, определяет скорость расходования энергии, необходимой для развития трещины, и служит показателем сопротивления материала распространению трещины. Этот показатель сопротивления часто является функцией длины трещины и в общем случае обозначается через R. На рис. 1 представлены зависимости, описываемые уравнениями (6) и (8). На рис. 1, а показан характер изменения полной энергии, которая в уравнении (6) дана в скобках. На рис. 1, б дана зависимость скорости освобождения энергии от длины трещины. Как следует из графика, максимальная скорость освобождения энергии G и скорость освобождения энергии R, необходимая для распространения трещины, постоянны и независимы от длины и скорости распространения трещины. На рис. 1, б видно, что при началь-  [c.22]


Важное значение имеет создание сплавов, обладающих низкой чувствительностью к скорости деформирования, и технологии их обработки. Многие материалы показывают такую чувствительность к скорости, которая в общем случае приводит к понижению сопротивления хрупкому разрушению по мере увеличения скорости нагружения или скорости распространения трещины. Такая зависимость сопротивления хрупкому разрушению материала от скорости деформации вызывает повышение опасности начальной неустойчивости и ведет к непрерывному росту скорости распространения трещины, особенно в условиях фиксированной внешней нагрузки. В какой-то степени наблюдения подтверждают эту особенность сопротивления хрупкому разрушению. Однако, в действительности, скорость распространения трещины не непрерывно растет, а асимптотически приближается к предельному значению, приблизительно равному 0,4 скорости продольной звуковой волны в материале.  [c.38]

Под действием переменных напряжений в деталях механизмов и металлоконструкций ПТМ происходит постепенное накопление повреждений. Этот процесс называется усталостью, а способность деталей сопротивляться усталости — циклической прочностью или выносливостью. В начальной стадии накопления циклических повреждений происходят пластические деформации отдельных кристаллов, из которых состоит металл. Эти пластические деформации вызывают перераспределение напряжений, и на поверхности ряда кристаллов возникают линии сдвига. Пластическое деформирование сопровождается упрочнением отдельных зон кристаллов и одновременно разрыхлением структуры в области внутрикристаллических дефектов. Под действием переменных напряжений, превышающих определенный уровень, начинают образовываться из линий сдвига микротрещины. Развиваясь, микротрещины переходят в макротрещины. Последние приводят к уменьшению прочностного сечения детали, и после того как размер трещины достигает предельного значения, наступает хрупкое разрушение детали. Таким образом, процесс усталостного разрушения можно разделить на две стадии [27]. Первая стадия — до начала образования макротрещины, вторая — от момента ее образования до разрушения детали. В настоящее время еще нет достаточно апробированных общих оценок закономерностей распространения трещин в деталях ПТМ сложной конфигурации. В связи с этим расчеты циклической прочности как до образования макротрещин, так и до полного разрушения носят идентичный характер [20]. Известно, что пределы выносливости, определенные по условию образования трещины и по условию оконча тельного разрушения, совпадают при коэффициентах концентрации аа < 2 -Ь 3. При высоких коэффициентах концентрации количество циклов, при которых происходит развитие макротрещины с момента ее образования до разрушения сечения, составляет 70—80 % от общего ресурса детали. Развитие усталостной трещины происходит в результате циклических деформаций в области вершины трещины. Установлено, что в общем случае распространение макротрещины от появления до полного разрушения детали можно разделить на три этапа [27], Первый этап характеризуется малой скоростью распространения трещины вдоль полос скольжения. На втором (основном) этапе трещина растет с примерно постоянной скоростью. На третьем этапе, когда трещина имеет уже большие размеры, скорость роста увеличивается и происходит мгновенное хрупкое разрушение (долом) детали. В то же время экспериментальные и теоретические исследования так же, как и эксплуатационные наблюдения, свидетельствуют о том, что не всегда появление трещины усталости приводит к разрушению детали (образца) [27]. В ряде случаев возникают нераспространяющиеся трещины или трещины с весьма малой скоростью роста. Очевидно, что разработка и использование возможностей уменьшения  [c.121]

Известно, что напряженное состояние характеризуется в общем случае тремя главными напряжениями. Первая теория учитывает только одно из них (наибольшее) и не учитывает значения двух остальных. Иными словами, из первой теории следует, что сопротивление отрыву в одном направлении не меняется от приложения сжимающих или растягивающих напряжений в поперечных направлениях. Для случаев хрупкого разрушения (чугун при растяжении или кручении) этот вывод подтверждается опытом, и потому первая теория применима для объяснения разрушения путем отрыва.  [c.295]

В соответствии с теорией Вейбулла, зависимость вероятности хрупкого разрушения образца при напряжении, большем или равном а, от объема образца в общем случае может быть записана в виде  [c.143]

Разрушение - процесс, включающий зарождение и развитие трещин. Разрушение может закончиться разделением тела на части. Различают хрупкое разрушение, сопровождающееся минимальным поглощением энергии и малой предшествующей пластической деформацией, и вязкое (пластическое) разрушение, при котором материал обнаруживает значительную пластичность. В общем случае при разрушении имеют место механизмы и пластического, и хрупкого разрушения. Их соотношение в значительной степени определяется температурой, при которой происходит разрушение. При комнатной температуре мы условно можем разделить материалы на хрупкие (например, чугун) и пластичные (например, сталь) в зависимости от того, какой механизм разрушения преобладает.  [c.156]

Для неметаллических материалов в общем случае характерны три вида разрушения хрупкое, пластическое и высокоэластическое.  [c.48]

В общем случае с ростом скорости деформации, как это следует из схемы вязкого и хрупкого разрушения (см. рис. 12 на стр. 28), должен наблюдаться рост числа задержанных дислокаций. Непосредственным доказательством этого являются опыты, проведенные на монокристаллах алюминия чистотой 99,99% [ЮО]. Отсутствие границ зерен и достаточно высокая чистота материала обеспечивали максимальные условия  [c.47]


Здесь контур дС такой же, как и в (1.59). Легко видеть, что Гх = 27. Таким образом, вектор Г с компонентами (1.64) представляет собой поток энергии упругого тела в точку О фронта трещины, который расходуется на разрушение и образование новых поверхностей. Он зависит от времени, положения точки О, от внешней нагрузки и конфигурации тела. В случае хрупкого и квазихрупкого разрушения значение Г будет обычной функцией этих параметров. В общем случае, при наличии необратимых (диссипативных) процессов вне окрестности фронта трещины Г могут представляться функционалами времени и других параметров.  [c.32]

В данной главе рассматриваются хрупкое, вязкое и усталостное разрушения поликристаллического материала при кратковременном статическом и малоцикловом нагружениях. Разрушение поликристаллического металла при кратковременном статическом нагружении (т. е. при скорости деформирования I с ) является в большинстве случаев внутризеренным и в зависимости от температуры и характера НДС хрупким или вязким. Феноменологически первый тип разрушения сопровождается низкими затратами энергии в отличие от второго, для которого характерны значительные пластические деформации и, как следствие, высокая энергоемкость. Разрушение конструкционных материалов при малоцикловом нагружении также в основном связано с накоплением внутризеренных повреждений и развитием разрушения по телу зерна. Общим для рассматриваемых типов разрушений является также слабая чувствительность параметров, контролирующих предельное состояние материала, к скорости деформирования и температуре. Указанные общие особенности хрупкого, вязкого и усталостного разрушений послужили основанием для их анализа в одной главе.  [c.50]

Отметим, что при построении различных моделей разрушения и формулировке критериев хрупкого разрушения во многих случаях исходят в общем из априорного постулирования преобладающего значения того или иного процесса. Так, например, в работах [149, 150] предполагалось, что критическое напряжение хрупкого разрушения 5с в поликристаллических материалах с различной структурой при разных температурно-деформационных условиях нагружения определяется только одним условием — переходом зародышевых микротрещин к гриффитсов-скому (нестабильному) росту. Условия распространения микротрещины как через границы зерен, так и через любые другие барьеры, возникающие при эволюции структуры в результате пластического течения, игнорировались. При этом сделана попытка объяснить увеличение S с ростом пластической деформации гР уменьшением длины зарождающихся в процессе деформирования микротрещин за счет уменьшения эффективного диаметра зерна [149, 150]. Такая модель не позволила авторам удовлетворительно описать зависимость S eP), что привело их к выводу о существенном влиянии деформационной субструктуры на исследуемые параметры. Следует отметить, что, рассматривая в качестве контролирующего разрушения только процесс страгивания микротрещины и не учитывая условия ее распространения, практически невозможно предложить разумную концепцию влияния пластической деформации на критическое напряжение S .  [c.61]

Особый интерес к проблеме хрупкого разрушения возникает в связи со случаями внезапного разрушения ответственных конструкций, на поверхность которых нанесены хрупкие износостойкие покрытия. Для оценки надежности материалов с покрытиями необходимо экспериментальное определение их склонности к зарождению трещин, а также определение способности материалов противостоять процессу развития трещины или разрушению. Эти показатели объединяются в общее понятие — вязкость разрушения.  [c.135]

Однако, при нагружении конструкций из малоуглеродистых, низко- и среднелегированных сталей, содержащих плоскостные дефекты, имеет место, как правило, развитое пластическое течение в вершине данных концентраторов (зона АВ на рис. 3.2). В общем случае это снижает опасность хрупких разрушений, так как часть энергии нагружения расходуется на образование пластических зон. В данных зонах напряжения и деформации уже не контролируются величиной коэффициентов интенсивности напряжений, а определяются из соотношений теории пластичности. Дпя некоторого упрощения описания процесса разрушения в механике разрушения вводят критерии, описывающие поведение материала за пределом упругости 5 — критическое раскрытие трещины и — критическое значение независящего от контура интегрирования некоторого интеграла. Деформационный критерий 5 основан на раскрытии берегов трещины до некоторых постоянных критических значений для рассматриваемого материала. На основе контурного Jj,-интеграла представляется возможность оценить момент разрушения конструкций с трещинами в упругопластической стадии нагружения посредством определения энергии, необходимой для начала процесса разрушения. При этом полагается, что критическое значение энергетического параметра, предшествующее разрушению, является характеристикой материала. Существуют также и другие характеристики разрушения, которые не получили широкого распространения на практике. Например, сопротивление микросколу [R ]. сопротивление отрыву, угол раскрытия вершины трещины, двухпараметрический критерий разрушения Морозова Е. М. и др.  [c.81]

В общем случае (В. С. Иванова и Л. А. Маслов) в изломе выделяют три основные зоны />—зона чисто усталостного разрушения, характеризующаяся наличием усталостных полос (макро- и микрополос, наблюдаемых в электронном микроскопе) U — зона перехода или зона смешанного разрушения ( ямочное как результат локальных разрушений впереди трещины, хрупкие участки и усталостные полосы) и, наконец, /г — зона долома. Длина усталостного пятна l)=ia+ld. Исчезновение зоны I, свидетельствует о том, что с увеличением напряжения происходит смена напряженного состояния, реализуемого в локальном объеме впереди трещины. Хруп- кое разрушение в условиях плоской деформации сменяется на квазивяз-кое. Для оценки микрорельефа поверхности и профиля излома в институте металлургии им. А. А. Байкова разработано оригинальное телевизионно-аналоговое устройство.  [c.45]

Межзеренное разрушение в общем случае является малопластичным. Наиболее очевидный признак межзеренного разрушения заключается в наличии рельефа, соответствующего огранке зерен. Межзеренное прохождение трещин устанавливают либо при макроанализе (в случае размера зерна 0,05 мм и выше), либо при использовании увеличения оптического микроскопа. В крупнозернистом материале при обычно применяемых увеличениях электронных микроскопов 3 тыс. и более четко установить межзеренный характер разрушения иногда бывает затруднительно. При увеличении оптического микроскопа в межзеренных хрупких изломах наблюдаются гладкие площадки часто с частицами охрупчивающих включений. На этих площадках могут наблюдаться сдвиги в виде складок, четко выявляются границы-зерен. На электронных фрактограммах обнаруживаются менее грубые сдвиги, тонкодисперсные частицы различных выделений (рис. 28). От внутрикристаллического хрупкого скола такие изломы отличаются, как правило, отсутствием ручьистого узора, что, по-видимому, связано с меньшей возможностью дробления трещины при межзеренном прохождении разрушения по сравнению с внутризеренным.  [c.47]

В общем случае различают вязкое и хрупкое разрушения. Вязкое разрушение происходит срезом под действием касательных нащ)яжений и сопровождается значительной пластической деформацией. Для вязкого разрушения хгфактерен волокнистый (матовый) излом детали или образца. Хрупкое разрушение происходит под действием нормальных растягивающих напряжений, вызывающих отрыв одной части тела от другой без заметных следов макропластической деформации. Для Фупкого разрушения характерен кристаллический (блестящий) излом.  [c.27]


Основным требованием, предъявляемым к криогенным сталям, является гарантированный запас пластичности и вязкости разрушения при рабочих температурах Мате риал в условиях низких температур не должен обладать склонностью к хрупкому разрушению, т е интервал ра бочих температур должен находиться выше порога хлад ноломкости стали В общем случае, чем больше разница между температурой эксплуатации и порогом хладнолом кости, тем выше запас вязкости материала  [c.242]

В существующих определениях ударной вязкости и вязкости разрушения материала существует некоторая нечеткость. В общем случае при ударных нагрузках материалы разрушаются хрупко, т. е. с небольшими пластическими (неуиругими) деформациями до разрушения или при их полном отсутствии. Наиболее просто при высокоскоростных испытаниях, таких как ударные испытания по Шарпи или по Изоду, измеряется энергия маятника, затрачиваемая на разрушение, или общая площадь под кривой нагрузка — время, если испытательный прибор снабжен приспособлением для записи усилий в маятнике. Хорошо известно, что маятниковые методы дают результаты, очень чувствительные к форме и размерам образца и обычно трудно коррелируемые с поведением материала в реальных условиях. В принципе, эти методы являются первой попыткой измерения стойкости материала к росту трещины, а нанесение острого надреза в образце — попыткой исключения энергии инициирования трещин из общей энергии разрушения. Надрез в образце также обусловливает разрушение по наибольшему дефекту известных размеров и исключает влияние статистически распределенных дефектов в хрупком теле. Развитие механики разрушения поставило методы оценки вязкости разрушения хрупких тел на научную основу, однако ударные маятниковые методы все еще широко используются и при соблюдении определенных условий могут давать для композиционных и гомогенных материалов результаты, сравнимые с по-  [c.124]

Сравнение деформационных кривых ст = / (кр) с зависимостью Q — f ( р) позволяет выделить, в общем случае, на обеих кривых три соответствуюш.их участка (рис. 11.18, а). На участке /, связанном с упругими деформациями материала, наблюдается растрескивание образца, сопровождаюш,ееся непрерывным ростом количества проникающей жидкости. Участок II, связанный с вы-нужденно-эластическими деформациями в образце и соответствующей ориентацией макромолекул в направлении действия внешней силы, характеризуется уменьшением скорости переноса жидкости через образец. Наконец, упругая деформация ориентированного образца (участок III) приводит к дополнительному растрескиванию образца, что сопровождается ростом Q. Для винипроза С в контакте с гептаном характерно хрупкое разрушение (см. рис. 11.17, б), поэтому наблюдается рост потока Q вплоть до разрушения (рис. 11.18, б).  [c.86]

Разрушение при ударе волокнистых композиций является значительно более сложным явлением, чем разрушение ненапол-ненных полимеров, что обусловлено особой ролью волокон и эффектами взаимодействия на границе раздела. Установление каких-либо общих закономерностей затруднено различием в используемых методах ударных испытаний. В общем случае для повышения работы разрушения и ударной прочности материала в нем должен реализовываться механизм распределения накапливаемой упругой энергии и поглощения ее как можно большим объемом материала. Если энергия концентрируется в малом объеме, материал разрушается хрупко, и его ударная прочность низка.  [c.278]

Отпуск после поверхностной закалки производят в соответствии е требованиями к твердости детали. В общем случае повышение сопротивления хрупкому разрушению, имеющее место при поверхностной закалке, позволяет применять более низкий отпуск, чем после обычной печной закалки. Многие детали после поверхностной закалки подвергают самоотпуску, осуществляемому за счет внутреннего тепла, остающегося в сердцевине детали после нагрева и дозированного охлаждения при закалке. Время охлаждения выбирают таким, чтобы после охлаждения поверхность нагрелась до требуемой температуры. Для получения заданной твердости температура нагрева при самоотпуске доАжна быть нд 70—100° С выше температуры при отпуске в печи.  [c.613]

Увеличение содержания примесей внедрения в сплавах промышленной чистоты способствует росту склопностй к хрупкому разрушению. При этом реализуется пластический сдвиг в ограниченном числе плоскостей скольжения ГЦК-решетки, что и приводит в общем случае к повышению прочности и снижению пластичности и вязкости с понижением чистоты выплавки. Примеси внедрения увеличивают сопротивление движению свободных дислокаций со стороны кристаллической решетки. В этом заключается одна из причин повышения температуры порога хладноломкости сплавов промышленной чистоты и их более низкой деформационной способности. О том, что ГЦК-струк-тура сплава Г29 высокой чистоты содержит в меньшем количестве и меньшей плотности дефекты кристаллического строения, чем структура сплава Г23 промышленной чистоты подтверждают данные диффузного рассеяния (см. рис. 70, 71).  [c.239]

В предыдущем изложении мы кас ались установления критериев для начала текучести пластичных материалов" в общем случае напряженного состояния. В случае хрупких материалов, которые разрушаются без пластической деформации, мы также нуждаемся в критерии разрушения в общем случае действия напряжений 01, и 03. Такой критерий представлен теорией прочности, разрабо-% таниой Мором ), в которой рассматривает- ся не только текучесть, но также и собственно разрушение. При разработке своей теории Мор применил графическое изобра- жение напряженных состояний 3 элементе тела с помощью кругов напряжений, как пояснено в п. 18, т. I, стр. 64. В этом изображении (круг Мора) нормальные и каса-с тельные составляющие напряжения, действующие по какой-либо площадке, определяются координатами некоторой точки в пределах заштрихованной плош,ади (рис. 299). Точки, лежащие на одной и той же вертикальной линии (как, лапример, ММ% представляют напряжения по площадкам с одинаковым нормальным напряжением о н с различными касательным  [c.380]

В общем случае переход от стабильного развития трещины к нестабильному (хрупкое разрушение) сопровождается скачками трещин, число и размер которых зависят от свойств материала и условий испытания, в свн-зп с чем следует различать вязкость разрушения при цпклическо.м пагруж -НИИ, соответствующую первому скачку и вязкость при полном разрешении К. Характе истики вязкости разрушения и могут бы ь  [c.340]

Изложенные выше соображения по поводу склонности материалов к хрупкому разрушению не позволяют предсказать характер разрушения материала, в котором уже образовалась трещина. Возможно, это связано с тем, что у большинства материалов при увеличении скорости деформирования резко повышается предел текучести. Микротрещины в материале могут образоваться в зонах локализации деформации. Таким образом, зная лишь характеристики макропластичности (кривые деформирования) при растяжении гладких образцов, нельзя достоверно оценивать в общем случае склонность материала к хрупкому разрушению. Примером разрушения детали из стали, имеющей отношение 0 0,2/сГв < 0,87, явилось хрупкое разрушение корпуса насоса, работающего в условиях сложного напряженного состояния, для которого в месте образования трещины значение А = (Гг/о = 0,4. Корпус был изготовлен из литой стали 20Х13Л, имевшей грубую структуру и следующие механические свойства <Го.2 = 293 МПа сг = 451 МПа б = 10% ф = 9,8% (рис. 2.7, б). Разрушение корпуса было вызвано аварийным превышением давления. Из металла разрушенного корпуса были изготовлены образцы типа Менаже для испытания на ударный изгиб с радиусом в надрезе 1 мм. Значение уд ной вязкости (удельной работы разрушения) оказалось равным 70-100 кДж/м .  [c.85]

Рассмотрим некоторые лeд tвия разработанной модели и их физическую интерпретацию применительно к распространению усталостных трещин в сталях средней и высокой прочности. Для этого кратко остановимся на результатах структурного изучения процесса разрушения при росте усталостных трещин. Фрактографические исследования показывают, что поверхность разрушения при развитии усталостных трещин в указанных сталях представлена в основном следующими фрактурами чисто усталостной, для которой характерно наличие вторичных микротрещин [146] (в данной работе эта фрактура названа чешуйчатой), а также фрактурами хрупкого типа (микро- и квазискол) [57, 113, 283]. Бороздчатый рельеф, свойственный усталостным изломам большинства металлов с ГЦК решеткой, как правило, отсутствует либо наблюдается в ограниченном диапазоне условий нагружения, как и участки с меж-зеренным и чашечным строением [57, 113, 372, 389]. Доля различных фрактур в изломе существенно зависит от условий испытания. Для сталей средней и высокой прочности можно отметить следующие общие закономерности изменения усталостного рельефа с ростом размаха коэффициента интенсивности напряжений доля микроскола с увеличением АЯ уменьшается при переходе от первого ко второму участку кинетической диаграммы усталостного разрушения иногда появляются области межзеренного разрушения на втором участке доминирует усталостная фрактура с микротрещинами на третьем участке кинетической диаграммы усталостного разрушения в ряде случаев наблюдаются бороздчатый рельеф и области с ямочным строением.  [c.221]


В зависимости от сочетания различного рода неблагоприятных факторов при эксплуатации сварных конструкций имеют место вязкие, квазивязкие, хрупкие и квазихрупкие разрушения. Вязкие разрушения происходят в условиях общей текучести ослабленного дефектом сечения шва. Квазивязкие — когда большая часть ослабленного сечения сварного шва охвачена пластической деформацией, а остальная часть работает упруго. Хрупкие разрушения протекают при низком уровне приложенных напряжений на стадии упругой работы конструкций, а квазихрупкие — когда незначительная часть ослабленного сечения вблизи дефекта охвачена пластической деформацией. Термин квази в данном случае означает приближение к хрупкому либо вязкому разрушению,  [c.40]


Смотреть страницы где упоминается термин Разрушение хрупкое в общем случае : [c.115]    [c.68]    [c.237]    [c.333]    [c.220]    [c.179]    [c.52]    [c.148]    [c.65]    [c.298]    [c.294]   
Ползучесть в обработке металлов (БР) (1986) -- [ c.38 ]



ПОИСК



Общий случай

Разрушение хрупкое



© 2025 Mash-xxl.info Реклама на сайте